Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej
|
|
- Barbara Świątek
- 9 lat temu
- Przeglądów:
Transkrypt
1 Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0) = a f(n + 1) = h(n, f(n)) dla każdego n N. Mówimy, że funkcja f jest określona za pomocą schematu rekursji przez liczbę a i funkcję h. Oczywiście argument funkcji f możemy oznaczać inną literą, np. x. Zadanie 1 Jaką funkcję określa schemat rekursji, jeśli (a) h(n, m) = 0 dla n, m N, (b) h(n, m) = m dla n, m N, (c) h(n, m) = n dla n, m N, (d) h(n, m) = succ(m) dla n, m N. (e) h(n, m) = n + m dla n, m N. Uwaga. Odnotujmy, że dla danych a i h funkcja f, spełniająca warunki schematu rekursji, jest określona jednoznacznie. Oznacza to, że jeśli pewna, odgadnięta przez nas, funkcja f spełnia te warunki, to jest funkcją określoną przez ten schemat rekursji. Zadanie 2 Dane są liczby naturalne a, b, c, d. Podaj przykład funkcji h ( prostszej od f), dla której za pomocą schematu rekursji otrzymamy funkcję (a) f(n) = b dla n > 0, (b) f(n) = (c) f(n) = b dla n = 1 c dla n > 1, b dla n = 1 c dla n = 2 d dla n > 2. Zadanie 3 Określ funkcję f: N N za pomocą schematu rekursji: (a) f(n) = 2n, (b) f(n) = 2 n, (c) f(n) = n 2, (d) f(n) = n 2 + 3n + 5. Zadanie 4 Podaj przykład (możliwie najprostszej) funkcji h, dla której za pomocą schematu rekursji otrzymamy taką funkcję f, że f(n) jest równe reszcie z dzielenia n: (a) przez 2, (b) przez 3, (c) przez k, gdzie k jest daną liczbą naturalną. 1
2 2 Funkcje plus i mult Funkcja plus: N 2 N jest określona za pomocą następującego schematu rekursji: plus(n, 0) = n dla dowolnego n N plus(n, succ(m)) = succ(plus(n, m)) dla dowolnych n, m N. Zadanie 5 Wykaż, że succ(n) = plus(n, succ(0)) dla każdego n N. Uwaga. Istotą schematu rekursji jest określanie (definiowanie) nowych funkcji. Na przykład funkcję plus definiujemy mając tylko succ, a funkcję mult za pomocą plus. Jeśli chcemy teraz udowodnić jakąś własność funkcji plus, to powinniśmy korzystać jedynie z powyższej definicji przez schemat rekursji oraz podstawowych własności liczb naturalnych (aksjomatów). Jedna z nich to zasada indukcji, dwie pozostałe dotyczą funkcji succ jest ona różnowartościowa i 0 nie jest następnikiem żadnej liczby naturalnej. W żadnym wypadku nie możemy się odwoływać do znanych własności dodawania. Dodawanie jest tu dopiero zdefiniowane i wszystko trzeba po kolei udowodnić. Zadanie 6 Uzasadnij, że: (a) plus(0, n) = n dla każdego n N; (b) plus(n, m) = 0 wtedy i tylko wtedy, gdy (n, m) = (0, 0); (c) plus(m, n) = plus(n, m) dla dowolnych m, n N. Zadanie 7 Udowodnij, że plus(plus(k, l), m) = plus(k, plus(l, m)) dla dowolnych k, l, m N. Funkcja mult: N 2 N jest określona za pomocą następującego schematu rekursji: mult(n, 0) = 0 dla dowolnego n N mult(n, succ(m)) = plus(n, mult(n, m)) dla dowolnych n, m N. Zadanie 8 Udowodnij, że mult(plus(k + l), m) = mult(plus(k, m), plus(l, m)) dla dowolnych k, l, m N. Zadanie 9 Wprowadźmy oznaczenie 1 = succ(0). Wykaż, że mult(1, m) = m dla dowolnego m N. Funkcja exp: N 2 N jest określona za pomocą następującego schematu rekursji: exp(n, 0) = 1 dla dowolnego n N exp(n, succ(m)) = mult(n, exp(n, m)) dla dowolnych n, m N. Zadanie 10 Udowodnij, że dla dowolnych k, l, m N zachodzą równości: (a) exp(mult(x, y), z) = mult(exp(x, z), exp(y, z)), (b) exp(x, mult(y, z)) = exp(exp(x, y), z). 2
3 3 Schemat rekursji dla funkcji wielu zmiennych Dla dowolnej funkcji g: N N i dowolnej funkcji h: N 3 N istnieje dokładnie jedna funkcja f: N 2 N spełniająca następujące warunki: f(n, 0) = g(n) dla każdego n N, f(n, m + 1) = h(n, m, f(n, m)) dla dowolnych n, m N. Zadanie 11 Jaką funkcję f określa schemat rekursji z danymi funkcjami g: N N i h: N 3 N? (a) g(n) = n, h(n, m, k) = k, (b) g(n) = 0, h(n, m, k) = n + m + k, (c) g(n) = 2n, h(n, m, k) = k + 3. Zadanie 12 Wypisz funkcje g(n) i h(n, m, k) występujące w schemacie rekursji określającym funkcje: plus, mult, exp. Zadanie 13 Funkcje f 1 : N N i f 2 : N N są określone za pomocą schematu rekursji odpowiednio przez liczby a 1 i a 2 oraz funkcje h 1 : N 2 N i h 2 : N 2 N. Znajdź schemat rekursji dla funkcji f: N 2 N takiej, że: (a) f(n, m) = f 1 (n) + f 2 (m) dla dowolnych n, m N, (b) f(n, m) = f 1 (n) f 2 (m) dla dowolnych n, m N. Następujący schemat rekursji: f(k, l, 0) = g(k, l) dla każdego n N, f(k, l, m + 1) = h(k, l, m, f(k, l, m)) dla dowolnych n, m N, określa funkcję f: N 3 N, gdy dane są funkcje g: N 2 N i h: N 4 N. Zadanie 14 Określ za pomocą schematu rekursji funkcję f: N 3 N. (a) f(k, l, m) = kl + lm + mk, (b) f(k, l, m) = klm + k + l + m, (c) f(k, l, m) = (k + l + m) 2. 4 Funkcje pierwotnie rekurencyjne Funkcjami pierwotnie (prymitywnie) rekurencyjnymi nazywamy funkcje: Z: N N, Z(x) = 0, S: N N, S(x) = x + 1, U n i : N n N, U n i (x 1,..., x n ) = x i, n 1, 1 i n, oraz wszystkie funkcje, które można otrzymać z nich za pomocą składania funkcji i operatora rekursji: f(0, x 1,..., x n ) = g(x 1,..., x n ) f(x 0 + 1, x 1,..., x n ) = h(x 0, x 1,..., x n, f(x 0, x 1,..., x n )). 3
4 Zadanie 15 Wyznacz następujące złożenia funkcji: (a) S(Z(x)), (b) S(S(S(x))), (c) S(U2 3 (x, y, z)), (d) U1 2(U 2 2(x, y), U 1 2 (x, y)). Zadanie 16 Podaną funkcję f przedstaw w postaci złożenia funkcji Z, S i Ui n, n 1, 1 i n. (a) f(x) = x + 2, (b) f(x, y, z) = 0, (c) f(x, y) = 3. Zadanie 17 Wykaż, że następujące funkcje są pierwotnie rekurencyjne: (a) f: N N, f(n) = 2, (b) f: N N, f(n) = k, gdzie k jest daną liczbą naturalną, (c) f: N 2 N, f(m, n) = m + 1. Zadanie 18 Uzasadnij pierwotną rekurencyjność funkcji f z zadań 2, 3 i 4. Zadanie 19 Udowodnij, że następujące funkcje są pierwotnie rekurencyjne: (a) f: N N, f(n) = ( 1) n + 1, (b) f: N N, f(n) = sin π 2 n + 1. Zadanie 20 Wykaż, że jeśli funkcja f: N 2 N jest pierwotnie rekurencyjna, to funkcja g: N 2 N, g(x, y) = f(y, x) też jest pierwotnie rekurencyjna. Zadanie 21 Udowodnij, że jeśli funkcje g: N n 1 N i h: N n+1 N są pierwotnie rekurencyjne, to funkcja określona za ich pomocą przez rekursję względem zmiennej x i f(x 0,..., x i 1, 0, x i+1,..., x n ) = g(x 0,..., x i 1, x i+1,..., x n ) f(x 0,..., x i 1, x i + 1, x i+1,..., x n ) = h(x 0,..., x i,..., x n, f(x 0,..., x i,..., x n )) jest też pierwotnie rekurencyjna. Rozwiązania, wskazówki, odpowiedzi, komentarze 1 Odpowiedź. (a) f(n) = (b) f(n) = a dla każdego n N, (d) f(n) = n + a dla każdego n N. 0 dla n > 0, 2 Komentarz. Ktoś złośliwy mógłby tu podać przykład funkcji h(n, m) = f(n + 1), jako załatwiającej sprawę dla dowolnego f. Schemat rekursji służy do określania bardziej skomplikowanych funkcji f przez prostsze funkcje h lub po prostu nowych, jeszcze nieskontruowanych funkcji przez funkcje, które już skonstruowaliśmy. Dlaczego tylko takie użycie schematu rekursji nas interesuje? Wystarczy spojrzeć na definicję funkcji pierwotnie (prymitywnie) rekurencyjnych. 4
5 (b) Rozwiązanie. Szukamy funkcji f takiej, że h(0, f(0)) = f(1) = b oraz h(n, f(n)) = f(n + 1) = c dla n > 0 (dokładniej: h(0, a) = b, h(1, b) = c oraz h(n, c) = c dla n > 1). Wystarczy przyjąć b dla n N i m = 0 h(n, m) = c dla n N i m > 0. (c) Odpowiedź. Wystarczy przyjąć b dla n N i m = 0 h(n, m) = c dla n N i m = 1 d dla n N i m > 1. 4 Pamiętajmy o tym, że funkcja h nie jest określona jednoznacznie dla danej funkcji f. (a) Rozwiązanie. Szukana funkcja h powinna spełniać warunek: h(n, f(n)) = f(n + 1) dla każdego n, czyli h(n, 0) = 1 dla n parzystych oraz h(n, 1) = 0 dla n nieparzystych. Zauważmy, że wystarczy przyjąć funkcję h(n, m), której wartości zależą tylko od zmiennej m, czyli h(n, m) = g(m). Wówczas nasz warunek wygląda tak: g(0) = 1 i g(1) = 0 (wartości g(m) dla m > 1 mogą być dowolne). Weźmy zatem h(n, m) = 1 dla n N i m = 0 0 dla n N i m > 0. (b) Odpowiedź. Wystarczy przyjąć (c) Odpowiedź. Wystarczy przyjąć h(n, m) = 1 dla n N i m = 0 h(n, m) = 2 dla n N i m = 1 0 dla n N i m > 1. m + 1 dla n N i m = 0,..., k 1 0 dla n N i m = k, k + 1,... 5 Wskazówka. Czemu jest równe plus(n, succ(0))? Spójrz na drugą linię schematu rekursji. 6 (a) Wskazówka. Indukcja. (b) Wskazówka. W przypadku n = 0 korzystamy z punktu (a). Dla n 0 dowodzimy, że plus(n, m) 0 stosując indukcję względem m. Pamiętamy, że następnik dowolnej liczby naturalnej jest różny od 0. (c) Rozwiązanie. Indukcja względem k = plus(n, m). Dla k = 0 mamy n = m = 0 (punkt b), więc plus(m, n) = plus(n, m). Niech teraz k będzie dowolną liczbą naturalną. Załóżmy, że twierdzenie jest prawdziwe dla wszystkich par (n, m) takich, że plus(n, m) = k. Rozważmy dowolną parę (n, m) spełniającą warunek plus(n, m) = k + 1. Pokażemy, że plus(m, n) = plus(n, m). Jeśli m = 0, to plus(m, n) = n (punkt a) oraz plus(n, m) = n (pierwsza linia schematu rekursji), więc zachodzi teza indukcji. 5
6 Jeśli m 0, to m = succ(m ) dla pewnego m N. Wówczas plus(n, m) = plus(n, succ(m )) = succ(plus(n, m )). Skoro succ(plus(n, m )) = succ(k), to plus(n, m ) = k, więc plus(n, m ) = plus(m, n) na mocy założenia indukcyjnego. Zatem plus(n, m) = succ(plus(m, n)) = plus(succ(m ), n) = plus(m, n). Na mocy indukcji twierdzenie jest prawdziwe dla dowolnych m, n N. Uwaga. Skorzystaliśmy z własności succ(plus(m, n)) = plus(succ(m ), n). Należy ją udowodnić oddzielnie (również metodą indukcji). 7 Wskazówka. Indukcja względem m. 15 Odpowiedź. (a) x 1, (b) x x + 3, (c) (x, y, z) y + 1, (d) (x, y) y. 16 Odpowiedź. (a) f(x) = S(S(x)), (b) np. f(x, y, z)) = Z(U1 3 (x, y, z)), (c) np. f(x, y)) = S(S(S(Z(U1 2 (x, y))))). Piotr Jędrzejewicz, Ćwiczenia ze wstępu do matematyki dla informatyków, I rok informatyki, jesień Schemat rekursji, wersja trzecia, 12 II
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Bardziej szczegółowoRekurencja, schemat rekursji i funkcje pierwotnie rekurencyjne
Rekurencja, schemat rekursji i funkcje pierwotnie rekurencyjne Elementy Logiki i Teorii Mnogości 2015/2016 Zadanie 1. Oblicz iteracyjnie i rekurencyjnie f(4), gdzie f jest funkcją określoną na zbiorze
Bardziej szczegółowoIndukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017
Indukcja matematyczna, zasada minimum i maksimum 17 lutego 2017 Liczby naturalne - Aksjomatyka Peano (bez zera) Aksjomatyka liczb naturalnych N jest nazwą zbioru liczb naturalnych, 1 jest nazwą elementu
Bardziej szczegółowoZbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16
Zbiory, funkcje i ich własności XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16 Zbiory Zbiory ograniczone, kresy Zbiory ograniczone, min, max, sup, inf Zbiory ograniczone 1 Zbiór X R jest
Bardziej szczegółowo1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
Bardziej szczegółowoZajęcia nr. 3 notatki
Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty
Bardziej szczegółowoCiągi komplementarne. Autor: Krzysztof Zamarski. Opiekun pracy: dr Jacek Dymel
Ciągi komplementarne Autor: Krzysztof Zamarski Opiekun pracy: dr Jacek Dymel Spis treści 1 Wprowadzenie 2 2 Pojęcia podstawowe 3 2.1 Oznaczenia........................... 3 2.2 "Ciąg odwrotny"........................
Bardziej szczegółowon=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
Bardziej szczegółowoIndukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Bardziej szczegółowo1 Funkcje uniwersalne
1 1 Funkcje uniwersalne 1.1 Konstrukcja funkcji uniweralnej Niech P będzie najmniejszym zbiorem liczb spełniającym warunki 1) 0, 2, 0, 0, 2, 1, 0, 2, 2 P, 2) 0, n, 3, k P dla wszystkich n > 0 oraz k takich,
Bardziej szczegółowoLogika i teoria mnogości Wykład 14
Teoria rekursji Teoria rekursji to dział logiki matematycznej zapoczątkowany w latach trzydziestych XX w. Inicjatorzy tej dziedziny to: Alan Turing i Stephen Kleene. Teoria rekursji bada obiekty (np. funkcje,
Bardziej szczegółowoMaria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski
Bardziej szczegółowoIndukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Bardziej szczegółowoPrzykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Bardziej szczegółowoMatematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d
C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz
Bardziej szczegółowo1 Nierówność Minkowskiego i Hoeldera
1 Nierówność Minkowskiego i Hoeldera Na państwa użytek załączam precyzyjne sformułowania i dowody nierówności Hoeldera i Minkowskiego: Twierdzenie 1.1 Nierówność Hoeldera). Niech p, q będą takimi liczbami
Bardziej szczegółowoZnaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
Bardziej szczegółowoKongruencje pierwsze kroki
Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod
Bardziej szczegółowoTwierdzenie Li-Yorke a Twierdzenie Szarkowskiego
Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Autor: Kamil Jaworski 11 marca 2012 Spis treści 1 Wstęp 2 1.1 Podstawowe pojęcia........................
Bardziej szczegółowoPoprawność semantyczna
Poprawność składniowa Poprawność semantyczna Poprawność algorytmu Wypisywanie zdań z języka poprawnych składniowo Poprawne wartościowanie zdań języka, np. w języku programowania skutki wystąpienia wyróżnionych
Bardziej szczegółowoPytania i polecenia podstawowe
Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:
Bardziej szczegółowoRozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
Bardziej szczegółowoZasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Bardziej szczegółowoi=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian
9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem
Bardziej szczegółowoFunkcja jest różnowartościowa w zbiorze A wtedy i tylko wtedy, gdy różnym argumentom funkcja ta przyporządkowuje różne wartości.
Gdy mamy daną funkcję, poza określeniem jej dziedziny i miejsca zerowego możemy badad szczególne własności, takie jak: monotonicznośd, różnowartościowośd, parzystośd, nieparzystośd. Na temat monotoniczności
Bardziej szczegółowoUzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Bardziej szczegółowoFUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Bardziej szczegółowodomykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Bardziej szczegółowoLuty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Liczby i funkcje
Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym
Bardziej szczegółowoFunkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016
Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Liczby i funkcje
Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym
Bardziej szczegółowo(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x
2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)
Bardziej szczegółowoŁatwy dowód poniższej własności pozostawiamy czytelnikowi.
Rozdział 3 Logarytm i potęga 3.1 Potęga o wykładniku naturalnym Definicja potęgi o wykładniku naturalnym. Niech x R oraz n N. Potęgą o podstawie x i wykładniku n nazywamy liczbę x n określoną następująco:
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Bardziej szczegółowoObóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 202/203 Seria VI (grudzień 202) rozwiązania zadań 26. Udowodnij, że istnieje 0 00 kolejnych liczb całkowitych dodatnich nie większych
Bardziej szczegółowoFunkcje arytmetyczne
Funkcje arytmetyczne wersja robocza Jacek Cichoń Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Liczbami naturalnymi nazywany tutaj zbiór N = {1, 2, 3...}. Zbiór liczb ierwszych oznaczamy
Bardziej szczegółowoFunkcje rekurencyjne
Funkcje rekurencyjne Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Funkcje rekurencyjne Funkcje rekurencyjne 1 / 34 Wprowadzenie
Bardziej szczegółowoIndukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Bardziej szczegółowoMatematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
Bardziej szczegółowoTeoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
Bardziej szczegółowo... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1
4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy
Bardziej szczegółowoLogika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Bardziej szczegółowoMatematyka Dyskretna Zestaw 2
Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje
Bardziej szczegółowoBukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
Bardziej szczegółowoZestaw zadań dotyczących liczb całkowitych
V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.
Bardziej szczegółowoRelacje. 1 Iloczyn kartezjański. 2 Własności relacji
Relacje 1 Iloczyn kartezjański W poniższych zadaniach litery a, b, c, d oznaczają elementy zbiorów, a litery A, B, C, D oznaczają zbiory. Przypomnijmy definicję pary uporządkowanej (w sensie Kuratowskiego):
Bardziej szczegółowoLista zadań - Relacje
MATEMATYKA DYSKRETNA Lista zadań - Relacje Zadania obliczeniowe Zad. 1. Która z poniższych relacji jest funkcją? a) Relacja składająca się ze wszystkich par uporządkowanych, których poprzednikami są studenci,
Bardziej szczegółowoDefinicja odwzorowania ciągłego i niektóre przykłady
Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)
Bardziej szczegółowoZbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoSkończone rozszerzenia ciał
Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie
Bardziej szczegółowoEGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 90...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji, dla której zachodzi prawo Hardy ego- Weinberga dla loci o dwóch allelach A i a proporcja osobników o genotypie AA wynosi
Bardziej szczegółowoDefinicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Bardziej szczegółowoNierówności symetryczne
Nierówności symetryczne Andrzej Nowicki Uniwersytet Mikołaja Kopernika, Wydział Matematyki i Informatyki, ul Chopina 1 18, 87 100 Toruń (e-mail: anow@matunitorunpl) Sierpień 1995 Wstęp Jeśli x, y, z, t
Bardziej szczegółowoKongruencje twierdzenie Wilsona
Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie
Bardziej szczegółowo3. Wykład 3: Dowody indukcyjne, strategie dowodowe Dowody indukcyjne. Dotychczas zobaczyliśmy w jaki sposób można specyfikować definicje
3. Wykład 3: Dowody indukcyjne, strategie dowodowe. 3.1. Dowody indukcyjne. Dotychczas zobaczyliśmy w jaki sposób można specyfikować definicje indukcyjne kategorii syntaktycznych lub osądów, czy też w
Bardziej szczegółowoZadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
Bardziej szczegółowoAlgebra Boole a i jej zastosowania
lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Bardziej szczegółowoKONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.
KONGRUENCJE Dla a, b, m Z mówimy, że liczba a przystaje do liczby b modulo m a b (mod m) m (a b) (a b (mod m) można też zapisać jako: a = km + b, k Z). Liczbę m nazywamy modułem kongruencji. Własności:
Bardziej szczegółowoNotatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
Bardziej szczegółowoRekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
Bardziej szczegółowoLOGIKA ALGORYTMICZNA
LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R
Bardziej szczegółowoRozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone
Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy
Bardziej szczegółowoPodróże po Imperium Liczb
Podróże po Imperium Liczb Część 15. Liczby, Funkcje, Ciągi, Zbiory, Geometria Rozdział. Ciągi komplementarne Andrzej Nowicki 16 kwietnia 013, http://www.mat.uni.torun.pl/~anow Spis treści Ciągi komplementarne
Bardziej szczegółowoIMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
Bardziej szczegółowoInformacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Bardziej szczegółowoWykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi
Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni
Bardziej szczegółowoMonoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
Bardziej szczegółowoWokół Problemu Steinhausa z teorii liczb
Wokół Problemu Steinhausa z teorii liczb Konferencja MathPAD 0 Piotr Jędrzejewicz Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika w Toruniu Celem referatu jest przedstawienie sposobu wykorzystania
Bardziej szczegółowo7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Bardziej szczegółowoJoanna Kluczenko 1. Spotkania z matematyka
Do czego moga się przydać reszty z dzielenia? Joanna Kluczenko 1 Spotkania z matematyka Outline 1 Co to sa 2 3 moje urodziny? 4 5 Jak tworzona jest liczba kontrolna w kodach towarów w sklepie? 6 7 TWIERDZENIE
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 3/10 indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Bardziej szczegółowoWykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Bardziej szczegółowo4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że
4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio
Bardziej szczegółowoSemantyka rachunku predykatów
Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie
Bardziej szczegółowoXIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2018 r. 15 października 2018 r.)
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 0 r. października 0 r.) Szkice rozwiązań zadań konkursowych. Liczbę naturalną n pomnożono przez, otrzymując
Bardziej szczegółowoGranice funkcji-pojęcie pochodnej
Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Bardziej szczegółowo1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
Bardziej szczegółowo5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH
5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.
Bardziej szczegółowoWstęp do matematyki listy zadań
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wstęp do matematyki
Bardziej szczegółowoWyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Bardziej szczegółowoFunkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Bardziej szczegółowoJak należy się spodziewać, mamy. Zauważmy jednak, że nie zachodzi równość
11. Wykład 11: Rachunek λ. Obliczenia i obliczalność. Rachunek λ jest systemem pozornie bardzo prostym. Abstrakcja i aplikacja wydają się trywialnymi operacjami, i może się zdawać, że niczego ciekawego
Bardziej szczegółowoFunkcje rzeczywiste jednej. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Funkcje rzeczywiste jednej zmiennej rzeczywistej Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Definicje Funkcją (odwzorowaniem) f, odwzorowującą zbiór D w zbiór P nazywamy
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoFunkcje addytywne gorszego sortu
Rafał Filipów Wydział Matematyki, Fizyki i Informatyki Definicja funkcji addytywnych Definicja Funkcja f jest funkcją addytywną, gdy spełnia równanie funkcyjne Cauchy ego tzn. gdy dla wszystkich x, y R.
Bardziej szczegółowoFunkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek
Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autorzy: Konrad Nosek 09 Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autor: Konrad Nosek DEFINICJA Definicja : Funkcja pierwotna Rozważmy
Bardziej szczegółowoFunkcje wymierne. Jerzy Rutkowski. Teoria. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych. Definicja. Funkcją wymierną jednej zmiennej nazywamy
Bardziej szczegółowo1 Funkcje elementarne
1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N
Bardziej szczegółowoFinanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)
dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród
Bardziej szczegółowoFunkcje elementarne. Matematyka 1
Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje
Bardziej szczegółowoFunkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w
Bardziej szczegółowoLX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
Bardziej szczegółowo2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
Bardziej szczegółowoSystem BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10
System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki
Bardziej szczegółowoWŁASNOŚCI FUNKCJI MONOTONICZNYCH
Dorota Sasiuk WŁASNOŚCI FUNKCJI MONOTONICZNYCH WSTĘP... WIADOMOŚCI WSTĘPNE... 3. DEFINICJA FUNKCJI:... 3. DZIAŁANIA ARYTMETYCZNE NA FUNKCJACH:... 3.3 ZŁOŻENIE FUNKCJI:... 3.4 FUNKCJA ODWROTNA:... 4.5 FUNKCJA
Bardziej szczegółowoKonstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,
Bardziej szczegółowo