Trygonometria bez u ycia tablic i kalkulatora

Wielkość: px
Rozpocząć pokaz od strony:

Download "Trygonometria bez u ycia tablic i kalkulatora"

Transkrypt

1 Trgonometria bez u cia tablic i kalkulatora Propozcja na kółko matematczne i nie tlko Trgonometria to jeden z ciekawszch dzia ów w matematce Ró norodnoêç zadaƒ z trgonometrii i jej zastosowanie w innch dzia ach matematki nie majà koƒca Tomasz Grębski W artkule tm przedstawione sà rozwiàzania zadaƒ z trgonometrii tpu: oblicz bez u cia kalkulatora i tablic cz udowodnij bez u cia kalkulatora Jak nale je rozwiàzaç? Jakie sztuczki zastosowaç? Zapraszam do cztania Na poczàtek przedstawiam kilkanaêcie przdatnch wzorów Niektóre z nich sà dobrze znane, a niektóre rzadziej stosowane warto przpomnieç lub nawet poznaç Obok wzorów jest numeracja, która jest wkorzstwana podczas rozwiàzania poszczególnch zadaƒ celem wskazania wkorzstanego wzoru () sin x+ cos x sin x cos () tgx cos x, ctgx sin x x () sinx sin xcos x () cosx cos x- sin x cos x- -sin x (5) sinx sin x( -sin x) (6) cosx cos x( cos x-) tgx (7) tgx - tg x (8) sin( x+ ) sin xcos + cos xsin (9) sin( x- ) sin xcos -cos xsin () cos( x+ ) cos xcos -sin xsin 6 M AT E M AT Y K A

2 LO () cos( x- ) cos xcos + sin xsin () sin( 9 - x) cos x () cos( 9 - x) sin x () tg( 9 - x) ctgx (5) sin xcos 6 sin( x+ ) + sin( x- (6) cos xcos 6 cos( x+ ) + cos( x- (7) sin xsin 6 cos( x- ) - cos( x+ x+ x- (8) sin x+ sin sin cos x+ x- (9) sin x- sin cos sin x+ x- () cos x+ cos cos cos x+ x- () cos x- cos -sin sin tgx+ tg () tg( x+ ) - tgx tg Przejdêm teraz do cz Êci praktcznej Na poczàtek dwa atwiejsze zadania Zadanie Oblicz bez u cia kalkulatora: sin 5 I sposób: ( 9) sin5 sin( 5 - ) sin5 cos - cos5 sin - II sposób: Zastosujem wzór na cosinus podwojonego kàta () 6- cos -sin5 -sin5 sin5 - sin 5 - /: sin 5 - / sin ^ 6- h 6-6- m a j/c ze r w i e c 6 7

3 Zadanie Oblicz bez u cia kalkulatora: cos 75 ( ) 6- cos75 cos( 5 + ) cos5 cos - sin5 sin - Teraz zajmiem si mniej tpowmi kàtami: 8, 6, 7 Zadanie Oblicz bez u cia kalkulatora i tablic dok adnà wartoêç sin 8 Metoda algebraiczna: Niech a 8, zatem 5a 9 5a a+ a 9 & a 9 -a Zatem: ( ) sina sin( 9 - a) cosa sina cosa Korzstam teraz ze wzorów na sinus podwojonego () i kosinus potrojonego kàta (5) sinacosa cos a-cosa sinacosa- cos a+ cosa cosa^sina- cosa+ h cosa sina- cosa+ Poniewa za o liêm, e a 8, to pierwsze równanie jest sprzeczne Zatem: sina- cosa+ Korzstam z jednki trgonometrcznej () sina- ( - sina) + sin a + sin a - Podstawiam nowà zmiennà wraz z odpowiednim za o eniem: sina t, t! -, t + t - Po rozwiàzaniu pow szego równania otrzmujem: 5 5 t - - t ' / t! -, / t> & t / t sina sin8, czli sin8 5-8 M AT E M AT Y K A

