Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew
|
|
- Wanda Milena Brzozowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący drzewem (1) T nie zawiera cykli i ma n 1 krawędzi (2) T jest grafem spójnym i każda krawędź jest mostem (3) Każde dwa wierzchołki T są połączone dokładnie jedną drogą (4) T nie zawiera cykli, ale po dodaniu dowolnej nowej krawędzi otrzymamy graf z dokładnie jednym cyklem (5) W każdym drzewie są przynajmniej dwa wierzchołki wiszące. Barbara Głut 1
2 Drzewo z wyróżnionym korzeniem drzewo, w którym wyróżniono jeden z wierzchołków r p q s t u v w x y z Korzeń r Liście w, x, y, u, z s jest rodzicem w i x. y jest dzieckiem t. Każdy wierzchołek poza korzeniem ma jednego rodzica. Numer poziomu wierzchołka v długość drogi od korzenia do v Wysokość drzewa największy numer poziomu wierzchołka. Tylko liście mogą mieć numer poziomu równy wysokości drzewa. Zliczanie drzew Np. pytanie o liczbę drzew oznakowanych mających daną własność? Liczba sposobów znakowania takiego drzewa: (4!)/2 = 12 liczba sposobów znakowania drzewa = 4 liczba drzew oznakowanych o 4 wierzchołkach wynosi = 16 Twierdzenie (Cayley): Istnieje n n-2 różnych drzew oznakowanych o n wierzchołkach. Barbara Głut 2
3 Drzewa spinające Dopóki w grafie spójnym są cykle: wybieramy cykl w grafie G, usuwamy którąś krawędź cyklu graf pozostaje spójny powstaje drzewo, które spina wszystkie wierzchołki grafu drzewo spinające grafu G - podgraf grafu G będący drzewem i zawierający wszystkie wierzchołki G Każdy graf spójny ma drzewo spinające. U U V Y V Y W X W X Ogólnie: G dowolny graf o n wierzchołkach i m krawędziach oraz k składowych stosujemy procedurę do każdej składowej G => las spinający Rząd cykliczności (liczba cyklomatyczna) grafu G: γ(g) łączna liczba usuniętych krawędzi γ(g) = m n + k Rząd rozcięcia (rząd spójności) grafu G: ξ(g) liczba krawędzi w lesie spinającym ξ(g) = n k Barbara Głut 3
4 Definicja: Dopełnieniem lasu spinającego T grafu G (niekoniecznie prostego) nazywamy graf otrzymany z grafu G przez usunięcie krawędzi należących do T. V W V W U U Y X Y X Twierdzenie: Jeśli T jest lasem spinającym grafu G, to: (a) każde rozcięcie grafu G ma wspólną krawędź z T (b) każdy cykl w grafie G ma wspólną krawędź z dopełnieniem T. Problem najkrótszych połączeń Wybudować sieć kolejową, która połączy n miast w taki sposób, by pasażerowie mogli podróżować z każdego miasta do dowolnego innego miasta Jeżeli ze względów oszczędnościowych całkowita długość linii ma być najmniejsza, to graf, którego wierzchołkami są te miasta, a krawędziami linie kolejowe, musi być drzewem. Zadanie polega na znalezieniu drzewa spinającego, którego całkowita waga byłaby jak najmniejsza. Rozwiązanie - algorytm zachłanny polegający na wybieraniu krawędzi o najmniejszej wadze w taki sposób, by nie utworzyć cyklu. Barbara Głut 4
5 A B C D E Pytanie: Które z n n-2 możliwych drzew spinających ma najmniejszą całkowitą wagę? (n n-2 = 125 w tym przypadku) A Zaczynamy od wybrania krawędzi AB o wadze 2 i BD o wadze 3. Następnie DE o wadze 5, a potem BC o wadze 7. B E C D Algorytm Kruskala Niech G graf spójny o n wierzchołkach. (1) wybieramy krawędź e 1 o najmniejszej wadze, (2) definiujemy krawędzie e 2, e 3,..., e n-1 wybierając za każdym razem nową krawędź o najmniejszej możliwej wadze, która nie tworzy cyklu z dotychczas wybranymi krawędziami e i. Podgraf T grafu G, którego krawędziami są krawędzie e 1, e 2,..., e n-1 jest szukanym drzewem spinającym. Barbara Głut 5
6 Algorytm Prima Niech G graf spójny o n wierzchołkach. E := Wybierz w ze zbioru V(G) i V := {w} Dopóki V V(G) wykonuj wybierz w zbiorze E(G) krawędź {u, v} o najmniejszej możliwej wadze taką, że u V i v V(G) V dołącz krawędź {u, v} do zbioru E i wierzchołek v do zbioru V. Też algorytm zachłanny. W każdym kroku szukana jest krawędź o najmniejszej wadze łącząca jakiś wierzchołek istniejącego do tej pory drzewa spinającego T z nowym wierzchołkiem spoza T. Grafy planarne Graf płaski - graf narysowany na płaszczyźnie w taki sposób, że żadne dwie krawędzie nie przecinają się geometrycznie z wyjątkiem wierzchołków, z którymi są incydentne. Graf planarny - graf izomorficzny z grafem płaskim (graf jest planarny, jeśli może być umieszczony na płaszczyźnie w taki sposób, że takie jego przedstawienie jest grafem płaskim) graf płaski wszystkie trzy - planarne graf płaski Barbara Głut 6
7 Twierdzenie: Grafy K 3,3 oraz K 5 A są nieplanarne. B E A C D B E C D Homeomorfizm grafów Dwa grafy są homeomorficzne, jeśli mogą być otrzymane z tego samego grafu poprzez umieszczenie nowych wierzchołków stopnia 2 na jego krawędziach. Twierdzenie (Kuratowski,, 1930): Graf jest planarny wtedy i tylko wtedy, gdy nie zawiera podgrafu homeomorficznego z K 3,3 i K 5. Barbara Głut 7
8 Ściany grafu płaskiego Jeśli G jest grafem planarnym, to każdy rysunek płaski grafu G dzieli zbiór punktów płaszczyzny, które nie leżą na G na obszary zwane ścianami. f 6 f 4 f 1 f 2 f 1 f 2 f 3 f 3 f 4 f 5 Twierdzenie Eulera: Niech G będzie rysunkiem płaskim spójnego grafu planarnego i niech n, m i f oznaczają odpowiednio liczbę wierzchołków, krawędzi i ścian grafu G. Wtedy: n m + f = 2 Twierdzenie: Niech G jest grafem płaskim mającym n wierzchołków, m krawędzi, f ścian oraz k składowych spójnych. Wtedy: n m + f = k + 1 Barbara Głut 8
9 Grafy dualne Jeśli mamy dany rysunek płaski grafu planarnego G, to konstruujemy graf G *, który nazywamy grafem (geometrycznie) dualnym do grafu G w następujący sposób: (1) wewnątrz każdej ściany f grafu G wybieramy punkt v * te punkty będą wierzchołkami grafu G * ; (2) dla każdej krawędzi e grafu G prowadzimy linię e * przecinającą e (ale nie przecinającą żadnej innej krawędzi grafu G) i łączącą wierzchołki v * ścian f oddzielonych od siebie krawędzią e linie te będą krawędziami grafu G *. Twierdzenie: Niech G będzie spójnym grafem płaskim mającym n wierzchołków, m krawędzi i f ścian oraz niech graf G * geometrycznie dualny do niego ma n * wierzchołków, m * krawędzi i f * ścian. Wtedy: n * = f m * = m f * = n Barbara Głut 9
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym
Bardziej szczegółowoDrzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Bardziej szczegółowoGraf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Bardziej szczegółowoSPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.
SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie
Bardziej szczegółowoKolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie
Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy
Bardziej szczegółowoOpracowanie prof. J. Domsta 1
Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu
Bardziej szczegółowoSuma dwóch grafów. Zespolenie dwóch grafów
Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie
Bardziej szczegółowoAlgorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
Bardziej szczegółowoIlustracja S1 S2. S3 ściana zewnętrzna
Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),
Bardziej szczegółowoWprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka
Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów
Bardziej szczegółowoMatematyka dyskretna - 7.Drzewa
Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja
Bardziej szczegółowo7. Teoria drzew - spinanie i przeszukiwanie
7. Teoria drzew - spinanie i przeszukiwanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. wteoria Krakowie) drzew - spinanie i przeszukiwanie
Bardziej szczegółowoWYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las
Bardziej szczegółowoMATEMATYKA DYSKRETNA - KOLOKWIUM 2
1 MATEMATYKA DYSKRETNA - KOLOKWIUM 2 GRUPA A RACHUNKI+KRÓTKIE WYJAŚNIENIA! NA TEJ KARTCE! KAŻDA DODATKOWA KARTKA TO MINUS 1 PUNKT! Imię i nazwisko...... Nr indeksu... 1. (3p.) Znajdź drzewo o kodzie Prufera
Bardziej szczegółowoMATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Bardziej szczegółowoMatematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Bardziej szczegółowoGrafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz
Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny
Bardziej szczegółowoE ' E G nazywamy krawędziowym zbiorem
Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie
Bardziej szczegółowoWYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
Bardziej szczegółowoWykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Bardziej szczegółowoZofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Bardziej szczegółowoGrafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania
Grafy i Grafy i 5: Rozpinające Spis zagadnień Grafy i i lasy cykle fundamentalne i własności cykli i rozcięć przestrzenie cykli i rozcięć* : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*
Bardziej szczegółowoKolorowanie wierzchołków
Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Bardziej szczegółowoa) 7 b) 19 c) 21 d) 34
Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie
Bardziej szczegółowoGrafy. Graf ( graf ogólny) to para G( V, E), gdzie:
Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych
Bardziej szczegółowoTeoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska
Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 15/15 Twierdzenie Dla grafu prostego następujące warunki są równoważne: 1) jest drzewem, 2) nie zawiera cykli i ma krawędzi, 3)
Bardziej szczegółowoPodstawowe własności grafów. Wykład 3. Własności grafów
Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).
Bardziej szczegółowo6. Wstępne pojęcia teorii grafów
6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017
Bardziej szczegółowoAlgorytmiczna teoria grafów
Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz
Bardziej szczegółowoZad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których
Bardziej szczegółowoMinimalne drzewa rozpinające
KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam
Bardziej szczegółowoTeoria grafów - Teoria rewersali - Teoria śladów
17 maja 2012 1 Planarność Wzór Eulera Kryterium Kuratowskiego Algorytmy testujące planarność 2 Genom i jego przekształcenia Grafy złamań Sortowanie przez odwrócenia Inne rodzaje sortowania Algorytmy sortujące
Bardziej szczegółowoWykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Grafy
Bardziej szczegółowoGrafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków
Wykłady popularne z matematyki Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Joanna Jaszuńska Politechnika Warszawska, 6 maja 2010 Grafy Wykłady popularne z matematyki,
Bardziej szczegółowoCała prawda o powierzchniach
Topologia Właściwości geometryczne, niezmiennicze przy ciagłych deformacjach Można: rozciagać giać Nie można: rozcinać złamać Jednak można rozciać wzdłuż linii, a potem skleić wzdłuż tejże linii: rozwiazać
Bardziej szczegółowoTeoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów II Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Graf planarny Graf planarny Graf, który może być narysowany tak, by uniknąć przecinania się krawędzi, nazywamy grafem
Bardziej szczegółowoProblem straŝaka w drzewach. Agnieszka Skorupka Matematyka Stosowana FTiMS
Problem straŝaka w drzewach Agnieszka Skorupka Matematyka Stosowana FTiMS Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem
Bardziej szczegółowoPrzecięcia odcinków. Wykład /07
Przecięcia odcinków Wykład 2 2006/07 Problem Dane: zbiór S={s 1,...,s n } odcinków na płaszczyźnie Wynik: zbiór punktów przecięć wszystkich odcinków z S, wraz z informacją które odcinki przecinają się
Bardziej szczegółowoWykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie
Bardziej szczegółowoTeoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa
Bardziej szczegółowoReprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Bardziej szczegółowoAlgorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 5 i 6. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie
Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 5 i 6 B. Woźna-Szcześniak (UJD) Algorytmy
Bardziej szczegółowoProgramowanie sieciowe. Tadeusz Trzaskalik
Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście
Bardziej szczegółowoDigraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
Bardziej szczegółowoZłożoność obliczeniowa klasycznych problemów grafowych
Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.
Bardziej szczegółowoSKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.
SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny
Bardziej szczegółowoKURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie Odpowiedzi do zadania domowego www.akademia.etrapez.pl Strona 1 Część 1: TEST 1) b 2) a 3) b 4) d 5) c 6) d 7) b 8) b 9) d 10) a Zad. 1 ODPOWIEDZI
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 8/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Bardziej szczegółowoPrzykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Bardziej szczegółowoE: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Bardziej szczegółowoKombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń
Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 15 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
Bardziej szczegółowoElementy teorii grafów Elementy teorii grafów
Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Bardziej szczegółowoMODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem
MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do
Bardziej szczegółowoCzy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?
DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru
Bardziej szczegółowoGrafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska.
Grafy dla każdego dr Krzysztof Bryś brys@mini.pw.edu.pl Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska www.mini.pw.edu.pl Warszawa, 28 marca 2015 Graf składa się z elementów pewnego zbioru
Bardziej szczegółowoSiedem cudów informatyki czyli o algorytmach zdumiewajacych
Siedem cudów informatyki czyli o algorytmach zdumiewajacych Łukasz Kowalik kowalik@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Łukasz Kowalik, Siedem cudów informatyki p. 1/25 Problem 1: mnożenie
Bardziej szczegółowoG. Wybrane elementy teorii grafów
Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie
Bardziej szczegółowoSegmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda
Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji
Bardziej szczegółowo1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza
165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie
Bardziej szczegółowoTEORIA GRAFÓW I SIECI - ROZDZIAŁIV. Drzewa. Drzewa
TEORIA GRAFÓW I SIECI - ROZDZIAŁIV Drzewa Drzewem lub drzewem wolnym nazywamy dowolny graf spójny i acykliczny. Drzewa Ćwiczenie 1. Narysować wszystkie, z dokłado sci a do izomorfizmu, drzewa o 1, 2, 3,
Bardziej szczegółowoTEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100
Bardziej szczegółowoGrafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Bardziej szczegółowoTEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100
Bardziej szczegółowoLista 4. Kamil Matuszewski 22 marca 2016
Lista 4 Kamil Matuszewski 22 marca 2016 1 2 3 4 5 6 7 8 9 10 Zadanie 2 Ułóż algorytm który dla danego n-wierzchołkowego drzewa i liczby k pokoloruje jak najwięcej wierzchołków tak, by na każdej ścieżce
Bardziej szczegółowoRzut oka na współczesną matematykę spotkanie 9-10: Zagadnienie czterech barw i teoria grafów
Rzut oka na współczesną matematykę spotkanie 9-10: Zagadnienie czterech barw i teoria grafów P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12
Bardziej szczegółowo(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x
2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)
Bardziej szczegółowoMarek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1
Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Bardziej szczegółowoZnajdowanie skojarzeń na maszynie równoległej
11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia
Bardziej szczegółowoMatematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
Bardziej szczegółowoKURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy
Bardziej szczegółowoMatematyka dyskretna - 5.Grafy.
Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte
Bardziej szczegółowoTeoria grafów. Magdalena Lemańska
Teoria grafów Magdalena Lemańska Literatura Aspekty kombinatoryki Victor Bryant Graph Theory V.K. Balakrishnan Fundamentals of domination in graphs T. Haynes, S. Hedetniemi, P. Slater Wstęp Graf Grafem
Bardziej szczegółowoAlgebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Bardziej szczegółowoAlgorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów
Bardziej szczegółowoSortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Bardziej szczegółowoAlgorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Bardziej szczegółowoAlgorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Bardziej szczegółowoMatematyka Dyskretna - zadania
zad. 1. Chcemy zdefiniować rekurencyjnie zbiór Z wszystkich trójkątów równoramiennych ABC, gdzie współrzędne wierzchołków będą liczbami całkowitymi, wierzchołek A zawsze będzie leżeć w początku układu
Bardziej szczegółowoELEMENTY TEORII WĘZŁÓW
Łukasz Janus 10B2 ELEMENTY TEORII WĘZŁÓW Elementarne deformacje węzła Równoważność węzłów Węzły trywialne Ruchy Reidemeistera Twierdzenie o równoważności węzłów Grafy Powtórzmy Diagram węzła Węzły reprezentuje
Bardziej szczegółowoWstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
Bardziej szczegółowoAlgorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Bardziej szczegółowo0. ELEMENTY LOGIKI. ALGEBRA BOOLE A
WYKŁAD 5() ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań Matematyka zbudowana jest z pierwotnych twierdzeń (nazywamy
Bardziej szczegółowoPodejście zachłanne, a programowanie dynamiczne
Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów
Bardziej szczegółowoGramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ.
Gramatyki grafowe Def. Nieskierowany NL-graf (etykietowane wierzchołki) jest czwórką g = (V, E, Σ, ϕ), gdzie: V niepusty zbiór wierzchołków, E V V zbiór krawędzi, Σ - skończony, niepusty alfabet etykiet
Bardziej szczegółowoWprowadzenie do teorii grafów. Dr inż. Krzysztof Lisiecki
1 Reguły gry (1): Uczymy się systematycznie Nie używamy telefonów Zaliczamy w terminie 2 Kontakt: konsultacje poniedziałek 8.45 10.15 (pokój wykładowców) e-mail : krzysztof.lisiecki@p.lodz.pl lub krzysztof@lisiecki.org.pl
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 53
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, A/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1A/14 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,
Bardziej szczegółowoSTEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Bardziej szczegółowoAlgorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2
Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.
Bardziej szczegółowoTopologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski
Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową
Bardziej szczegółowoOgólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Bardziej szczegółowo