Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu:
|
|
- Aneta Paluch
- 9 lat temu
- Przeglądów:
Transkrypt
1 Rozwiązywanie algebraicznych układów równań liniowych metodami iteracynymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksaci 3. Zbieżność metod iteracynych 4. Metody: nawiększego spadku, sprzężonego gradientu.
2 Matrix Market - DWT: Everstine's collection from the Harwell-Boeing Collection DWT 87: WIeża DWT 234: Wieża z platformą DWT 607: Wirnik Wankela Łopata turbiny 2802 x 2802, 6342 NZ Cylinder z kołnierzem 2919 x 2919, 7593 NZ 2
3 Wybrane formaty zapisu macierzy rzadkich - CSR (compressed sparse row) trzy wektory: wartości, numery kolumn, początki wierszy (pierwsze nie-zero w wierszu) - CSC (compressed sparse column) trzy wektory: wartości, numery wierszy, początki kolumn (pierwsze nie-zero w kolumnie) - CF (coordinate format) trzy wektory dla: wartości, oraz numery kolumn i wierszy dla nie-zer CSR dla macierzy symetryczne zapamiętuemy tylko macierz U wartości = ( ) kolumna = ( ) wiersz = ( ) CSR dla macierzy niesymetryczne wartości = ( ) kolumna = ( ) wiersz = ( ) 3
4 Szukamy rozwiązania układu n równań liniowych Ax = b; A 2 R n n ; x; b 2 R n Oznaczmy A ako sumę 3 macierzy A = L + D + U Dlaczego używamy metod iteracynych? Przykład N=50000 liczba równań w układzie fl 2 = 8 batów/liczbę podwóna precyza L D U a) Ograniczenia pamięci P d <N 2 fl 2 = 20 GB (10GB) zaalokowana pamięć w komputerze Ale eśli układ est np. pięcioprzekątniowy to do zapisu macierzy A (w postaci wektorowe) potrzebuemy tylko P i <5Nfl 2 =2MB pamięci b) większa wydaność dla macierzy rzadkich (liczba elementów macierzy różnych od 0 est rzędu N) w stosunku do metod bezpośrednich Macierze takie często poawiaą się w obliczeniach naukowych i inżynierskich (FEM, PDE) Metoda Jacobiego Dla dowolnie wybranego przybliżenia rozwiązania x 0 chcemy tak przekształacać iteracynie wektor x (k) aby doprowadzić do znikania składowych wektora reszt w k iteracach co można zapisać x = [» 1 ;» 2 ; : : : ;» n ] b = [ 1; 2; : : : ; n] (b Ax (k) ) i = 0 i nx a i» (k) = 0 4
5 a ii» (k) i = i Składowe wektora reszt znikaą w kolenych iteracach, więc możemy zapisać» k+1 i = 1 a ii nx 6=i 0 oraz dla całego wektora a i» (k) ; i = 1; 2; : : : ; n i nx 6=i a i» (k) 1 C A» (k+1) i = = 1 a ii i Xi 1 =1 Xi 1 =1 a i» (k+1) i a ii» (k+1) i nx =i+1 a i» (k+1) a i» (k) = 0 nx =i+1 a i» (k) + i 1 A x (k+1) = D 1 (L + U)x (k) + D 1 b W metodzie Jacobiego obliczamy koleno wszystkie składowe nowego przybliżenia wektora rozwiązań. Metoda Gaussa-Seidla b Lx (k+1) Dx (k+1) Ux (k) = 0 x (k+1) = D 1 Lx (k+1) D 1 Ux (k) + D 1 b Różni się od metody Jacobiego tym, że obliczone uż składniki» i k ; i = 1; 2; : : : ; wykorzystywane są w obliczeniach składników +1,+2,...,n. 5
6 Metody Jacobiego i GS można zapisać ogólnie w postaci Mx (k+1) = Nx (k) + b = (M A)x (k) + b A = M N metoda Jacobiego: metoda Gaussa-Seidela: Metoda relaksaci M = D M = D + L b Lx (k+1) Dx (k+1) Ux (k) = 0 A = L + D + U!A =!D +!L +!U!A = (D +!L) + (!U (1!)D) Macierze iteruące i ich przekształcenia (preconditioning) Ogólny schemat iteracyny x (k+1) = Gx (k) + f G J (A) = I D 1 A G GS (A) = I (D + L) 1 A przy podziale macierzy A A = M N definiuemy iteracę do ustalonego punktu w ako x (k+1) = M 1 Nx (k) + M 1 b Z porównania obu zapisów dostaemy Metoda nadrelaksaci (SOR) (Successive Over Relaxation)» (k+1) i =!» (k+1)gs i! 2 (1; 2) + (1!)» (k) i (D +!L)x (k+1) = [!U + (1!)D]x k +!b G = M 1 N = M 1 (M A) = I M 1 A f = M 1 b 6
7 Proces iteracyny x (k+1) = Gx (k) + f możemy potraktować także ako problem rozwiązania układu (I G)x = f co dla G=I-M -1 A dae układ równań M 1 Ax = M 1 b Układ ten ma identyczne rozwiązanie ak układ pierwotny. Co nam to dae? Z przepisu iteracynego x (k+1) = M 1 Nx (k) + M 1 b wynika, że musimy w każde iteraci obliczyć M 1 Nx (k) = M 1 y (k) = z (k) Ponieważ M -1 nie znamy, więc chcemy niewielkim kosztem rozwiązać układ równań Mz (k) = y (k) Dla metod Jacobiego, Gaussa-Seidla i SOR macierz ta ma postać: M J = D M GS = D + L M SOR = 1 (D +!L)! Zbieżność metod iteracynych Dla macierzy definiuemy liczbę którą nazywamy promieniem spektralnym macierzy. Dla dowolne macierzy kwadratowe zgodne z normą wektorów prawdziwa est nierówność Lemat Tw. Dla każdego wektora dążą do zera wtedy i tylko wtedy gdy Dowód ^ ">0 A 2 R n n i A; _ ½(A) = max i i=1;2;:::;n i 2 Z A p A p ½(A) + " x 2 R n Ax; A 2 x; : : : ; A i x; : : : " = 1 ½(A) 2 A p 1 + ½(A) < 1 2 A n x p A n p x p! 0 A n x! 0 elementy ciągu ½(A) < 1 7
8 Tw. Ciąg wektorów którego elementy wyznaczamy według wzoru est zbieżny do edynego punktu granicznego wtedy i tylko wtedy gdy Dowód x (0) ; x (1) ; : : : ; x (i) ; : : : x (i+1) = Gx (i) + f; i = 0; 1; : : : x (i+1) = Gx (i) + f = G(Gx (i 1) + f) + f = : : : = G i+1 x (0) + (G i f + G i 1 f + : : : + f) lim i!1 Gi+1 x (0)! 0 f + G 1 f + : : : + G i f + : : : p 1X f p G i p = f p 1 G p i=0 ½(G) < 1 Zbieżność w metodzie SOR G SOR = (D +!L) 1 [!U + (1!)D] det(g SOR ) = det (D +!L) 1 det (D +!L) 1 = det (!U + (1!)D) det (!U + (1!)D) = det((1!)d) det(g SOR ) = (1!) n det(g SOR ) = 1 2 : : : n 1! 1 det(d +!L) = 1 det(d) = (1!) n det(d) max i=1;:::;n i = ½(G SOR ) < 1 0 <! < 2 Jeśli macierz układu est symetryczna, dodatniookreślona i nieosobliwa to procedura iteracyna est zawsze zbieżna dla 0 <! < 2 8
9 Minimalizaca formy kwadratowe Jeśli Ax=b i r=b-ax to możemy utworzyć formę kwadratową postaci R = r T r = (b Ax) T (b Ax) Związek gradientu Q z kierunkiem poszukiwania przybliżonego rozwiązania. Prosta interpretaca geometryczna w 2D powierzchnie o stałe wartości Q maą kształt elipsy (hiperelipsy w przestrzeni o większe liczbie wymiarów). Która est dodatniookreślona i przymue wartość minimalną dla dokładnego rozwiązania x. W dalszych rozważaniach zakładamy że macierz A est symetryczna i dodatniookreślona, wówczas możemy użyć formy kwadratowe postaci Q = 1 2 xt Ax x T b która ma minimum w x, ponieważ Q(x + x) Q(x) = 1 2 xt A x > 0 Proces poszukiwania rozwiązania dokładnego przebiega iteracynie, t. szukamy ciągu przybliżeń x 1 ; x 2 ; x 3 ; : : : x 4 x 5 x 6 gdzie: x i+1 = x i + i v i x 3 Od sposobu wyznaczania α i i v i zależy zbieżność i x 1 x 2 szybkość metody. 9
10 Metoda nawiększego spadku Przybliżone rozwiązanie w i+1 iteraci ma postać x i+1 = x i + i v i Jako v i wybieramy kierunek gradientu Q rq = Ax i b = r i v i = r i Kolene przybliżenie w metodzie nawiększego spadku opisue wyrażenie x i+1 = x i + rt i r i ri T Ar i dla którego zachodzi warunek Q(x i+1 ) < Q(x i ) Metoda może być ednak wolnozbieżna w przypadku gdy hiperelipsoida ma wydłużony kształt co odpowiada złemu uwarunkowaniu układu. r i W celu znalezienia współczynnika i obliczamy Q(x i+1 ) Q(x i i r i ) = 1 2 xt i r 1 2 xt i b i r T i Ar i + i r T i r i i różniczkuemy e po parametrze wariacynym w celu i = r T i r i + i r T i i = 0! i = rt i r i r T i Ar i 10
11 Metoda sprzężonego gradientu Założenia: - x d est rozwiązaniem dokładnym - ciąg wektorów v 1 ; v 2 ; v 3 ; : : : stanowi bazę w n-wymiarowe przestrzeni euklidesowe Różnicę rozwiązania dokładnego i przybliżonego możemy zapisać w postaci kombinaci liniowe elementów bazy x d x 1 = nx v =1 Jeśli elementy bazy są ortogonalne to można łatwo wyznaczyć współczynniki kombinaci liniowe = vt (x d x 1 ) v T v ; = 1; 2; : : : Rządamy więc, aby wektory bazy spełniały warunek A-ortogonalności (wektory A-sprzężone) v T Av i = 0 $ i 6= Dla macierzy dodatniookreślone zachodzi warunek v T i Av i 6= 0 Jak skonstruować bazę A-ortogonalną? Jeśli dysponuemy zwykłą bazą wektorów u 1 ; u 2 ; u 3 ; : : : to możemy ą poddać procesowi ortogonalizaci Grama-Schmidta v 1 = u 1 v i+1 = u i+1 + ix k=1 i+1;k v k Ale powyższy wzór wymaga modyfikaci ponieważ nie znamy wektora x d, wiemy ednak, że Ax d =b więc = vt A(x d x 1 ) v T Av = vt r 1 v T Av i+1;k = vt k Au i+1 v T k Av k Jak utworzyć ciąg wektorów u i? 11
12 W metodzie CG bazę stanowią wektory reszt (kierunki gradientów), które dzięki A- ortogonalizaci są sprzężone. Kolene przybliżenia w podstawowe metodzie CG wyznaczamy zgodnie z poniższym schematem: W podstawowe metodzie CG w każde iteraci należy wykonać dwa mnożenia macierz-wektor Av i Ar i+1 i to te dwie operace determinuą nakład obliczeń. Algorytm metody CG można przedstawić w alternatywne postaci, gdzie wymagamy tylko ednego mnożenia macierz-wektor: v 1 = r 1 = b Ax 1 i = vt i r i v T i Av i x i+1 = x i + i v i r i+1 = r i i Av i i = vt i Ar i+1 vi T Av i v i+1 = r i+1 + iv i Dzięki A-ortogonalności w każde iteraci wystarczy wyznaczyć tylko eden współczynnik (reszta współczynników znika). v 1 = r 1 = b Ax 1 i = rt i r i v i Av i x i+1 = x i + i v i r i+1 = r i i Av i i = rt i+1 r i+1 ri T r i v i+1 = r i+1 + iv i Maksymalna liczba iteraci w metodzie CG wynosi n+1 więc est metodą skończoną. Zazwycza do uzyskania akceptowalnego rozwiązania wystarcza wykonanie znacznie mniesze liczby iteraci. 12
Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi
Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksacji 3. Zbieżność
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50
Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
(Dantzig G. B. (1963))
(Dantzig G.. (1963)) Uniwersalna metoda numeryczna dla rozwiązywania zadań PL. Ideą metody est uporządkowany przegląd skończone ilości rozwiązań bazowych układu ograniczeń, które możemy utożsamiać, w przypadku
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Metody Obliczeniowe w Nauce i Technice
12. Iteracyjne rozwiązywanie Ax=B Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Anna Marciniec Radosław
Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6
Wykład 6 p. 1/?? Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Plan wykładu
Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Elementy metod numerycznych
Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
KADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Plan wykładu. Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 p. Rozwiazywanie układów równań. metody bezpośrednie,
Plan wykładu Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Układy równań liniowych i metody ich rozwiazywania Metoda sprzężonych gradientów Macierze
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Metoda gradientów sprzężonych motywacja Rozważmy funcję f : R N R f(x) = 1 2
Optymalizacja (minimalizacja) funkcji. Plan wykładu: 1. Sformułowanie problemu, funkcja celu. 2. Metody bezgradientowe
Optymalizacja (minimalizacja) funkcji Plan wykładu: 1. Sformułowanie problemu, funkcja celu. Metody bezgradientowe a) metoda złotego podziału b) metoda sympleks c) metoda interpolacji Powell'a 3. Metody
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1
Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej
WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Wartości i wektory własne
Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem
04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =
04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,
METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0
METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX
Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.
Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi
Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi
Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.
Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym
Rozwiazywanie układów równań liniowych. Ax = b
Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.
Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych
Wstęp do metod numerycznych Metody iteracyjne i metoda gradientów. P. F. Góra
Wstęp do metod numerycznych Metody iteracyjne i metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Metody iteracyjne W metodach dokładnych otrzymane rozwiazanie jest dokładne
Bardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
Obliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH. PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ
NUMERYCZNE METODY ROZWIĄZYWANIA ROWNAŃ LINIOWYCH PRZYGOTOWAŁA: ANNA BANAŚ KoMBo, WILiŚ PODZIAŁ DOKŁADNE ELIMINACYJNE DEKOMPOZYCYJNE ELIMINACJI GAUSSA JORDANA GAUSSA-DOOLITTLE a GAUSSA-CROUTA CHOLESKY EGO
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych. P. F. Góra
Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Metody iteracyjne Rozwiazanie układu równań liniowych, uzyskane
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
Krótkie wprowadzenie do macierzy i wyznaczników
Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11
Metody dekompozycji macierzy stosowane w automatyce
Metody dekompozycji macierzy stosowane w automatyce Grzegorz Mzyk Politechnika Wrocławska, WydziałElektroniki 23 lutego 2015 Plan wykładu 1 Wprowadzenie 2 Rozkład LU 3 Rozkład spektralny 4 Rozkład Cholesky
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów
KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym
1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy
Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra
Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Sposoby reprezentacji liczb całkowitych i rzeczywistych patrz wykład z Teoretycznych Podstaw
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
Wielomiany. dr Tadeusz Werbiński. Teoria
Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych
Wykład 5. Skręcanie nieskrępowane prętów o przekroju prostokątnym.
Adresy internetowe, pod którymi można znaleźć wykłady z Wytrzymałości Materiałów: Politechnika Krakowska http://limba.wil.pk.edu.pl/kwm-edu.html Politechnika Łódzka http://kmm.p.lodz.pl/dydaktyka Wykład
Wstęp do metod numerycznych SVD, metody iteracyjne i metoda gradientów. P. F. Góra
Wstęp do metod numerycznych SVD, metody iteracyjne i metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Współczynnik uwarunkowania macierzy symetrycznej Twierdzenie 1. Niech
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4
17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c