4 LO Metoda geometrczna (wkorzstanie trójkàta prostokàtnego): Rsujem trójkàt prostokàtn ABC Oznaczam miar kàtów ostrch jako: + ABC 8 oraz + ACB 7 Prowadzim Êrodkowà AD, a nast pnie na odcinku CD zaznaczam taki punkt E, e AE AC Otrzmujem trz trójkàt równoramienne: DABD, DAEC, D ADE W trójkàcie AEC prowadzim wsokoêç AH Wprowadêm teraz wartoêci kàtów Korzstajàc z tego, e suma kàtów wewn trznch trójkàta wnosi 8 oraz z kàtów przleg ch otrzmujem nast pujàce wartoêci: + ABC 8 + ADB + ADE 6 + AED 8 + AEC 7 + CAH 8 + HAE 8 Przjmijm (bez strat na jakoêci rozwiàzania), e: AC AE ( DAEC jest równoramienn) CH HE x ( DAEC jest równoramienn) AE ED ( DAED jest równoramienn) Zatem: CD AD DB x + Z DAHC i twierdzenia Pitagorasa mam: AH Z - x DABC i twierdzenia, e kwadrat d ugoêci wsokoêci opuszczonej z wierzcho ka kàta prostego równ jest ilocznowi d ugoêci odcinków, na jakie podzieli a ona przeciwprostokàtnà, mam: AH CH HB ^ - x h x ( x+ ) - x x + x x + x - D, D 5 ' 5 5 x - - x - + / x& x 5- m a j/c ze r w i e c 6 9

5 Zatem z DAHC mam: CH x 5- sin8 x AC t Rsunek do zadania Uwaga sin 8 jest wjêciowà wartoêcià, za pomocà której mo em obliczç dowolnà wielokrotnoêç kàta 8, co pokazujà kolejne zadania Prz okazji warto wspomnieç, e cos 8 obliczam, wkorzstujàc jednk trgonometrcznà (): cos 8 - sin8 -c 5- m Zadanie Oblicz sin 6 bez u cia kalkulatora i tablic W zadaniu pokazano, jak obliczç sin 8 WartoÊç tà wkorzstam prz cosinusie podwojonego kàta ( ) cos6 -sin cos6 - c - m sin 6 obliczm teraz, wkorzstujàc jednk trgonometrcznà () i pami tajàc, e sin6 > sin6 - cos6 -c 5+ m - 5 M AT E M AT Y K A

6 LO Zadanie 5 Oblicz sin 5 bez u cia kalkulatora i tablic ( ) sin5 sin( 9-6 ) cos6 W zadaniu pokazano, jak obliczç cos 6 Zatem sin5 cos6 5+ Zadanie 6 Oblicz sin 7 bez u cia kalkulatora i tablic Wiem ju, jak obliczç sin 8 (zadanie ), zatem: ( ) sin7 sin( 9-8 ) cos8 + 5 Zadanie 7 Wka bez u cia tablic i kalkulatora, e cos6 cos7 L cos6 cos7 Mno m i dzielim wra enie przez sin6 w celu uzskania wzoru na sinus podwojonego kàta sin6 cos6 cos7 sin7 cos7 sin7 cos7 sin sin6 sin6 sin6 sin6 sin( 8-6 ) sin6 sin6 sin6 P Zadanie 8 Wka bez u cia tablic i kalkulatora, e tg5 + ctg5 sin5 cos tg ctg sin cos L 5 5 cos5 sin5 5 ( ) sin5 cos5 sin5 cos5 sin P m a j/c ze r w i e c 6

7 Zadanie 9 Wka bez u cia tablic i kalkulatora, e ctg5 -tg5 cos ctg tg sin sin cos sin 5 5 L cos5 sin5 cos5 ( ) ctg P cos5 -sin5 sin5 cos5 cos sin ( ) ( ),( ) ( ) Zadanie Wka bez u cia tablic i kalkulatora, e cos cos cos8 L cos cos cos8 8 Mno m i dzielim wra enie przez sin w celu uzskania wzoru na sinus podwojonego kàta sin cos cos cos8 sin cos cos8 sin sin sin cos cos8 sin8 cos8 sin6 sin sin 8sin sin^8 - h ^h sin 8sin 8sin 8 P Zadanie Wiedzàc, e sin m, oblicz sin 5 ( 8) sin5 sin( 5 - ) sin5 cos - cos5 sin cos - sin ( ) ^ cos - sin h ^ -sin - sin h ^ - m - mh M AT E M AT Y K A

8 LO Zadanie Oblicz bez u cia tablic i kalkulatora sin5 sin5 sin5 sin5 sin5 cos5 cos5 cos5 cos5 sin5 sin5 sin5 sin5 sin5 cos5 cos5 cos5 cos5 sin5 % cos5 % sin5 % cos5 % sin5 % cos5 % sin5 % cos5 % sin5 % Mno m i dzielim wra enie przez 6 sin5 cos5 sin5 cos5 sin5 cos5 sin5 cos5 sin5 6 sin sin sin5 sin7 sin5 sin sin5 sin sin sin5 sin7 Mno m i dzielim wra enie przez cos w celu uzskania wzoru na sinus podwojonego kàta sin cos 6 cos sin5 sin( 9 - ) sin sin cos 8cos sin5 cos 8 cos sin5 sin sin cos sin8 56cos sin( 9-5 ) 56 cos 5cos cos 5cos 5 5 sin( 9-8 ) cos Zadanie Udowodnij to samoêç (bez u cia tablic i kalkulatora): cos5 sin5 sin5 sin5 sin5 cos5 cos5 cos5 cos5 sin5 sin5 sin5 sin5 cos5 cos5 cos5 m a j/c ze r w i e c 6

9 Korzstam ze wzorów: (5), (6) i (7) ( sin + sin ) ( cos - cos6 ) ( sin - sin ) ( cos + cos6 ) Mno m obustronnie przez ( sin + sin )( cos - cos6 ) ( sin - sin )( cos + cos6 ) sin cos - sin cos6 + sin cos - sin cos6 sin cos + sin cos6 - sin cos + sin cos6 Po uporzàdkowaniu mam: sin cos sin cos6 sin sin cos6 /: sin cos6 Zatem przeprowadzajàc to samoêciowe działania, uzskaliêm równanie zawsze prawdziwe To samoêç została udowodniona Zadanie Udowodnij bez u cia tablic i kalkulatora nast pujàcà równoêç: sin - sin7 Wkorzstam wzór (5): sinx sin x( -sin x) sin sin ( -sin ) Przegrupowujàc wraz po prawej stronie, otrzmujem: sin sin ( - sin ) + sin Wkorzstujàc wzór (), otrzmujem: sin cos + sin / sin cos + sin - sin sin7 sin /: sin, sin - sin7 M AT E M AT Y K A

10 LO Zadanie 5 Udowodnij bez u cia tablic i kalkulatora: sin77 - sin + sin + sin5 cos L sin77 - sin + sin + sin5 sin77 + sin5 + sin - sin ( 8),( 9) sin cos6 - sin5 cos6 cos6 ^sin - sin5 h ( 9) cos6 sin8 cos cos6 sin8 cos sin6 Wiedzàc, e sin6 sin8 cos8, mo em wznaczç sin8 cos8 Zatem kontnuujem nasze obliczenia: sin6 cos6 sin6 % sin7 cos6 cos8 cos cos8 cos cos8 cos sin( 9-8 ) ( ) cos8 cos8 cos cos8 cos cos P Zadanie 6 Udowodnij bez u cia tablic i kalkulatora, e tg jest liczbà niewmiernà Teza: tg! NW Przeprowadzim dowód nie wprost Załó m, e tg jest liczbà wmiernà Wkorzstujem wzór: tgx tg (7) tgx, czli tg - tg x - tg Zało liêm, e tg jest liczbà wmiernà, wi c tg te jest liczbà wmiernà Wkorzstajm teraz wzór: tga+ tgb tg( a+ b) - tga tgb do rozpisania tg 6 tg + tg tg6 tg( + ) - tg tg m a j/c ze r w i e c 6 5

11 tg + tg Zgodnie z naszm zało eniem, wra enie -tg tg nale do liczb wmiernch Wiem jednak, e tg 6, czli nale do liczb niewmiernch Zatem otrzmaliêm sprzecznoêç z naszm zało eniem Zgodnie z zasadà dowodu nie wprost: nasze zało enie okazało si fałszwe, zatem tg jest liczbà niewmiernà (dodatkowo mo na jeszcze wkazaç, e jest liczbà niewmiernà, ale to ju pozostawiam Cztelnikowi) Na zakoƒczenie naszch rozwa aƒ nale wspomnieç, e niestet, nie dla wszstkich wartoêci kàtów mo na obliczç dokładne wartoêci funkcji trgonometrcznch, np zobaczm, co si dzieje, gd chcem wznaczç dokładnà wartoêç sin Pozornie wglàda na to, e doêç szbko obliczm t wartoêç, wkorzstujàc wzór: sinx sin x( -sin x) sin sin ( -sin ) Mo em podstawiç nowà zmiennà: sin t t( -t ) Po uporzàdkowaniu mam: 8t - 6t + OtrzmaliÊm doêç adne równanie trzeciego stopnia Niestet, równanie to nie ma pierwiastków wmiernch i eb je rozwiàzaç, trzeba si gnàç np do wzorów Cardano i liczb zespolonch lub do przbli onch metod rozwiàzwania równaƒ Ale to ju zupe nie odr bne zagadnienie Mam nadziej, e przedstawione rozwiàzania problemów zawartch w zadaniach niejednokrotnie b dà przdatne w ró nch zastosowaniach Tomasz Grębski Nauczciel matematki w Zespole Szkół Nr im M Reja w Kraśniku, autor portalu: wwwtomaszgrebskipl 6 M AT E M AT Y K A

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:

Bardziej szczegółowo

Matematyka 1 (Wydziaª Architektury) Lista 1 - funkcje elmenetarne. 2. Rozwi za nast puj ce równania lub nierówno±ci:

Matematyka 1 (Wydziaª Architektury) Lista 1 - funkcje elmenetarne. 2. Rozwi za nast puj ce równania lub nierówno±ci: Matematka (Wdziaª Architektur) Lista - funkcje elmenetarne UWAGA: Umiej tno±ci potrzebne do rozwi zwania zada«z tej list b d równie» niezb dne prz rozwi zwaniu wszstkich problemów matematcznch, z jakimi

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 8 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do. sà podane

Bardziej szczegółowo

Mikroekonomia II. Narz ¾edzia matematyczne. f 0 (x) = 0. f (x) = 5. f 0 (x) = ax a 1 = ax a 1. f (x) = p x = x 1 2. d (bf(x)) dx.

Mikroekonomia II. Narz ¾edzia matematyczne. f 0 (x) = 0. f (x) = 5. f 0 (x) = ax a 1 = ax a 1. f (x) = p x = x 1 2. d (bf(x)) dx. Mikroekonomia II Narz edzia matematczne Pochodne. Funkcja sta a f () = b f 0 () = 0 f () = 5 f 0 () = 0 2. Funkcja wk adnicza f () = a f 0 () = a a = a a f () = p = 2 f 0 () = 2 2 = 2 2. Funkcja logartmiczna

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 10 minut 1. Sprawdê, czy arkusz zawiera 10 stron.. W zadaniach od 1. do 5. sà podane

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM ROZSZERZONY Czas pracy 180 minut 1. Sprawdê, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Autor: Anna Jatczak TEST PRZED PRÓBNÑ MATURÑ 2007 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY ARKUSZ II Instrukcja dla zdajàcego Czas pracy: 150 minut 1. Prosz sprawdziç,

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 14 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 3. sà

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy 170 minut 1. Sprawdê, czy arkusz zawiera 15 stron. 2. W zadaniach

Bardziej szczegółowo

MATURA Przygotowanie do matury z matematyki

MATURA Przygotowanie do matury z matematyki MATURA 2012 Przygotowanie do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY GRUDZIE ROK 2007 Instrukcja dla zdajàcego Czas pracy 180 minut 1. Sprawdê, czy arkusz egzaminacyjny

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 13 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY Czas pracy 120 minut GRUDZIE ROK 2007 Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz egzaminacyjny

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2011/12

Jarosław Wróblewski Matematyka Elementarna, zima 2011/12 168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 6 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:

Bardziej szczegółowo

Matematyka. Poziom rozszerzony. Z a m. - m. i 1. _ i_. Matematyka. Poziom rozszerzony. Opis ocenianej czynnoêci. Liczba punktów.

Matematyka. Poziom rozszerzony. Z a m. - m. i 1. _ i_. Matematyka. Poziom rozszerzony. Opis ocenianej czynnoêci. Liczba punktów. Matematyka Poziom rozszerzony. Wyznaczenie liczby wszystkich wyników doêwiadczenia polegajàcego na jednoczesnym losowaniu dwóch spoêród + n kul. Wyznaczenie liczby wyników sprzyjajàcych zdarzeniu A wylosowane

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczbę 5 7 zaokr aglam do liczb,6.

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 7 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 1 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 1. sà podane

Bardziej szczegółowo

Kratownice Wieża Eiffel a

Kratownice Wieża Eiffel a Kratownice Wieża Eiffel a Kratownica jest to konstrukcja nośna, składająca się z prętów połączonch ze sobą w węzłach. Kratownica może bć: 1) płaska, gd wszstkie pręt leżą w jednej płaszczźnie, 2) przestrzenna,

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 15 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 10 minut 1. Sprawdê, czy arkusz zawiera 10 stron.. W zadaniach od 1. do 5. sà podane

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 4 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 1. sà podane

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY Z MATEMATYKI

ARKUSZ EGZAMINACYJNY Z MATEMATYKI dysleksja Miejsce na naklejk z kodem szko y ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw 1 POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz zawiera 12 stron (zadania

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

MATURA Powtórka do matury z matematyki. Część VII: Planimetria ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.pl

MATURA Powtórka do matury z matematyki. Część VII: Planimetria ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.pl MATURA 2012 Powtórka do matury z matematyki Część VII: Planimetria ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już siódmą z dziesięciu części materiałów powtórkowych do matury

Bardziej szczegółowo

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych TRYGONOMETRIA. Definicje i własności funkcji trygonometrycznych Funkcje trygonometryczne kąta ostrego można zdefiniować przy użyciu trójkąta prostokątnego: c a α b DEFINICJA. Sinusem kąta ostrego α w trójkącie

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY Czas pracy 180 minut LISTOPAD ROK 008 Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz egzaminacyjny

Bardziej szczegółowo

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY Czas pracy 120 minut LISTOPAD ROK 2008 Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz egzaminacyjny

Bardziej szczegółowo

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?

ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków? PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut Miejsce na naklejkę z kodem szkoł OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR Czas prac 0 minut Instrukcja dla zdającego. Sprawdź, cz arkusz egzaminacjn zawiera

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR 2016

LUBELSKA PRÓBA PRZED MATUR 2016 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdajcego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 17 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 5. sà

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

Liczby, działania i procenty. Potęgi I pierwiastki

Liczby, działania i procenty. Potęgi I pierwiastki Zakres materiału obowiązując do egzaminu poprawkowego z matematki klasa technikum str Dział programow Liczb, działania i procent Potęgi I pierwiastki Zbior i przedział liczbowe Wrażenia algebraiczne Równania

Bardziej szczegółowo

2 5 C). Bok rombu ma długość: 8 6

2 5 C). Bok rombu ma długość: 8 6 Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z matematyki poziom podstawowy rozumowanie i argumentacja karty pracy ZESTAW II Zadanie. Wiadomo, że,7 jest przybliżeniem liczby 0,5 z zaokrągleniem do miejsc po przecinku. Wyznacz przybliżenie

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0 Wykład I Literatura Podręczniki 1. G. M. Fitherholz Rachunek różniczkowy i całkowy 2. W. Żakowski Matematyka tom I Zbiory zadań 1. W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach tom I i II

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

Test dla klasy drugiej pierwsze półrocze

Test dla klasy drugiej pierwsze półrocze 9 Test dla klasy drugiej pierwsze półrocze Wersja B... imi i nazwisko ucznia...... data klasa Cz Êç I zadania zamkni te W zadaniach od. do 0. podano cztery odpowiedzi: A, B, C, D. Wska poprawnà. Jakie

Bardziej szczegółowo

POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII

POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII Zad.1 Rozwiąż trójkąt prostokątny: a) a 4, 0 b) b 8, c 1 POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII Zad. Oblicz wartość wyrażenia cos 0 cos 45 cos0 cos 45. Zad.4 Wyznacz długości przyprostokątnych trójkąta

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

matematyka Matura próbna

matematyka Matura próbna Gazeta Edukacja Sprawdź, cz zdasz! Egzamin maturaln matematka MTEMTYK zas prac: minut Matura próbna Maturzsto! Po raz pierwsz napiszesz obowiązkową maturę z matematki na poziomie podstawowm Rozwiąż zadania

Bardziej szczegółowo

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 MATEMATYKA

EGZAMIN MATURALNY 2011 MATEMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 0 MATEMATYKA POZIOM ROZSZERZONY MAJ 0 Egzamin maturalny z matematyki poziom rozszerzony Zadanie (0 4) Obszar standardów Użycie i tworzenie

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 l EGZAMIN MATURALNY W ROKU SZKOLNYM 0/05 FORMUŁA DO 0 ( STARA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R MAJ 05 Uwaga: Akceptowane są wszstkie odpowiedzi mertorcznie

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet

Bardziej szczegółowo

Obozowa liga zadaniowa (seria I wskazówki)

Obozowa liga zadaniowa (seria I wskazówki) Obozowa liga zadaniowa (seria I wskazówki) 1. Rozstrzygnij, która liczba jest większa: 9 czy 3 1? 9 < 30 8 10 < 9 10 3 0 < 3 1.. Rozstrzygnij, która liczba jest większa: 81 czy 3 49? 81 > 80 56 10 > 43

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 11 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna

Bardziej szczegółowo

LICZBY RZECZYWISTE a) 3n, n N ; b) 3n 2, n N. 6. a) 0; b) 590; c) a) 1 ; b) a) 7; b) 27; c) 3; d) 2.

LICZBY RZECZYWISTE a) 3n, n N ; b) 3n 2, n N. 6. a) 0; b) 590; c) a) 1 ; b) a) 7; b) 27; c) 3; d) 2. LICZB RZECZWISTE b) NWD( 0, 900) 0, NWW ( 0, 900) 600; c) NWD( 6, 58), NWW ( 6, 58) 654 0 4 a) n, n N ; b) n, n N 5 a) 0a b, a {,,, 9 }, b { 0,,, 9 }; b) 0a b ; c) b, b {,,, 9 } 6 a) 0; b) 590; c) 7 9

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 8 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 21 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 20.

Bardziej szczegółowo

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne Zadanie. 4 Rozwiąż równanie 07 sin( ). Wiadomo, że: wyrażenie 4 przyjmuje wartości nieujemne dla każdego

Bardziej szczegółowo

Pochodna funkcji wykład 5

Pochodna funkcji wykład 5 Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Całki nieoznaczone

Zadania z analizy matematycznej - sem. II Całki nieoznaczone Zadania z analizy matematycznej - sem. II Całki nieoznaczone Definicja 1 (funkcja pierwotna i całka nieoznaczona). Niech f : I R. Mówimy, że F : I R jest funkcją pierwotną funkcji f, jeśli F jest różniczkowalna

Bardziej szczegółowo

Test na koniec pierwszej klasy

Test na koniec pierwszej klasy 08 Przykładowe sprawdziany Test na koniec pierwszej klasy Wersja A... imi i nazwisko ucznia...... data klasa Cz Êç I zadania zamkni te W zadaniach od. do 9. sà podane cztery odpowiedzi: A, B, C, D. Wybierz

Bardziej szczegółowo

Matematyka w klasach I III. Dodawanie, odejmowanie, mno enie i dzielenie Dodawanie i odejmowanie w zakresie 10 1 Oblicz. + 3 + 2 + 3 2 1 2 + 2 1 2 2 + 5 7 2 Przeczytaj zadanie i wykonaj do niego rysunek,

Bardziej szczegółowo

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 0. sà podane

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa I

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa I 1 MATEMATYKA - poziom rozszerzony klasa I CZERWIEC 2015 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 17). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez

Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez Liczb zespolone Ciało liczb zespolonch Niech C = R. Zdefiniujm dwa działania w C. Dodawanie + : C C zdefiniowane jest przez (, ) + (, ) = ( +, + ). Ćwiczenie. Obliczm (, ) + (, 0) =.................................................

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako:

Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako: 1. Trygonometria 1.1Wprowadzenie Jednym z podstawowych działów matematyki który wykorzystywany jest w rozwiązywaniu problemów technicznych jest trygonometria. W szkole średniej wprowadzone zostały podstawowe

Bardziej szczegółowo

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Więcej arkuszy znajdziesz na stronie: arkusze.pl KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematka Poziom rozszerzon Listopad W niniejszm schemacie oceniania zadań otwartch są prezentowane przkładowe poprawne odpowiedzi. W tego tpu ch

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

ZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3

ZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3 ZADANIE Ciag (a n ), gdzie n, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa funkcji f (x) = 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 Długości boków trójkata tworza ciag geometryczny.

Bardziej szczegółowo

ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 2018/ Oblicz wartość wyrażenia: a b 1 a2 b 2. 2 log )

ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 2018/ Oblicz wartość wyrażenia: a b 1 a2 b 2. 2 log ) ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr LICZBY RZECZYWISTE Zad. Wskaż liczby wymierne: 4 9 ; 7; 6; π;, 333...; 3, (); 3 5; ( ) 0 ; 7 9 ; 4, 000000...; 3 7 7 3 ; 3 3 3. Zad. Dane są liczby

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH Nr zadania 4 5 6 7 8 9 0 4 5 6 7 8 9 0 Odpowiedź

Bardziej szczegółowo

Warsztat pracy matematyka

Warsztat pracy matematyka Warsztat prac matematka Izabela Bondecka-Krzkowska Marcin Borkowski Jęzk matematki Teoria Jednm z podstawowch pojęc matematki jest pojęcie zbioru. Teorię opisującą zbior nazwa sie teorią mnogości. Definicja

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 19 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 5. sà

Bardziej szczegółowo

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32 PRÓBNA MATURA ZADANIE ( PKT) Wskaż liczbę, której % jest równe 8. A) B) C), D) ZADANIE ( PKT) Odległość liczb od liczb -8 na osi liczbowej jest równa A) 8 B) + 8 C) + 8 D) 8 ZADANIE ( PKT) Wskaż rsunek,

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2014/2015 Etap II - rejonowy

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2014/2015 Etap II - rejonowy Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2014/2015 Etap II - rejonowy W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę rozwiązania

Bardziej szczegółowo

wymagania programowe z matematyki kl. II gimnazjum

wymagania programowe z matematyki kl. II gimnazjum wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2019

LUBELSKA PRÓBA PRZED MATURĄ 2019 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 6 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:

Bardziej szczegółowo

w najprostszych przypadkach, np. dla trójkątów równobocznych

w najprostszych przypadkach, np. dla trójkątów równobocznych MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu

Bardziej szczegółowo

Internetowe Kółko Matematyczne

Internetowe Kółko Matematyczne Internetowe Kółko Matematyczne http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I ( X 2002) Zadanie. Niech n będzie dowolną liczbą naturalną. Udowodnij, że suma + 4 + 4 2 + 4 3 +...

Bardziej szczegółowo

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl lutowy Poziom: szkoły ponadgimnazjalne

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl lutowy Poziom: szkoły ponadgimnazjalne Zadanie. XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl lutowy Poziom: szkoły ponadgimnazjalne Wyznacz wartość bezwzględną sumy współczynników a, b, c, d, e w przedstawieniu liczby w postaci

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH

Bardziej szczegółowo

Test na koniec klasy drugiej

Test na koniec klasy drugiej 0 Przkładowe sprawdzian Test na koniec klas drugiej Wersja A... imi i nazwisko ucznia...... data klasa Cz Êç I zadania zamkni te W zadaniach od. do 0. podano czter odpowiedzi: A, B, C, D. Wska poprawnà

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo