Algebra grafów. dr hab. Piotr Fronczak
|
|
- Daniel Karczewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Algebra grafów dr hab. Piotr Fronczak
2 Własności macierzy sąsiedztwa A A i = 1 eżeli istniee krawędź pomiędzy węzłami i oraz W ogólności A i = w, w R, oraz A i A i (grafy ważone i skierowane) Poniże rozważamy grafy proste k i = n =1 A i stopień węzła A ik A k = 1, eżeli istniee droga o długości 2 od węzła i do węzła przez k N i (2) = N i (3) = n k=1 n k,l=1 Aik A k = A 2 i Aik A kl A l = A 3 i N i (r) = A r i L r = n i=1 A r ii liczymy osobno) = Tr A r (pętle, które liczymy od innego punktu początkowego, Nakrótsza droga: namniesza wartość r taka, że A r i > 0. 2
3 Laplasan grafu L Dyfuza Niech i - wartość pewne wielkości w węźle i. C( - i ) tempo przepływu wielkości z węzła do i współczynnik dyfuzi W ciągu czasu dt przepływa C( - i )dt. dψ i dt = C A i(ψ ψ i ) Równanie dyfuzi dψ i dt = C A i ψ C ψ i A i = C A i ψ C ψ i k i = C (A i δ i k i )ψ W postaci macierzowe: dψ dt = C(A D)ψ macierz wektor D = k k k 3
4 dψ dt = C(A D)ψ L = D A laplasan grafu Rozwiązuąc równanie: dψ dt + CLψ = 0 ψ(t) = II prawo Ficka dn(x, t) CΔn x, t = 0 dt i a i t v i - liniowa kombinaca wektorów własnych dψ dt = i da i dt v i oraz CLψ = Ca i t Lv i = Cλ i a i t v i i i bo Lv i = λ i v i i da i dt + Cλ ia i t v i = 0 Wektory własne macierzy symetryczne są ortogonalne, zatem da i dt + Cλ ia i t = 0, dla każdego i. a i t = a i 0 e Cλ i t Czyli, maąc dane warunki początkowe a i (0) oraz wartości i wektory własne laplasanu, możemy rozwiązać zagadnienie dyfuzi na sieci.
5 Laplasan est macierzą symetryczną, więc ma rzeczywiste wartości własne Można pokazać, że i 0 dla każdego i. a i t = a i 0 e Cλ i t Rozważmy iloczyn L 1 L i 1 = δ i k i A i = k i A i = k i k i = 0 L 1 = 0 1 Zatem, eśli 1 2 n, to 1 = 0. Wyznacznik macierzy est iloczynem wartości własnych, zatem laplasan to macierz osobliwa.
6 Stwórzmy sieć złożoną z k komponentów. Każdy z komponentów ma własny laplasan. Zatem mamy macierz blokową 0 0 Możemy napisać k różnych wektorów własnych z = 0, np: v 1 = (,, ) v k = (,, ) komponent nr 1 komponent nr k komponent nr 1 komponent nr k Zatem mamy k wartości własnych = 0. Sieć est spóna tylko, gdy spóność algebraiczna.
7 Podział spektralny grafu Cel: podzielić węzły w sieci na dwie rozłączne grupy X i Y Jak podzielić dobrze? Minimalizumy liczbę połączeń między klastrami cut X, Y = 1 A 2 i X, X i Przykład: arg min X,Y cut(x, Y) cięcie optymalne cięcie minimalne
8 Cięcie normalizowane: ncut X, Y = cut(x,y) vol(x) + cut(x,y) vol(y) vol X = A i i X (liczba krawędzi rozpoczynaących się w grupie X) cięcie optymalne cięcie minimalne ncut X, Y = ncut X, Y =
9 Zdefiniumy wektor s taki, że s i = +1 eżeli węzeł i należy do grupy 1 1 eżeli węzeł i należy do grupy 2 Wtedy s is = 1 eżeli i oraz są w różnych grupach 0 eżeli i oraz są w te same grupie cut X, Y = 1 2 A i i X, X = 1 4 i A i (1 s i s ) i A i = i k i = i k i s i2 = i k i δ i s i s cut X, Y = 1 4 k i δ i A i s i s i = 1 4 i L i s i s = 1 4 st Ls Czyli znalezienie nalepszego cięcia = znalezienie wektora s, który minimalizue powyższe wyrażenie. Problem NP-trudny. Metoda relaksaci: s i = ±1 s i R By zapobiec trywialnemu rozwiązaniu s = 0, wprowadzamy dodatkowy wiąz i s i2 = n
10 Drugi wiąz: chcemy, by grupy były zbalansowane: i s i = ε, ε 0, 1 T s = ε, (1 wektor ednostkowy L 1 = 0) Metoda mnożników Lagrange a L s k s s k + λ n s 2 i k + 2μ ε s = 0 L i s = λs i + μ L s = λs + μ1 Mnożymy lewostronnie przez 1 T 1 T L s = λ1 T s + μ1 T 1, czyli μ = L s = λs czyli s est wektorem własnym a λ wartością własną L
11 cut X, Y = 1 4 st Ls = 1 4 λst s Nalepsze cięcie da wektor s z namnieszą wartością własną λ λ 1 =0 odpada, bo wtedy s=1 Zatem wybieramy λ 2. Wektor s wektor Fiedlera Algorytm Konstruuemy laplasan L grafu x 1 x 2 x 3 x 4 x 5 x 6 2. Znaduemy wartości i wektory własne L = V = x x x x x x Przypisuemy węzłom odpowiednie elementy wektora v 2 4. Dzielimy węzły na dwie grupy. Punkt podziału: 0, średnia, mediana. Możemy też wybrać punkt podziału minimalizuąc cięcie (przeszukiwanie ednowymiarowe). x 1-2 x 2-1 x 3-1 x 4 1 x 5 2 x 6 1
12 Jak podzielić graf na k grup? a) rekurencyna bisekca nieefektywna O(n 3 ), niestabilna b) wykorzystanie wielu wektorów własnych do stworzenia przestrzeni rozpinaące Algorytm 1. Konstruuemy laplasan L grafu. 2. Znaduemy k namnieszych niezerowych wartości własnych i odpowiadaących im wektorów. 3. Jak wybrać k? k = λ k+1 λ k - eigengap (przerwa własna?) k: max k Δ k i k= i
13 Algorytm c.d. 3. Tworzymy macierz n k zbudowaną z k wektorów własnych: u 1 (x 1 ) u 1 (x n ) U = u k (x 1 ) u k (x n ) 4. Każda kolumna i reprezentue współrzędne węzła x i w nowe przestrzeni. 5. Wykorzystuemy edną z metod grupowania danych, np. K-średnich.
14 Algorytm K-średnich 1. Wybierz K punktów ako początkowe centroidy 2. REPEAT 3. Utwórz K grup przypisuąc wszystkie punkty nabliższym centroidom. 4. Przelicz położenie centroidów dla każde grupy 5. UNTIL położenia centroidów nie zmieniaą się Przykład iteraca 0 iteraca 1 iteraca 2 iteraca 3 iteraca 4
15 DYGRESJA Metodę K-średnich i podobne inne metody można użyć do grupowania dowolnych danych (nie tylko węzłów w grafach) w oparciu o podobieństwa względem różnych cech. Nie zawsze to działa: Aby zadziałało, tworzymy sieć K-sąsiedztwa Dane Sieć K-sąsiedztwa Laplasan Spektrum Grupowanie
16 MODULARNOŚĆ Miara akości podziału Q Q = 1 m (# krawędzi w grupie i i oczekiwana # krawędzi w grupie i w grafie losowym o te same sekwenci stopni) Trywialny podział: wszystkie węzły w edne grupie Q = 0 Jeżeli c i grupa węzła i # = δ c i, c = 1 2 A i δ c i, c krawędzie i, i # = 1 2 i k i k 2m δ c i, c Q = 1 2m i A i k ik 2m δ c i, c = 1 2m i B i δ c i, c B i = A i k ik 2m macierz modularności
17 Własność macierzy B: B i = A i k i 2m k = k i k i 2m 2m = 0 Zdefiniumy wektor s taki, że s i = +1 eżeli węzeł i należy do grupy 1 1 eżeli węzeł i należy do grupy 2 Wtedy 1 2 s is + 1 = 1 eżeli i oraz są w te same grupie 0 eżeli i oraz są w różnych grupach δ c i, c = 1 2 s is + 1 Q = 1 2m i B i δ c i, c = 1 4m i B i s i s + 1 = 1 4m i B i s i s = 1 4m st Bs Przypomnienie: cut X, Y = 1 4 st Ls Działamy podobnie ale odwrotnie: szukamy podziału, który maksymalizue Q
18 Wprowadzamy tylko eden wiąz (grupy mogą być teraz różnoliczne) Równanie Lagrange a s T s = i s i2 = n B s k s s k + β n s 2 i k = 0 B i s B s = βs = βs i Q = 1 4m st Bs = 1 4m βst s = n 4m β Zatem szukamy wektora własnego o nawiększe wartości własne Przypomnienie z Metod Numerycznych: szybka Metoda Potęgowa znadowania nawiększe wartości własne i związanego z nią wektora własnego.
19 Podział na więce niż dwie grupy Problem NP. Wiele metod heurystycznych: wyżarzanie, algorytmy genetyczne Greedy algorithm : Początkowo umieszczamy każdy węzeł w inne grupie Następnie sprawdzamy, połączenie których dwóch grup da nawiększy wzrost (lub namnieszy spadek) modularności
20 Q = Q = Q = Q = Q = Q = Q max
21
22 BŁĄDZENIE PRZYPADKOWE PO SIECI p i (t) prawdopodobieństwo, że cząstka (pakiet, osobnik) znadue się w węźle i w chwili t. Jeśli w chwili t-1 cząstka est w węźle, to p i t p i t A i = p k (t 1) p t = AD 1 p(t 1) Rozkład graniczny dla t p = AD 1 p I AD 1 p = D A D 1 p = LD 1 p = 0 D 1 p wektor własny laplasanu o wartości własne 0. Pamiętamy, że v 1 = α1, zatem p = αd1 oraz p i = αk i. Po unormowaniu p i = k i k = k i 2m = A i k p (t 1) D macierz diagonalna stopni węzłów
23 BŁĄDZENIE PRZYPADKOWE PO SIECI p i (t) prawdopodobieństwo, że cząstka (pakiet, osobnik) znadue się w węźle i w chwili t. Jeśli w chwili t-1 cząstka est w węźle, to p i t p i t A i = p k (t 1) p t = AD 1 p(t 1) Rozkład graniczny dla t p = AD 1 p I AD 1 p = D A D 1 p = LD 1 p = 0 D 1 p wektor własny laplasanu o wartości własne 0. Pamiętamy, że v 1 = α1, zatem p = αd1 oraz p i = αk i. Po unormowaniu p i = k i = k k 2m = A i k p (t 1) D macierz diagonalna stopni węzłów
24 Można pokazać, że dla błądzenia z preferencą k Zatem dla = -1 p i ~k i β+1
25 Można pokazać, że dla błądzenia z preferencą k Zatem dla = -1 p i ~k i β+1
26 SIECI REZYSTOROWE Prawo Kirchhoffa W naszym przypadku I i = A i V V i R +I I 0 + I i = 0 dla i = s dla i = t dla i s t Prąd dopływaący z zewnątrz s I t V i A i A i V = RI i k i V i A i V = RI i δ i k i A i L V = RI V = RI i L = D A
27 L V = RI Pamiętamy, że L macierz osobliwa, więc nie możemy znaleźć wektora V z powyższego równania. Napięcia są ustalone z dokładnością do stałe: L ( V + c1 ) = LV + cl1 = LV = RI Ustalmy potencał odniesienia. Możemy teraz usunąć kolumnę t z laplasanu (bo i tak mnożymy przez 0). A także wiersz t, bo znamy V t. Nowe równanie: L V = RI I teraz: V = RL 1 I bo L macierz nieosobliwa Tylko eden element niezerowy s I t V t =0
28 Przykład: Model grawitacyny w sieciach dystrybucynych i = G Q iq r i α Produkt kraowy brutto Wielkość przepływu odległość między kraami
29 log(observed flow) log(observed flow) Sieć połączeń lotniczych między kraami L V = RI L admit V = I macierz admitanci węzłowe L admit = S F diagonalna macierz sił węzłów I ab = 0 Q a Q b 0 ważona ilością pasażerów macierz sąsiedztwa (na podst. modelu graw.) F i = G Q iq r i α log(predicted flow) log(predicted flow)
30
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
10. Metody obliczeniowe najmniejszych kwadratów
10. Metody obliczeniowe najmniejszych kwadratów 1. Dowód twierdzenia o faktoryzacji macierzy Twierdzenie 1 Każdadodatniookreślon aisymetryczn amacierzm można przedstawíc wpostaci M = PP T gdzie P jest
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej
WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa
Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne
Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wektory i wartości własne definicje Niech A C N N. Jeżeli
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Macierze i Wyznaczniki
dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50
Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
Rozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
D1. Algebra macierzy. D1.1. Definicje
D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Dane w postaci grafów Przykład: social network 3 Przykład: media network 4 Przykład: information network
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Prawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
Wartości i wektory własne
Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
Obliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
(Dantzig G. B. (1963))
(Dantzig G.. (1963)) Uniwersalna metoda numeryczna dla rozwiązywania zadań PL. Ideą metody est uporządkowany przegląd skończone ilości rozwiązań bazowych układu ograniczeń, które możemy utożsamiać, w przypadku
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Grafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Lista 6. Kamil Matuszewski 13 kwietnia D n =
Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam
Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, Spis treści
Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, 2017 Spis treści Lista ważniejszych oznaczeń 5 Przedmowa 7 1. Analiza skupień 19 1.1. Formalizacja
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH
OBWOD SGNAŁ 9. METOD SECOWE (ALGORTMCZNE) ANALZ OBWODÓW LNOWCH 9.. WPROWADZENE ANALZA OBWODÓW Jeżeli przy badaniu obwodu elektrycznego dane są parametry elementów i schemat obwodu, a poszukiwane są napięcia
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
Statystyka i eksploracja danych
Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja
26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136
Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 26 marzec, 212 Łańcuchy z czasem ciągłym S = {, 1,..., }, B S = 2 S, ale T = [, ) lub T = (, ). Gdy S skończone,
MATeMAtyka zakres podstawowy
MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.
Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 1. Sprawdzić, czy następujące podzbiory są podprzestrzeniami liniowymi przestrzeni R n (dla odpowiednich n) (a) {[u, v, 2u, 4v] ; u, v R} R 4, (b) {[u, v,
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4
Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Algorytmy zrandomizowane
Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik
Postać Jordana macierzy
Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81
Ekoenergetyka Matematyka 1. Wykład 3.
Ekoenergetyka Matematyka Wykład 3 MACIERZE Macierzą wymiaru n m, gdzie nm, nazywamy prostokątną tablicę złożoną z n wierszy i m kolumn: a a2 a j am a2 a22 a2 j a2m [ a ] nm A ai ai 2 a aim - i-ty wiersz
Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne. P. F. Góra
Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Zagadnienie własne Definicja: Niech A C N N. Liczbę λ C nazywam wartościa własna macierzy
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Rozwiązania zadań z listy T.Koźniewskiego
Rozwiązania zadań z listy T.Koźniewskiego 1. Podstawiamy do równań. Tylko czwarty wektor spełnia wszystkie trzy równania.. U 1 : ( + 0x 9x 4, 7x + 8x 4, x, x 4 ), U : ( x 4, 4 x 4, + x 4, x 4 ), U : (x
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a
Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Metody dekompozycji macierzy stosowane w automatyce
Metody dekompozycji macierzy stosowane w automatyce Grzegorz Mzyk Politechnika Wrocławska, WydziałElektroniki 23 lutego 2015 Plan wykładu 1 Wprowadzenie 2 Rozkład LU 3 Rozkład spektralny 4 Rozkład Cholesky
, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.
Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Wielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
Wykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3
3 Wyznaczniki 31 Wyznaczniki stopni 2 i 3 Wyznacznik macierzy 2 2 Dana jest macierz [ ] a b A Mat c d 2 2 (R) Wyznacznikiem macierzy A nazywamy liczbę mamy a A c b ad bc d Wyznacznik macierzy A oznaczamy
Wybrane aspekty wykrywania wspólnot w grafie
Wybrane aspekty wykrywania wspólnot w grafie Mieczysław Kłopotek Instytut Podstaw Informatyki Polskiej Akademii Nauk VI Spotkania Polskiej Grupy Badawczej Systemów Uczących Się Częstochowa, 14 kwietnia
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu:
Rozwiązywanie algebraicznych układów równań liniowych metodami iteracynymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksaci 3. Zbieżność
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Wstęp do metod numerycznych Zadania numeryczne 2016/17 1
Wstęp do metod numerycznych Zadania numeryczne /7 Warunkiem koniecznym (nie wystarczającym) uzyskania zaliczenia jest rozwiązanie co najmniej 3 z poniższych zadań, przy czym zadania oznaczone literą O
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
Macierze. Układy równań.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Macierze Układy równań 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie