ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 2018/ Oblicz wartość wyrażenia: a b 1 a2 b 2. 2 log )

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 2018/ Oblicz wartość wyrażenia: a b 1 a2 b 2. 2 log )"

Transkrypt

1 ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr LICZBY RZECZYWISTE Zad. Wskaż liczby wymierne: 4 9 ; 7; 6; π;, ; 3, (); 3 5; ( ) 0 ; 7 9 ; 4, ; ; Zad. Dane są liczby a = 3 i b = 3+. Oblicz wartość wyrażenia: a b a b. Zad.3 Spośród liczb: log 8 log 3, log 40 log, log log, log 6 log znajdź najmniejszą liczbę całkowitą. Zad.4 Uporządkuj rosnąco wartości a, b, c, d, jeżeli: a = log 4 (3 + log 3 ( + log 4), + 3b +, c = log 9, d = Zad.5 Zapisz w postaci potęgi liczbę: ( 7 3 ) 3 ( ). Zad.6 Porównaj podane liczby: a = Zad.7 5 log log 4 7 log, b = log 3 log 6. 6 W pierwszym naczyniu jest roztwór cukru o stężeniu 0%, a w drugim 0%. Gdyby do zawartości pierwszego naczynia wlać kg roztworu z drugiego naczynia, to otrzymalibyśmy roztwór o stężeniu %. Gdyby natomiast kg roztworu z pierwszego naczynia zmieszać z zawartością drugiego naczynia, to powstałby roztwór o stężeniu 6%. Jakie stężenie będzie miał roztwór otrzymany ze zmieszania całych zawartości obu naczyń? Zad.8 Rozwiąż nierówność: x 3 x 9 < 0. Zad.9 Dla jakich wartości parametru m równanie mx + m = 4 ma rozwiązania? Zad.0 Wyznacz wszystkie kolejne cztery liczby całkowite takie, że największa z nich jest równa sumie kwadratów trzech pozostałych liczb. Zad. Sprawdź, czy liczba dzieli się przez 0. Zad. Wykaż, że liczba 30 jest dzielnikiem liczby k 5 k dla każdej liczby całkowitej k. Zad.3 Wykaż, że jeśli a i b są liczbami tego samego znaku, to a b + b a.

2 ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr WYRAŻENIA ALGEBRAICZNE Zad. Zapisz wyrażenie (x + x ) ( + x) w najprostszej postaci. Zad. liczy a przez 3. Wiedząc, że liczba całkowita a nie dzieli się przez 3, znajdź resztę z dzielenia kwadratu Zad.3 Uzasadnij, że jeżeli a + b = i a + b = 7, to a 4 + b 4 = 3. Zad.4 Wykaż, że jeżeli a i b są długościami przyprostokątnych trójkąta prostokątnego oraz c jest długością przeciwprostokątnej tego trójkąta, to a + b c. Zad.5 Wielomian W (x) = x 4 +x 3 +3x +x+ przedstaw w postaci iloczynu dwóch wielomianów stopnia drugiego. Zad.6 Wykaż, że dla każdej liczby rzeczywistej x prawdziwa jest nierówność: x 4 x x + 3. Zad.7 Dane jest równanie: x mx + 6m = 0. Wyznacz sumę sześcianów pierwiastków tego równania w zaleźności od m. Podaj dziedzinę tego wyrażenia. Zad.8 Wyznacz dziedzinę wyrażenia: (a) x 3 x x + 5 x 3 + x 4x 4, (b) 3x x 3 x 4 + 3x 3 4x x. Zad.9 Wykaż, że poniższe wyrażenie jest trójmianem kwadratowym: x 4 + 6x 3 + 7x + 9x + 6. x + 3 Zad.0 Uzasadnij, że dla a, b R + \ {} równość log a b = log b a zachodzi tylko wtedy, gdy a = b lub ab =. Zad. Udowodnij, że jeżeli a > b > 0, to prawdziwa jest nierówność: a 3 b 3 < 3a (a b). Zad. Wykaż, że jeżeli x, y, z są liczbami dodatnimi, to (x + y + z) ( x + y + ) 9. z

3 ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr 3 RÓWNANIA I NIERÓWNOŚCI Zad. Sprawdź, czy liczba jest rozwiązaniem równania: log 3 (x + 3) = log 3 (x 3). Zad. Sprawdź, która spośród liczb:, 3, 4, 0 nie jest rozwiązaniem nierówności: 6 (x + 3) + (x + ), 5. 8 Zad.3 Wyznacz takie liczby a i b, aby zachodziła równość: a x b x 4 = 3x 5 (x + 3)(x 4) dla x 3 i x 4. Zad.4 Uzasadnij, że nie istnieje liczba całkowita spełniająca nierówność: Zad.5 Rozwiąż równania: x(x + ) + (x + )(x + ) + (x + )(x + 3) < 0. (a) 3x 3 3 = 3, (b) x + x = 4, (c) 3 x + = 5. Zad.6 Rozwiąż nierówności: (a) x, (b) x 3 3 <, (c) 3x x 8, (d) 3 x x + x x + x x 3, x x (e) + x x < + x x. Zad.7 Reszta z dzielenia wielomianu W (x) = x 3 + 3x + ( a + ) x + a przez dwumian (x ) jest równa 6. Wyznacz wartość partametru a. Rozwiąż nierówność W (x) 0. Zad.8 Liczby pierwsze p i q (p q) są pierwiastkami wielomianu W (x) = x 3 + bx + cx 0, gdzie b i c są liczbami całkowitymi. Zapisz wielomian W (x) jako iloczyn trzech wielomianów stopnia pierwszego. Zad.9 Pierwiastkami wielomianu W (x) = x 3 + bx + cx + d są trzy kolejne liczby naturalne. Wyznacz te liczby, jeśli reszta z dzielenia wielomianu W (x) przez dwumian (x ) jest równa ( ). Zad.0 Wielomian W (x) = x 4 + ax 3 + bx x + b przy dzieleniu przez każdy z dwumianów: (x + ), (x ) i (x + 3) daje taką samą resztę. Wyznacz a i b. Zad. Przeciwprostokątna trójkąta prostokątnego jest dłuższa od jednej przyprostokątnej o cm i od drugiej przyprostokątnej o 3 cm. Oblicz długości boków tego trójkąta.

4 ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr 4 FUNKCJA KWADRATOWA Zad. Naszkicuj wykres i znajdź sumę miejsc zerowych funkcji f(x) = x 5 dla x <, x 4 dla x < 3, x 7 dla x 3. { x + dla x ; ), Zad. Naszkicuj wykres funkcji f(x) = (x ) dla x ; 3). Zapisz zbiór wartości funkcji f oraz sprawdź, czy liczba a = (0, 5) 0,5 należy do jej dziedziny. Zad.3 Zbiorem wartości funkcji kwadratowej f jest przedział ( ;. Zbiór rozwiązań nierówności f(x) 0 jest przedziałem 3; 6. Naszkicuj wykres i wyznacz wzór tej funkcji. Zad.4 Funkcja f określona jest wzorem f(x) = x 4x + 3. Naszkicuj wykresy funkcji f(x) i f(x + ) oraz rozwiąż równanie f(x + ) = 3. Zad.5 Dana jest funkcja f o równaniu f(x) = (x 4)(x+)+x. Wyznacz największą i najmniejszą wartość funkcji f w przedziale 3;. Zad.6 Dana jest funkcja f o równaniu f(x) = x + 4x 30. Znajdź miejsca zerowe tej funkcji, naszkicuj jej wykres oraz zapisz w postaci kanonicznej i iloczynowej. Określ jej monotoniczność oraz znajdź punkty przecięcia wykresu tej funkcji z osiami układu współrzędnych. Zad.7 Znajdź wzór funkcji kwadratowej, której wykresem jest parabola o wierzchołku (; ) przechodząca przez punkt o współrzędnych (; ). Otrzymaną funkcję przedstaw w postaci ogólnej. Oblicz jej miejsca zerowe i naszkicuj wykres. Zad.8 Wyznacz wszystkie wartości parametru m, dla których równanie x (m )x m +m = 0 ma dwa różne rozwiązania, których iloczyn jest większy od m 3. Zad.9 Wyznacz wszystkie wartości parametru m, dla których kwadrat różnicy pierwiastków równania x + mx m + 3 = 0 jest mniejszy od 9. Zad.0 Istnieją dwie liczby rzeczywiste m takie, że jeden z pierwiastków równania x 6x+m 3 = 0 jest kwadratem drugiego. Znajdź te liczby. Zad. Dla jakich wartości parametru m równanie x (m )x + m = 0 ma dwa różne rozwiązania rzeczywiste mniejsze od? Zad. Znajdź te wartości parametru m, dla których liczba nie należy do zbioru rozwiązań nierówności x + (m 3 + 3)x 6m 8m + 44 > 0.

5 ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr 5 FUNKCJE Zad. Funkcja f określona na zbiorze liczb naturalnych przyporządkowuje każdej liczbie n resztę z dzielenia przez 5. Określ zbiór wartości funkcji f, podaj zbiór wszystkich miejsc zerowych tej funkcji oraz naszkicuj jej wykres dla n 0. Zad. Wyznacz wszystkie wartości parametru m, dla których funkcja określona wzorem f(x) = ( m 4)x + m m + jest malejąca i jej wykres przecina oś OY poniżej punktu P = (0; ). Zad.3 Dana jest funkcja f(x) = 4 6. Wykres funkcji g(x) = f(x + ) przesunięto o 4 jednostki do x dołu, otrzymując wykres funkcji h. Naszkicuj wykres funkcji h, a następnie podaj zbiór rozwiązań nierówności h(x) < 0. Zad.4 Do wykresu funkcji f(x) = a x należy punkt (log 3; 9). Oblicz a i naszkicuj wykresy funkcji f(x), g(x) = f(x) 3, h(x) = f(3x), k(x) = 3f( x). Zad.5 Naszkicuj wykres funkcji f(x) = 6x + 6x + 4 x + i wyznacz miejsca zerowe. Zad.6 Dana jest funkcja f(x) = mx + 3 x +. Wykaż, że dla każdej wartości parametru m ( ; 3) funkcja f jest malejąca w każdym z przedziałów swojej dziedziny. Zad.7 Naszkicuj wykres funkcji f(x) = 6 x x 4 +. Wyznacz wszystkie wartosci m, dla których równanie f(x) = m nie ma rozwiązań. Zad.8 Naszkicuj wykres funkcji f(x) = 4 x +. Wykaż, że równanie 4 x + = m + ma dwa pierwiastki różnych znaków dla m (0; ). Zad.9 Zaznacz na płaszczyźnie zbiór punktów (x; y), których współrzędne spełniają równanie: log (x ) y =. Zad.0 Rozwiąż algebraicznie i graficznie układy równań: (a) { y = 3 + x y x = 3, (b) { y = x x + y = 5.

6 ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr 6 CIĄGI LICZBOWE Zad.Sprawdźnapodstawiedefinicji,czyciąg( +, +, 3)jestciągiemarytmetycznym. Zad.Sprawdź,którewyrazyciągu(a n )danegowzorema n = n3 7n 6 n+ nie są liczbami naturalnymi. Zad.3 Wiedząc,żetrzeciwyrazciąguarytmetycznego(a n )wynosi,obliczs 5. Zad.4 Wyznacz wszystkie ciągi geometryczne, w których każdy wyraz począwszy od trzeciego jest średnią arytmetyczna dwóch poprzednich. Zad.5 Ciag(a n )jestdanywzoremrekurencyjnyma =,a n+ =a n + 4 dlan.dziewiąty idwudziestypiątywyraztegociągusąpierwiastkamiwielomianuw(x)=x 3 +ax +bx+5.wyznacz argumenty, dla których wielomian W(x) przyjmuje wartości nieujemne. Zad.6 Ciągb n jestokreślonywzoremogólnymb n =n +ndlan=,,3,...określtenciąg w sposób rekurencyjny. Zad.7 Wnieskończonymciąguarytmetycznym(a n ),określonymdlan,sumajedenastu początkowych wyrazów tego ciągu jest równa 87. Średnia arytmetyczna pierwszego, trzeciego idziewiątegowyrazutegociągujestrówna.wyrazya,a 3,a k ciągu(a n ),wpodanejkolejności, tworzą nowy trzywyrazowy ciąg geometryczny. Oblicz k. Zad.8 Trzywyrazowy ciąg geometryczny jest rosnący. Iloczyn wszystkich wyrazów tego ciągu jest równy( 8),ailorazpierwszegowyrazuprzeztrzeciwyrazwynosi 4.Wyznacztenciąg. Zad.9 Sumanpoczątkowychwyrazówciągugeometrycznego(a n )oilorazie jestszesnaścierazy większaodsumykolejnychnwyrazówtegociągu.obliczpierwszywyrazciągu,jeżelia n =640. Zad.0 Niech(a n )i(b n )będąciągamitakimi,że a n =[ (4n )] oraz ( ) n b n b n =. Oblicz lim n. a n ( ) (n )(n )(n 3) Zad. Rozwiąż równanie n lim x=4. 6+n 3 Zad. Cyfry pewnej liczby trzycyfrowej x tworzą w kolejności: cyfra setek, cyfra dziesiątek, cyfra jedności trzycyfrowy ciąg geometryczny. Jeżeli od liczby x odejmiemy liczbę trzycyfrową zapisaną za pomocą tych samych cyfr, ale w odrotnej kolejności, to otrzymamy 594. Znajdź liczbę x.

7 ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr 7 TRYGONOMETRIA Zad. Sprawdź,czyistniejetakaliczbarzeczywistam,żesinα=m icosα=m+. Zad. Wykaż,żenieistniejekątostryα,dlaktóregosinα tgα=0. Zad.3 Obliczmiarykątówostrychαiβ(α β)wiedząc,żesin(α+β)= 3 oraztg(α β)=. Zad.4 Wtrójkącieprostokątnymsumacosinusówkątówostrychjestrówna 3 3.Oblicziloczyn sinusów tych kątów. Zad.5 Uzasadnij,żeżadnezrozwiązańrównaniacos α 4 cosα =0niemożebyćmiarąkąta wewnętrznego trójkąta. Zad.6 Rozwiąż równania: (a) cos 3 x 3sin x=cosx 3, (b) cos50 cosx+sin50 sinx= 3. Zad.7 Wyznacznajwiększerozwiązanierównania3tgxsinx 3sinx+3tgx 3=0wprzedziale 0; π. Zad.8 Rozwiąż nierówność: cosx > wprzedziale 0;π. Zad.9 Wyznacz te wartości parametru α ( π; π), dla których rozwiązaniem układu równań { x y= x y=cosα jestparaliczb(x;y)spełniającarównanie: x+y= sinα 3. Zad.0 Wyznacz wszystkie wartości parametru α, gdzie α 0; π, dla których dwa różne pierwiastkix ix równania x + x+4sin α =0sątegosamegoznaku. Zad. Wyznacz okres podstawowy funkcji: f(x)= 4( cos x)( sin x). sinx Zad. Wyznaczzbiórwartościimiejscazerowefunkcjif(x)=sin3x+sin( 3 π 3x).

8 ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr 8 PLANIMETRIA Zad. Trójkąty prostokątne równoramienne ABC i CDE są położone tak, jak na poniższym rysunku(w obu trójkątach kąt przy wierzchołku C jest prosty). Wykaż, że AD = BE. C E A D B Zad. DanyjestprostokątABCDobokach4i8( AB =4).PunktEjestśrodkiembokuAB, apunktf punktemprzecięciaodcinkówbdiec.obliczpoletrójkątabef. Zad.3 W trapezie opisanym na okręgu boki nierównoległe mają długości 3 i 5, zaś odcinek łączący środki tych boków dzieli trapez na dwie części, których pola są w stosunku 5:. Oblicz długości podstaw trapezu. Zad.4 Ramię AD trapezu ABCD(w którym podstawa AB jest równoległa do CD) przedłużono dopunktuetakiego,że AE = AD.PunktMleżynapostawieABoraz AM = MB. OdcinekMEprzecinaprzekątnąBDwpunkcieP.Udowodnij,że BP = PD. Zad.5DanyjestsześciokątforemnyABCDEF,wktórympunktGjestśrodkiembokuCD.Oblicz stosunek długości odcinków EG i AG. Zad.6 Wtrójkącieobokacha,b,c,gdziea b=b c,jedenzkątówmamiarę0.wiedząc,że obwód tego trójkąta wynosi 30, oblicz stosunek długości promienia opisanego na tym trójkącie do promienia okręgu wpisanego w ten trójkąt. Zad.7WokrągopromieniuRwpisanotrapezABCD,któregopodstawaABjestdwarazydłuższa od podstawy CD, a przekątna AC jest zawarta w dwusiecznej kąta DAB. Oblicz pole trapezu. Zad.8 Jedenzkątówtrójkątamamiarę π,aprzeciwległymubokiśrodkowaprzyległegodoniego 3 boku mają długość a. Wyznacz długości pozostałych boków trójkąta. Zad.9 Wspólnestycznedwóchokręgówstycznychzewnętrznieprzecinająsiępodkatem60. Wyznacz stosunek długości promieni tych okręgów.

9 ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 Lista nr 9 GEOMETRIA NA PŁASZCZYŹNIE KARTEZJAŃSKIEJ Zad. Oblicz długość środkowej trójkąta ABC poprowadzonej z wierzchołka C, jeżeli wiadomo, żea=( 4; ),B=(;6),aśrodekbokuBCmawspółrzędne(4;). Zad. Prosteorównaniachy 4=0i4x y+=0orazosieukładuwspółrzędnychograniczają trapez. Oblicz tangens kąta ostrego tego trapezu. Zad.3 DanyjestwierzchołekA=( ;)kwadratuabcdirównanieprostejy=x,wktórej zawarta jest przekątna BD. Wyznacz współrzędne pozostałych wierzchołków tego kwadratu. Zad.4 PunktD=( ; )jestspodkiemwysokościopuszczonejzwierzchołkaa=(4;)trójkąta równobocznego ABC. Wyznacz współrzędne środka okręgu opisanego na tym trójkącie oraz współrzędne pozostałych wierzchołków tego trójkąta. Zad.5 WtrapezieABCDopodstawachABiDCdanesąwierzchołkiA=( 5;),B=(3; 3) ic =(3,).PrzekątnaDBtrapezujestzawartawprostej3x+y=3.Obliczwspółrzędne punktu D, sinus kąta BAD oraz promień okręgu opisanego na trójkącie ABD. Zad.6 Dany jest prostokąt ABCD, w którym współrzędne przeciwległych wierzchołków wynoszą: A =(5; 3), C =( 7; ). Wyznacz współrzędne pozostałych wierzchołków prostokąta wiedząc, że wierzchołekbleżynaprostejy=5. Zad.7 Wyznacztewartościparametrum,dlaktórychprostel:3x+(m+)y 4=0oraz k:( m)x y+7=0przecinająsiępodkątemróżnymodkątaprostego. Zad.8 Równoramienny trójkąt ABC jest prostokątny i punkt B =(; 4) jest wierzchołkiem kąta prostego.przeciwprostokątnaaczawierasięwprostejl:x+y+=0.wyznaczwspółrzędne wierzchołków A i C. Zad.9 PunktyA=(;),B=(3, )sąwierzchołkamitrójkątaabc.wyznaczwspółrzędne wierzchołka C wiedząc, że środek ciężkości trójkąta leży na osi OX, a pole tego trójkąta jest równe 3. Zad.0 Naokręguorównaniux +y 4x+y 4=0wybranopunktC=(5; ).Prosta x y 4=0przecinatenokrągwpunktachAiB.Wykaż,że (a) kąt ACB jest kątem prostym, (b) punkt P =( ; 4) może być wierzchołkiem kwadratu opisanego na tym okręgu. Zad.Danesąprosteorównaniachy=x+m+iy=x m.dlajakichmpunktprzecięciasię tychprostychnależydokwadratuowierzchołkacha=( ;0),B=(0;),C=(;0)iD=(0; )?

10 Lista nr 0 ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 08/09 ZADANIA TYPU: WYKAŻ, UZASADNIJ, UDOWODNIJ... Zad. DanyjesttrapezABCD,wktórymAB CDorazpunktE,któryleżynaramieniuBC. Udowodnij,że <)AED = <)BAE + <)CDE. Zad. PoprowadzonoprostąrównoległądoosiOX,któraprzecięławykresfunkcjif(x)= x wpunktachaib.niechc=(3, ).Wykaż,żepoletrójkątaABCjestwiększebądźrówne. Zad.3 Uzasadnij, że dla każdej liczby naturalnej n > liczba W=00 n( 0 n ) +4 ( +3 0 n ) jest sześcianem liczby naturalnej podzielnej przez 3 Zad.4 Udowodnij, że dla x (0; ) prawdziwa jest nierówność: 8(+log x 0) log x. Zad.5 Pięć liczb tworzy ciąg arytmetyczny, a liczba pierwsza, trzecia i piąta tworzą ciąg geometryczny. Wykaż, że wszystkie liczby tworzące ciąg arytmetyczny muszą być równe. Zad.6 Wykaż, że jeżeli suma dwóch pierwszych wyrazów ciągu geometrycznego o wyrazach dodatnich równa się sumie trzeciego i czwartego wyrazu, to ciąg jest stały. Zad.7 Wykaż, że różnica sześcianów dwóch liczb całkowitych różniących się o trzy dzieli się przez 9. Zad.8 Reszta z dzielenia liczby naturalnej a przez 6 jest równa. Reszta z dzielenia liczby naturalnejbprzez6jestrówna5.uzasadnij,żeliczbaa b jestpodzielnaprzez4. Zad.9 Udowodnij, że w trójkącie prostokątnym suma przyprostokątnych równa jest sumie średnic okręgu opisanego na tym trójkącie i wpisanego w ten trójkąt. Zad.0 Wykaż,żerównaniecos 6 x sin 6 x= 63 niemarozwiązań. Zad. Udowodnij,żejedynymidodatnimiliczbamicałkowitymi,dlaktórychliczban 3 +3jest podzielnaprzezn+3sąliczby:,3,5,9i.

ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5)

ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5) Lista nr 1 LICZBY RZECZYWISTE Zad.1 Udowodnij równość: 5 3 10 27 = 10 3 5 9. Zad.2 Wartość wyrażenia (3 1 3 27 2 3 9 1 ) 3 4 zapisz w postaci pierwiastka z liczby wymiernej. Zad.3 Oblicz wartość wyrażenia:

Bardziej szczegółowo

ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 2018/ Oblicz wartość wyrażenia: a b 1 a2 b 2. 2 log )

ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 2018/ Oblicz wartość wyrażenia: a b 1 a2 b 2. 2 log ) ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 208/209 Lista nr LICZBY RZECZYWISTE Zad. Wskaż liczby wymierne: 4 9 ; 7; 6; π;,...;, (2); 25; ( 2) 0 ; 7 9 ; 4, 000000...; 7 7 ; 2 2. Zad.2 Dane są liczby a = 2 i

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie

Bardziej szczegółowo

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a

Bardziej szczegółowo

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4 Zad. 1 Liczba jest równa A B C D Zad. Liczba log16 jest równa A 3log + log8 B log4 + log3 C 3log4 log4 D log0 log4 Zad. 3 Rozwiązaniem równania jest liczba A B 18 C 1, D 6 Zad. 4 Większą z dwóch liczb

Bardziej szczegółowo

Próbna matura z WSiP Marzec 2017 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy

Próbna matura z WSiP Marzec 2017 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy Wypełnia uczeń PESEL Kod ucznia Próbna matura z WSiP Marzec 07 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 7 MARCA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( 5 Liczba

Bardziej szczegółowo

Ostatnia aktualizacja: 30 stycznia 2015 r.

Ostatnia aktualizacja: 30 stycznia 2015 r. Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna

Bardziej szczegółowo

Repetytorium z matematyki ćwiczenia

Repetytorium z matematyki ćwiczenia Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D. Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92

Bardziej szczegółowo

ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym

ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym S t r o n a ZBIÓR ZADAŃ Matematyczne ABC maturzysty na poziomie podstawowym Każdy uczeń, który kończy szkołę ponadgimnazjalną i chce przystąpić do matury, zobowiązany jest do zdawania egzaminu z matematyki

Bardziej szczegółowo

I. Funkcja kwadratowa

I. Funkcja kwadratowa Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego

Bardziej szczegółowo

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3 Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015

LUBELSKA PRÓBA PRZED MATURĄ 2015 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y= Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI - MATURA (POZIOM ROZSZERZONY)

ZBIÓR ZADAŃ Z MATEMATYKI - MATURA (POZIOM ROZSZERZONY) ZBIÓR ZADAŃ Z MATEMATYKI - MATURA (POZIOM ROZSZERZONY) wersja robocza - 19.03.2019 Edukacja Karol Suchoń Korepetycje, zajęcia, przygotowanie do egzaminu www.karolsuchon.pl kontakt: kontakt@karolsuchon.pl

Bardziej szczegółowo

ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5)

ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5) ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/2019 Lista nr 1 LICZBY RZECZYWISTE Zad.1 Udowodnij równość: 5 3 10 27 = 10 3 5 9. Zad.2 Wartość wyrażenia (3 1 3 27 2 3 9 1 ) 3 4 zapisz w postaci pierwiastka

Bardziej szczegółowo

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej

Bardziej szczegółowo

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3

Bardziej szczegółowo

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2) ZESTAW I R Zad (3 pkt) Suma pierwiastków trójmianu a, c R R trójmianu jest równa 8 y ax bx c jest równa log c log a, gdzie Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego a c Zad (7 pkt)

Bardziej szczegółowo

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f (x) = ax Przesunięcie wykresu funkcji f(x) = ax o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.

Bardziej szczegółowo

ZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3

ZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3 ZADANIE Ciag (a n ), gdzie n, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa funkcji f (x) = 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 Długości boków trójkata tworza ciag geometryczny.

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2011/12

Jarosław Wróblewski Matematyka Elementarna, zima 2011/12 168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy

Próbny egzamin maturalny z matematyki Poziom podstawowy Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2019 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r. MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................

Bardziej szczegółowo

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 }

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 } Zadanie 0 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y } oraz B = { (x, y) ; x R i y R i 4x + 4y 4x 5 } Zaznacz osobno zbiór B-A ( ) Niech m N. Oznaczmy zbiory : A m = { (x,

Bardziej szczegółowo

Egzamin wstępny z Matematyki 1 lipca 2011 r.

Egzamin wstępny z Matematyki 1 lipca 2011 r. Egzamin wstępny z Matematyki 1 lipca 011 r. 1. Mamy 6 elementów. Ile jest możliwych permutacji tych elementów jeśli: a) wszystkie elementy są różne, b) dwa elementy wśród nich są identyczne, a wszystkie

Bardziej szczegółowo

I. Funkcja kwadratowa

I. Funkcja kwadratowa Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 22 sierpnia

Bardziej szczegółowo

ARKUSZ II

ARKUSZ II www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy 1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM ROZSZERZONY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 18). 2. Rozwiązania zadań wpisuj

Bardziej szczegółowo

Suma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych

Suma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI CIAGI ARYTMETYCZNE ZADANIE 1 Suma drugiego, czwartego i szóstego wyrazu ciagu arytmetycznego jest równa 42, zaś suma kwadratów wyrazów drugiego

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ klasa poziom podstawowy Kod ucznia lub Nazwisko i imię M A T E M A T Y K A klasa - pp MAJA 018 Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-4).

Bardziej szczegółowo

Zadania otwarte. 1. Sprawdź, czy dla każdego kąta ostrego zachodzi równośd:

Zadania otwarte. 1. Sprawdź, czy dla każdego kąta ostrego zachodzi równośd: Klasa II Zadania otwarte 1. Sprawdź, czy dla każdego kąta ostrego zachodzi równośd: 1 cos = tg. cos 1+sin. Napisz równanie prostej przechodzącej przez punkt (-3,5) i nachylonej do osix pod katem 60 0.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2 Klasa POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 8 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od. do 5.

Bardziej szczegółowo

Przygotowanie do poprawki klasa 1li

Przygotowanie do poprawki klasa 1li Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp) Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU

Bardziej szczegółowo

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Matura 0 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny brak stron lub

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ KOD ZDAJĄCEGO WPISUJE ZDAJĄCY symbol klasy symbol zdającego PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy. M A T E M A T Y K A klasa 2-(pp) MAJ 2016

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy. M A T E M A T Y K A klasa 2-(pp) MAJ 2016 KOD UCZNIA M A T E M A T Y K A klasa -(pp) MAJ 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2 Klasa POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 8 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od. do 5.

Bardziej szczegółowo

Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym

Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Elżbieta Świda, Marcin Kurczab Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Zadanie (matura maj 009) Ciąg ( 3, + 3, 6 +, ) jest nieskończonym ciągiem geometrycznym o wyrazach dodatnich.

Bardziej szczegółowo

Dział I FUNKCJE I ICH WŁASNOŚCI

Dział I FUNKCJE I ICH WŁASNOŚCI MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

1. Proporcjonalnością prostą jest zależność opisana wzorem: x 5

1. Proporcjonalnością prostą jest zależność opisana wzorem: x 5 Matematyka Liceum Klasa II Zakres podstawowy Pytania egzaminacyjne 07. Proporcjonalnością prostą jest zależność opisana wzorem: 5 A. y = B. y = 5 C. y = D. y =.. Dana jest funkcja liniowa f() = + 4. Które

Bardziej szczegółowo

KURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE. Strona 1

KURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE.   Strona 1 KURS FUNKCJE LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Dana jest funkcja f przedstawiona

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR 2016

LUBELSKA PRÓBA PRZED MATUR 2016 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdajcego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19

Bardziej szczegółowo

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

Prace semestralne luty 2011 czerwiec Z każdej pracy wybieramy jeden poziom i robimy zadania TYLKO z tego poziomu

Prace semestralne luty 2011 czerwiec Z każdej pracy wybieramy jeden poziom i robimy zadania TYLKO z tego poziomu Prace semestralne luty 2011 czerwiec 2011 Z każdej pracy wybieramy jeden poziom i robimy zadania TYLKO z tego poziomu Praca semestralna nr 1a Semestr II Funkcje, funkcja liniowa. Zadania na ocenę dopuszczającą:

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy. M A T E M A T Y K A klasa 2-(pp) MAJ 2016

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy. M A T E M A T Y K A klasa 2-(pp) MAJ 2016 LUBELSKA PRÓBA PRZED MATURĄ 016 poziom podstawowy KOD UCZNIA M A T E M A T Y K A klasa -(pp) MAJ 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4).

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 sierpnia

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo