Przykªad obliczeniowy dla sko«czenie elementowego sformuªowania metody Galerkina

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przykªad obliczeniowy dla sko«czenie elementowego sformuªowania metody Galerkina"

Transkrypt

1 Przykªad obliczeniowy dla sko«czenie elementowego sformuªowania metody Galerkina Anna Górska, Magdalena Kici«ska Abstrakt - Artykuª ma na celu przybli»enie procesu modelowania przepªywu ruchu ulicznego przy pomocy sko«czenie elementowego sformuªowania metody Galerkina. Opieraj c si na wiedzy z dziedziny dynamiki pªynów, ruch uliczny, na poziomie makroskopowym, mo»na opisa jako ci gªy przepªyw. Obserwacja ta zostaªa wykorzystana przez ighthilla, Withama i Richardsa do sformuªowania modelu WR pierwszego rz du. Model ten jest postaci jednorodnego równania ró»niczkowego, a przedstawienie jego rozwi zania numerycznego przy pomocy metody Galerkina dla staªej pr dko±ci jest jednym z celów tego artykuªu. Dla uzyskania dobrych wyników, droga dªugo±ci 5000 m zostaje podzielona na odcinki dªugo±ci 00 m, pr dko± zostaje ustalona na warto± 25 m/s, natomiast krok czasowy jest równy s. Dane odcinki dªugo±ci 00 m s dwuw zªowymi elementami liniowymi. Z ka»dym z w zªów zwi zna jest pewna warto± nat»enia ruchu. Metoda Galerkina prowadzi do okre±lenia tej warto±ci dla ka»dego w zªa. Praktycznym przykªadem wykorzystania modelu WR ze staª pr dko±ci jest taz zwana jazda blokowa (ang. block driving). Sªowa kluczowe - Makroskopowy przepªyw uliczny, model WR, sko«cznie elementowe sformuªowanie metody Galerkina, jazda blokowa. Wst p Cz ± pierwsza zawiera podstawowe zaªo»enia dotycz ce teorii przepªywu ruchu ulicznego na poziomie makroskopowym oraz posta i detale modelu WR (Anna Górska). W cz ±ci drugiej opisane zostaªo sko«czenie elementowe sformuªowanie metody Galerkina (Anna Górska). Przebieg rozwi zania modelu WR przy pomocy danej metody elementów sko«czonych zostaª zaprezentowany w nast pnej cz ±ci artykuªu (Magdalena Kici«ska). Czwarta cz ± przybli»a metod jazdy blokowej oraz posumowuje poprzednie cz ±ci artykuªu (Magdalena Kici«ska). 2 Teoria ruchu ulicznego 2 Podstawowymi czterema kategoriami modelów ruchu ulicznego s : makroskopowy, mezoskopowy, mikroskopowy oraz submikroskopowy. Model WR nale»y do kategorii makroskopowych.

2 2. Parametry Najwa»niejszymi parametrami opisuj cymi ruch uliczny s : nat»enie(k) wyra»one w ilo±ci pojazdów na kilometr veh/km przepªyw(q) wyra»ony w ilo±ci pojazdów na godzin veh/h pr dko± (u) wyra»ona w kilometrach na godzin km/h 2.2 Podstawowe relacje Ruch uliczny mo»e mie ró»ny charakter: wolno-przepªywowy - niskie nat»enie ruchu (zatem du»a pr dko± ); u f - maksimum dozwolonej pr dko±ci naªadowany - maksymalny przepªyw; q c - przepªyw pojemny zatªoczony - maksymalne nat»enie (zatem maªa pr dko± lub jej brak); k j - zatªoczone nat»enie Powi zania pomi dzy trzema przedstawionymi wcze±niej parametrami uzyskane do±wiadczalnie s przedstawione w postaci trzech wykresów. Rysunek : Fundamentalny diagram u k Zale»no± mi dzy nat»eniem a pr dko±ci (rys.) przedstawia si zale»no±ci u = u j ( k k j ) () 2

3 Rysune: Fundamentalny diagram q k Zale»no± mi dzy nat»eniem a przepªywem (rys.2) przedstawia si zale»no±ci q = k j u( u u j ) (2) Rysunek 3: Fundamentalny diagram u q Zale»no± mi dzy przepªywem a pr dko±ci (rys.3) przedstawia si zale»no±ci q = u j k( k k j ) (3) Jednoznaczna relacja wi» ca nat»enie, przepªyw oraz pr dko± ruchu ulicznego jest wyra»ona równaniem q = k u (4) 3

4 2.3 Model WR pierwszego rz du ighthill, Witham i Richards zauwa»yli,»e ruch uliczny mo»e by uto»samiony z nielepkim ale ±ci±liwym pªynem. Zatem dyskretny strumie«pojazdów mo»e by rozumiany jako ci gªy przepªyw. Dla nat»enia, przepªywu oraz pr dko±ci zdeniowanych jako zmienne ci gªe w ka»dym punkcie czasu i przestrzeni model WR pierwszego rz du to + q = 0 (5) Wykorzystuj c relacj (4), równanie (5) mo»na przedstawi w postaci: (k u) + = 0 (6) Przyjmuj c,»e pr dko± jest warto±ci staª (u = u 0 ), równanie (6) znacznie si upraszcza: + u 0 = 0 (7) Jak wida, nat»enie k jest funcj dwóch zmiennych zale»n od poªo»enia i czasu. Jest to zgodne z intuicjami, poniewa» z rozpatrywanym odcinkiem drogi oraz wybran chwil czasow t zwi zana jest konkretna warto± nat»enia k. Nietrudno si przekona, i» obserwuj c wybrany odcinek drogi, w zale»no±ci od pory dnia czy nocy nat»enie ruchu b dzie ró»ne (godziny szczytu a ±rodek nocy). Odwrotnie, badaj c stan nat»enia ruchu na ró»nych odcinkach dróg o wybranej porze dnia czy nocy, uzyskane warto±ci b d zró»nicowane (autostrada a wiejska droga). 3 Sko«czenie elementowe sformuªowanie metody Galerkina Niech rozwa»ane równanie ró»niczkowe b dzie postaci (u) = f, (8) gdzie jest liniowym operatorem ró»niczkowania, natomiast f = f() dowoln funkcj. Szukanym rozwi zaniem równania (8) na przedziale a, b jest funkcja u = u(). (9) Mo»liwe, lecz niekonieczne jest naªo»enie na funkcj u warunków brzegowych u(a) = α, u(b) = β, (0) gdzie α, β R. W opisywanej metodzie dany przedziaª a, b dzielimy na podprzedziaªy, które dalej nazywane b d sko«czonymi elementami liniowymi dwuw zªowymi, z w zªami na ko«cach. Poszczególne w zªy zwi zane s z okre±lonymi warto±ciami i odpowiedniej wspóªrz dnej oraz z okre±lonymi warto±ciami w zªowymi u i, czyli warto±ciami funkcji u w odpowiednich w zªach. Przypu± my,»e szukana funkcja (funkcja próbna) jest postaci u = c + c 2. () 4

5 Powy»sza posta funkcji próbnej nie jest bezpo±rednio zwi zana z warto±ciami w zªowymi. Nie wida bezpo±redniego zwi zku mi dzy danym w zªem czy warto±ci szukanej funkcji w danym w ¹le, a postaci funkcji próbnej (niezale»nie od warto±ci przepis na u jest nadal funkcj liniow ze wspóªczynnikami c i c 2 ). Dlatego równanie () nale»y przedstawi za pomoc warto±ci w zªowych. Innymi sªowy, wspóªczynniki c i c 2 nale»y zast pi warto±ciami u i i u i+. Z wcze±niejszych rozwa»a«wynikaj nast puj ce równo±ci: u( i ) = c i + c 2 = u i (2) u( i+ ) = c i+ + c 2 = u i+ (3) Traktuj c równania (2) i (3) jako ukªad dwóch równa«z dwiema niewiadomymi, nietrudno wyznaczy posta wspóªczynników c i c 2 c = u i+ u i i+ i (4) c 2 = u i i+ u i+ i i+ i (5) Po wstawieniu (4) i (5) do równania () oraz po dokonaniu pewnych przeksztaªce«funkcja próbna przyjmuje posta u = H ()u i + H 2 ()u i+, (6) gdzie H () = i+ i h i (7) H 2 () = i h i (8) h i = i+ i (9) Posta (6) funkcji u jest ±ci±le zale»na od warto±ci w zªowych, zatem znaj c warto±ci u i funkcji próbnej w okre±lonych w zªach i mo»na wyznaczy wzory funkcji u na odpowiednich podprzedziaªach (elementach sko«czonych). Do wyznaczenia warto±ci u i nale»y skonstruowa odpowiedni do danej sytuacji ukªad równa«zªo»onych z sum okre±lonych caªek przyrównanych do zera, jak wida poni»ej n i+ ωrd = 0, (20) i i= gdzie ω jest tak zwan funkcj wagow, tutaj natomiast R nazywane jest reszt (residuum) oraz ω = H (), ω 2 = H 2 (), (2) R = (u) f() (22) 5

6 4 Zastosowanie sko«czenie elementowej metody Galerkina 2 Dzi ki zastosowaniu sko«czenie elementowej metody Galerkina obliczamy równanie (5). Na pocz tku nale»y dla problemu (5) skontruowa odpowiedni caªk, opieraj c si na wzorze (20): V ω ( + u 0 gdzie V jest wielko±ci elementu. Uwzgl dniaj c (2) mo»emy zapisa : V N ( + u 0 (k) )dv = 0 (23) (k) )dv = 0, (24) gdzie wektor N jest odpowiednikiem wektora H ze wzoru (2). Dzi ki temu,»e element sko«czony jest liniowy i jednorodny mo»emy z dv przej± na d i bez straty ogólno±ci caªkowa po : ω ( + u 0 4. Macierze pojedynczych elementów (k) )d = 0 (25) W tej cz ±ci zostanie pokazane pochodzenie macierzy pojedynczych elementów sko«czonych o dªugo±ci i dwóch g sto±ciach w zªowych k i. Na rysunku 4 przedstawiono gracznie pojedynczy element sko«czony przepªywu ruchu ulicznego. Rysunek 4: Element sko«czony G sto± ruchu ulicznego w elemencie mo»na przedstawi za pomoc funkcji uzale»nionej od g sto±ci w zªowych, stosuj c równanie (6): k = N k + N 2 = k N N 2 (26) Funkcje ksztaªtu N i N 2 maj nast puj c posta : N = N N 2 =, (27) która wynika bezpo±rednio ze wzorów (7) i (8). 6

7 Zró»niczkowanie g sto±ci ruchu k w zale»no±ci od czasu t daje równianie: = N + N 2 2 = N N 2 2 (28) Zró»niczkowanie g sto±ci ruchu w zale»no±ci od poªo»enia daje równanie: = N k + N 2 = N N 2 k (29) Podstawiaj c (28) i (29) do równania (25) otrzymamy: N ( N N N 2 2 )d+ 2 + N (u 0 N 2 N N 2 ) k )d = 0 (30) Wstawienie (27) do powy»szego równania (30) i wymno»enie macierzy daje: ( ( )2 ( ) ( ) 2 2 )d+ 2 + ( ( ) ( ) k )d = 0 (3) 2 Nast pnie, po scaªkowaniu otrzymaujemy: k = 0 (32) Gdy zastosujemy granice caªkowania, tzn. dla pojedynczego elementu z rysunku X przyjmiemy granice caªkowania od 0 do, to po uproszczeniu otrzymamy równanie: u 0 2 k = 0 (33) Ze wzgl du na zale»no± od czasu (przepªyw ruchu drogowego jest zale»ny od czasu) konieczne jest zastosowanie schematu Eulera wstecz, czyli: = k k t t Po zastosowaniu powy»szego schematu (34) równanie (33) przyjmie posta : 2 k 6 t 2 k2 2 k 6 t t 2 k2 t + + u 0 2 Przedstawmy równanie (35) w nast puj cej formie: 2 k 6 t + u0 2 2 k2 k k2 = 6 t (34) = 0 (35) 2 2 k t k t 2 (36) 7

8 4.2 Rozwi zanie ogólne dla n elementów z krokiem czasowym m Rozwa»amy drog podzielan na n elementów o jednakowej dªugo±ci, z danymi warunkami pocz tkowymi: dla t = 0 s, k 0 do kn+ 0 i warunkami brzegowymi: dla = 0 m, k 0 do k m t. Przedstawiono to gracznie na rysunku 5. Rysunek 5: Problem zdeniowany dla n elementów sko«czonych i m kroków czasowych Maj c tak postawiony problem, g sto± ruchu w ka»dym momencie czasu i w ka»dym poªo»eniu mog by wyliczone z zale»no±ci: k = k t u k t (37)

9 5 Jazda blokowa Rozwa»any model jest prawdziwy tylko wtedy, gdy rozpatrywana pr dko± jest staªa. Oczywi±cie istniej ró»ne postaci modelu WR, które uwzgl dniaj inne zaªo»enia, np. pr dko± zmienn. Jednak to jest osobny temat na kolejny artykuª. Przykªadem praktycznym modelu WR ze staª pr dko±ci jest tzw. jazda blokowa (block driving) stosowana powszechnie w Niderlandach. Polega ona na tym,»e w przypadku du»ego nat»enia ruchu lub w przypadku zagro»enia samochody w grupach jad za policj. Wszystkie ze staª pr dko± poruszaj si ±rodkiem drogi, dzi ki czemu wyeliminowane zostaje niepotrzebne przyspieszanie i hamowanie. Korki rozªadowaj si szybciej, a prawdopodobie«stwo wypadków znacznie spada. 6 Podsumowanie Sko«czenie elementowe sformuªowanie metody Galerkina mo»e by z powodzeniem stosowane do rozwi zywania makroskopowego modelu WR przepªywu ulicznego pierwszego rz du ze staª pr dko±ci. Warto±ci g sto±ci, pr dko±ci i przepªywu mog by wyliczone w ka»dym punkcie drogi, w ka»dym momencie czasu. Otrzymane w ten sposób rezultaty znajduj potwierdzenie w rzeczywisto±ci. Przyszªe prace b d skupiaªy si na rozwini ciu modelu WR ze zmienn pr dko±ci, ale nadal w celu jego rozwi zania stosowana b dzie metoda Galerkina. iteratura Materiaªy ze strony internetowej Approimation Techniques, Section Wesley Ceulemans, Magd A. Wahab, Kurt De Proft, Geert Wets, Modelling Trac Flow with Constant Speed using the Galerkin Finite Element Method, ondon

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010 WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

1 Ró»niczka drugiego rz du i ekstrema

1 Ró»niczka drugiego rz du i ekstrema Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 1 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Interpolacja Lagrange'a, bazy wielomianów

Interpolacja Lagrange'a, bazy wielomianów Rozdziaª 4 Interpolacja Lagrange'a, bazy wielomianów W tym rozdziale zajmiemy si interpolacj wielomianow. Zadanie interpolacji wielomianowej polega na znalezieniu wielomianu stopnia nie wi kszego od n,

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1 II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

Opis matematyczny ukªadów liniowych

Opis matematyczny ukªadów liniowych Rozdziaª 1 Opis matematyczny ukªadów liniowych Autorzy: Alicja Golnik 1.1 Formy opisu ukªadów dynamicznych 1.1.1 Liniowe równanie ró»niczkowe Podstawow metod przedstawienia procesu dynamicznego jest zbiór

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 4 Zależności rekurencyjne Wiele zale»no±ci

Bardziej szczegółowo

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd.

Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd. Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2010-11-23

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007 Wykªad 10 Fizyka 2 (Informatyka - EEIiA 2006/07) 08 05 2007 c Mariusz Krasi«ski 2007 Spis tre±ci 1 Niesko«czona studnia potencjaªu 1 2 Laser 3 2.1 Emisja spontaniczna...........................................

Bardziej szczegółowo

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

Spis tre±ci. Plan. 1 Pochodna cz stkowa. 1.1 Denicja Przykªady Wªasno±ci Pochodne wy»szych rz dów... 3

Spis tre±ci. Plan. 1 Pochodna cz stkowa. 1.1 Denicja Przykªady Wªasno±ci Pochodne wy»szych rz dów... 3 Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 2 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32 Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2 Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile

Bardziej szczegółowo

Aproksymacja funkcji metod najmniejszych kwadratów

Aproksymacja funkcji metod najmniejszych kwadratów Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone

Bardziej szczegółowo

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13 Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for

Bardziej szczegółowo

Wykªad 12. Transformata Laplace'a i metoda operatorowa

Wykªad 12. Transformata Laplace'a i metoda operatorowa Wykªad 2. Tranformata Laplace'a i metoda operatorowa Tranformata Laplace'a Dla odpowiednio okre±lonej klay funkcji zdeniujemy operator L, nazywany tranformat Laplace'a, okre±lony wzorem L[ f ]() = f(t)e

Bardziej szczegółowo

Liniowe zadania najmniejszych kwadratów

Liniowe zadania najmniejszych kwadratów Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e

Bardziej szczegółowo

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 6: Bayesowskie ª czenie wiedzy (6) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Wprowadzenie 2 Oczekiwana wielko± modelu 3 Losowanie próby modeli 4 wiczenia w R (6) Ekonometria

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci

Bardziej szczegółowo

Stacjonarne szeregi czasowe

Stacjonarne szeregi czasowe e-mail:e.kozlovski@pollub.pl Spis tre±ci 1 Denicja 1 Szereg {x t } 1 t N nazywamy ±ci±le stacjonarnym (stacjonarnym w w»szym sensie), je»eli dla dowolnych m, t 1, t 2,..., t m, τ ª czny rozkªad prawdopodobie«stwa

Bardziej szczegółowo

Legalna ±ci ga z RRI 2015/2016

Legalna ±ci ga z RRI 2015/2016 Legalna ±ci ga z RRI 205/206 Równania ró»niczkowe pierwszego rz du sprowadzalne do równa«o zmiennych rozdzielonych a) Równanie postaci: = f(ax + by + c), Równanie postaci: = f(ax + by + c), () wprowadzamy

Bardziej szczegółowo

Proste modele o zªo»onej dynamice

Proste modele o zªo»onej dynamice Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Aproksymacja cz. II, wielomiany ortogonalne zastosowania PWSZ Gªogów, 2009 Iloczyn skalarny Funkcja okre±lona na przestrzeni liniowej (, ) R iloczyn skalarny wektorów

Bardziej szczegółowo

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ALGEBR

ANALIZA MATEMATYCZNA Z ALGEBR ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie

Bardziej szczegółowo

WYKŠAD 3. di dt. Ġ = d (r v) = r P. (1.53) dt. (1.55) Przyrównuj c stronami (1.54) i (1.55) otrzymujemy wektorowe równanie

WYKŠAD 3. di dt. Ġ = d (r v) = r P. (1.53) dt. (1.55) Przyrównuj c stronami (1.54) i (1.55) otrzymujemy wektorowe równanie WYKŠAD 3 Równania Gaussa dla e, I, Ω, ω, M. Ω, di 1.3.3 Od caªki ól do ė, W odró»nieniu od skalarnej caªki siª»ywych, wektorowa caªka ól mo»e nam osªu»y do otrzymania a» trzech kolejnych równa«gaussa.

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl

Bardziej szczegółowo

Rozdziaª 13. Przykªadowe projekty zaliczeniowe

Rozdziaª 13. Przykªadowe projekty zaliczeniowe Rozdziaª 13 Przykªadowe projekty zaliczeniowe W tej cz ±ci skryptu przedstawimy przykªady projektów na zaliczenia zaj z laboratorium komputerowego z matematyki obliczeniowej. Projekty mo»na potraktowa

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Modele wielorównaniowe. Problem identykacji

Modele wielorównaniowe. Problem identykacji Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje

Bardziej szczegółowo

Schematy blokowe ukªadów automatyki

Schematy blokowe ukªadów automatyki Rozdziaª 1 Schematy blokowe ukªadów automatyki Autorzy: Marcin Stachura 1.1 Algebra schematów blokowych 1.1.1 Zasady przeksztaªcania schematów blokowych W celu uproszczenia wypadkowej transmitancji operatorowej

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1

Bardziej szczegółowo

1 Trochoidalny selektor elektronów

1 Trochoidalny selektor elektronów 1 Trochoidalny selektor elektronów W trochoidalnym selektorze elektronów TEM (Trochoidal Electron Monochromator) stosuje si skrzy»owane i jednorodne pola: elektryczne i magnetyczne. Jako pierwsi taki ukªad

Bardziej szczegółowo

ZAANGA OWANIE PRACOWNIKÓW W PROJEKTY INFORMATYCZNE

ZAANGA OWANIE PRACOWNIKÓW W PROJEKTY INFORMATYCZNE ZAANGA OWANIE PRACOWNIKÓW W PROJEKTY INFORMATYCZNE LESZEK MISZTAL Politechnika Szczeci ska Streszczenie Celem artykułu jest przedstawienie metody rozwi zania problemu dotycz cego zaanga owania pracowników

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba. F = k qq r r 2 r, wspóªczynnik k = 1 = N m2

Elektrostatyka. Prawo Coulomba. F = k qq r r 2 r, wspóªczynnik k = 1 = N m2 Elektrostatyka Prawo Coulomba F = k qq r r 2 r, wspóªczynnik k = 1 N m2 4πε = 9 109 C 2 gdzie: F - siªa z jak ªadunek Q dziaªa na q, r wektor poªo»enia od ªadunku Q do q, r = r, Przenikalno± elektryczna

Bardziej szczegółowo

WICZENIE 2 Badanie podstawowych elementów pasywnych

WICZENIE 2 Badanie podstawowych elementów pasywnych Laboratorium Elektroniki i Elektrotechniki Katedra Sterowania i In»ynierii Systemów www.control.put.poznan.pl 1 Politechnika Pozna«ska WICZENIE 2 Badanie podstawowych elementów pasywnych Celem wiczenia

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n Plan Spis tre±ci 1 Problemy liniowe 1 2 Zadania I 3 3 Formy biliniowe 3 3.1 Odwzorowania wieloliniowe..................... 3 3.2 Formy biliniowe............................ 4 4 Formy kwadratowe 4 1 Problemy

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Przeksztaªcenia liniowe

Przeksztaªcenia liniowe Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Kwantowa teoria wzgl dno±ci

Kwantowa teoria wzgl dno±ci Instytut Fizyki Teoretycznej Uniwersytetu Warszawskiego Festiwal Nauki, 16 wrze±nia 2006 Plan wykªadu Grawitacja i geometria 1 Grawitacja i geometria 2 3 Grawitacja Grawitacja i geometria wedªug Newtona:

Bardziej szczegółowo

Analizy populacyjne, ªadunki atomowe

Analizy populacyjne, ªadunki atomowe Dodatek do w. # 3 i # 4 Šadunki atomowe, analizy populacyjne Q A = Z A N A Q A efektywny ªadunek atomu A, Z A N A liczba porz dkowa dla atomu A (czyli ªadunek j dra) efektywna liczba elektronów przypisana

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Denicja. (pochodnej funkcji w punkcie) Je±li funkcja f : D R, D R okre±lona jest w pewnym otoczeniu punktu D i istnieje sko«czona granica ilorazu ró»niczkowego: f f( +

Bardziej szczegółowo

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i

Bardziej szczegółowo

Ksztaªt orbity planety: I prawo Keplera

Ksztaªt orbity planety: I prawo Keplera V 0 V 0 Ksztaªt orbity planety: I prawo Keplera oka»emy,»e orbit planety poruszaj cej si pod dziaªaniem siªy ci»ko±ci ze strony Sªo«ca jest krzywa sto»kowa, w szczególno±ci elipsa. Wektor pr dko±ci planety

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Bifurkacje. Ewa Gudowska-Nowak Nowak. Plus ratio quam vis

Bifurkacje. Ewa Gudowska-Nowak Nowak. Plus ratio quam vis Bifurkacje Nowak Plus ratio quam vis M. Kac Complex Systems Research Center, M. Smoluchowski Institute of Physics, Jagellonian University, Kraków, Poland 2008 Gªówna idea.. Pozornie "dynamika" ukªadów

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Arytmetyka zmiennopozycyjna

Arytmetyka zmiennopozycyjna Rozdziaª 4 Arytmetyka zmiennopozycyjna Wszystkie obliczenia w octavie s wykonywane w arytmetyce zmiennopozycyjnej (inaczej - arytmetyce ) podwójnej precyzji (double) - cho w najnowszych wersjach octave'a

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016 WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego

Bardziej szczegółowo

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia

Bardziej szczegółowo

Wiedza niepewna i wnioskowanie (c.d.)

Wiedza niepewna i wnioskowanie (c.d.) Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach ( Niezale»ne szkody maja rozkªady P (X i = k) = exp( 1)/k!, P (Y i = k) = 4+k ) k (1/3) 5 (/3) k, k = 0, 1,.... Niech S = X 1 +... + X 500 + Y 1 +... + Y 500. Skªadka

Bardziej szczegółowo

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Aleksandra Ki±lak-Malinowska akis@uwm.edu.pl http://wmii.uwm.edu.pl/ akis/ Czym zajmuje si statystyka? Statystyka zajmuje si opisywaniem i analiz zjawisk masowych otaczaj cej czªowieka

Bardziej szczegółowo

Dynamika Bryªy Sztywnej

Dynamika Bryªy Sztywnej Dynamika Bryªy Sztywnej Adam Szmagli«ski Instytut Fizyki PK Kraków, 27.10.2016 Podstawy dynamiki bryªy sztywnej Bryªa sztywna to ukªad cz stek o niezmiennych wzajemnych odlegªo±ciach. Adam Szmagli«ski

Bardziej szczegółowo

Koªo Naukowe Robotyków KoNaR. Plan prezentacji. Wst p Rezystory Potencjomerty Kondensatory Podsumowanie

Koªo Naukowe Robotyków KoNaR. Plan prezentacji. Wst p Rezystory Potencjomerty Kondensatory Podsumowanie Plan prezentacji Wst p Rezystory Potencjomerty Kondensatory Podsumowanie Wst p Motto W teorii nie ma ró»nicy mi dzy praktyk a teori. W praktyce jest. Rezystory Najwa»niejsze parametry rezystorów Rezystancja

Bardziej szczegółowo