Matematyka dyskretna - 5.Grafy.

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka dyskretna - 5.Grafy."

Transkrypt

1 Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte mają mnóstwo zastosowań: reprezentują hierarchię (np. w zawodach sportowych), opisują rozwój populacji jakichś stworzonek w laboratorium, umożliwiają analizę sieci dróg (np. znajdowanie optymalnej drogi z jednego punktu do drugiego jak w urządzeniach GPS lub grach komputerowych), czy też sieci społecznych (np. przepływ informacji w firmie lub jakiejś innej grupie ludzi). I. Wstępne definicje Graf, jaki jest, każdy widzi. Mapa drogowa. Schemat blokowy (np. przepisu kulinarnego). Sieć kontaktów. Drzewo genealogiczne. Ale potrzebujemy jakiejś bardziej konkretnej definicji. Definicja 1 (Graf). Grafem lub grafem ogólnym nazywamy parę G = (V, E), gdzie: 1) V (czasem zapisywany V (G)) jest zbiorem wierzchołków ( węzłów, punktów) 2) E (czasem zapisywany E(G)) jest rodziną krawędzi (które mogą się powtarzać), czyli jedno- i dwu-elementowych podzbiorów V. Będziemy się zajmować głównie grafami skończonymi tj. o skończonej liczbie wierzchołków i krawędzi, dlatego, jeśli nie jest napisane inaczej, zakładamy, że graf w danej definicji lub twierdzeniu jest skończony. Krawędź łączącą wierzchołki u i v w skrócie zapisujemy jako uv. Jeśli taka krawędź istnieje, mówimy, że u i v są sąsiadami, a krawędź uv nazywamy incydentną z u i v. Krawędź uv nazywamy pętlą jeśli u = v. Definicja 2 (Graf prosty). Grafem prostym nazywamy parę G = (V, E), gdzie: 1) V jest zbiorem wierzchołków ( węzłów, punktów) 2) E jest zbiorem różnych krawędzi o różnych końcach. W grafie, w odróżnieniu od grafu prostego, mogą istnieć krawędzie wielokrotne i pętle. Graf H składający się tylko z wierzchołków i łączących je krawędzi należących do grafu G nazywamy podgrafem G. Warto jeszcze określić, kiedy grafy (z matematycznego punktu widzenia) są takie same: Definicja 3 (Grafy izomorficzne). Dwa grafy G i H nazywamy izomorficznymi jeśli istnieje bijekcja (czyli odwzorowanie jeden do jednego ) ψ między zbiorami V (G) i V (H) zachowująca sąsiedztwo wierzchołków, tzn. uv E(G) ψ(u)ψ(v) E(H). Fakt istnienia izomorfizmu grafów zapisujemy G H. Izomorficzność grafów oznacza, że różnią się one tylko nazwami wierzchołków i krawędzi, a ich struktura jest taka sama. W praktyce nie będziemy rozróżniać grafów izomorficznych (chyba, że do praktycznych zastosowań). Definicja 4 (Stopień wierzchołka). Stopniem wierzchołka v nazywamy liczbę deg v, oznaczającą liczbę krawędzi incydentnych z v (uwaga: w obliczaniu stopnia wierzchołka pętle liczymy jako dwie krawędzie incydentne). Twierdzenie 1. Jeśli G = (V, E) jest grafem ogólnym, to: deg v = 2 E. Zatem liczba wierzchołków stopnia nieparzystego jest parzysta. 1 v V

2 2 Uściski dłoni we wszechświecie. Żeby móc analizować trasy jednokierunkowe (np. niektóre drogi w miastach) będziemy rozważać tzw. grafy skierowane: Definicja 5 (Graf skierowany). Grafem skierowanym lub digrafem nazywamy parę G = (V, E), gdzie: 1) V jest zbiorem wierzchołków ( węzłów, punktów) 2) E jest rodziną krawędzi skierowanych (które mogą się powtarzać), czyli elementów V V. Krawędzie skierowane na rysunkach grafów przedstawiamy jako strzałki, a krawędzie takiego grafu zapisujemy jako pary uporządkowane np. (u, v). Definicja 6 (Graf z wagami). Grafem z wagami nazywamy graf (skierowany lub nie), w którym każdej krawędzi e przypisana jest nieujemna liczba W (e). Wagą grafu nazywamy sumę wag jego krawędzi. y Drogi z czasami przejazdu, kroki procedury z kosztem wykonania, łącza z przepustowościami. II. Drogi, cykle i spójność Definicja 7. Droga w grafie G to skończony ciąg krawędzi postaci: wv 1, v 1 v 2,..., v k u. Oznaczamy go wv 1... v k u. Wierzchołek w nazywamy początkiem, a u - końcem drogi. W wypadku grafu skierowanego, droga jest zdefiniowana tak samo, ale kolejne krawędzie drogi muszą mieć kierunek zgodny z kierunkiem krawędzi w grafie. Definicja 8. Długość drogi to liczba jej krawędzi. Definicja 9. Droga zamknięta to droga dla której w = u, czyli wierzchołek początkowy jest też wierzchołkiem końcowym. Definicja 10. Droga prosta, to droga, której wszystkie krawędzie są różne. Definicja 11. Cykl to droga zamknięta, w której jedynym powtarzającym się wierzchołkiem jest jej początek (i jednocześnie koniec). Definicja 12. Graf acykliczny to graf, który nie zawiera cykli. Definicja 13. Graf spójny to graf, w którym między dowolnymi dwoma wierzchołkami istnieje droga. Jeśli graf nie jest spójny, to jest niespójny. Liczba krawędzi w grafie spójnym: graf spójny musi mieć przynajmniej V 1 krawędzi. Każdy graf można podzielić na maksymalne (w sensie zawierania) spójne podgrafy, zwane składowymi spójnymi. Definicja 14. Most to taka krawędź grafu, po której usunięciu liczba składowych spójnych zwiększa się o 1. Definicja 15. Las to graf prosty, acykliczny. Definicja 16. Drzewo to graf prosty, spójny, acykliczny (czyli spójny las). Wierzchołki drzewa nazywamy węzłami. Podgraf spójny drzewa nazywamy poddrzewem. III. y różnych grafów Definicja 17. Graf pusty ( antyklika, graf niezależny) to graf bez krawędzi. Antyklikę o n wierzchołkach oznacza się przez A n. Definicja 18. Graf pełny ( klika) to graf prosty, w którym każde dwa wierzchołki są połączone dokładnie jedną krawędzią. Klikę o n wierzchołkach oznacza się przez K n.

3 3 Liczba krawędzi w klice. Grafy platońskie. IV. Grafy eulerowskie i hamiltonowskie Mosty w Królewcu. Robot sprzątający korytarze w budynku. Listonosz w mieście. Definicja 19. Cyklem Eulera nazywamy zamkniętą drogę przechodzącą przez każdą krawędź grafu dokładnie raz. Definicja 20. Drogą Eulera nazywamy drogę prostą zawierającą wszystkie krawędzie grafu. Definicja 21. Grafem eulerowskim nazywamy graf posiadający cykl Eulera. y Alternatywny problem skoczka szachowego. Charakterystyka grafów Eulerowskich Twierdzenie 2 (Euler). Graf G = (V, E) jest eulerowski wtedy i tylko wtedy, gdy jest spójny i stopień każdego wierzchołka jest parzysty. Graf G ma drogę Eulera wtedy i tylko wtedy, gdy ma dokładnie dwa lub zero wierzchołków stopnia nieparzystego. Wniosek o mostach w Królewcu i alternatywnym problemie skoczka szachowego. Drzewa. Potrzeba systematycznego podejścia. Algorytm 1. FLEURY(G): Dane: Graf G = (V (G), E(G)), spełniający założenia twierdzenia Eulera. Zmienne: ES - ciąg krawędzi. I. Wybierz dowolny wierzchołek v nieparzystego stopnia, jeśli istnieje. W przeciwnym wypadku wybierz dowolny wierzchołek v. Niech ES =. II. Jeśli z wierzchołka v nie wychodzi ani jedna krawędź -> STOP. III. Jeśli pozostała dokładnie jedna krawędź wychodząca z v, np. vw, wtedy usuń vw z E(G) oraz v z V (G) i przejdź do kroku V. IV. Jeśli została więcej niż jedna krawędź wychodząca z wierzchołka v, wybierz krawędź vw, która nie jest mostem. Następnie usuń vw z E(G). V. Dołącz vw na końcu ciągu ES, zastąp v wierzchołkiem w i przejdź do kroku II. Rezultat: ES to droga lub cykl Eulera. Grafy hamiltonowskie. Robot sprzątający pokoje w budynku. Problem komiwojażera. Definicja 22. Cykl Hamiltona to cykl przechodzący przez wszystkie wierzchołki grafu. Definicja 23. Graf hamiltonowski to graf posiadający cykl Hamiltona. Nie znana jest żadna metoda, pozwalająca szybko (tzn. w czasie wielomianowym) stwierdzić czy dany graf jest hamiltonowski. Mamy do dyspozycji tylko warunki wystarczające na określenie tego. Twierdzenie 3 (Ore). Jeśli w grafie prostym G = (V, E) o co najmniej 3 wierzchołkach każde dwa niesąsiednie wierzchołki v i w spełniają deg v + deg w V, to graf G jest hamiltonowski.

4 4 V. Grafy skierowane i najkrótsze drogi Typowym zagadnieniem związanym z grafami skierowanymi (zwłaszcza z wagami) jest znalezienie najkrótszej drogi z jednego wierzchołka do drugiego. y GPS, gry komputerowe, procesy produkcyjne. Najpierw rozważmy prosty przypadek wyznaczania najkrótszej drogi z wybranego wierzchołka do każdego innego w grafie bez wag. Zazwyczaj rozwiązuje się to zagadnienie przy pomocy tak zwanego algorytmu przeszukiwania wszerz. Dla wygody, w dowolny sposób ponumerujmy wierzchołki grafu V (G) = {1,..., n}. Poszukujemy najkrótszej drogi z wierzchołka 1 do każdego innego wierzchołka j. Algorytm 2. WSZERZ(G): Dane: Graf skierowany G = (V (G), E(G)), ze zbiorem wierzchołków V (G) = {1,..., n}. Zmienne: L, S i V - zbiory wierzchołków, D - funkcja, i, j - liczby pomocnicze. I. L := {1}, V := {2,... n}. D(1) = 0, S :=. II. Dopóki L = E(G) wykonuj: II.1 Dla j V L wykonuj: jeśli istnieje i L takie, że ij E(G), dołącz j do S i zdefiniuj D(j) = D(i) + 1. II.2 L := L S, S :=. Rezultat: D(j) to minimalna długość drogi z 1 do j. Uwaga Jeśli chcemy znaleźć długość drogi tylko do jednego punktu j, wystarczy dołożyć warunek stopu po znalezieniu liczby D(j). Uwaga Jeśli chcemy, by algorytm zwracał nie tylko długość drogi, ale samą drogę, potrzebujemy tzw. wskaźników - ich dodawanie zobaczymy za chwilę, na przykładzie innego algorytmu. Rozważmy teraz trudniejszy przypadek: graf prosty skierowany z wagami G (obecność pętli i krawędzi wielokrotnych nie utrudnia zagadnienia, ale to założenie pomaga skupić się na istocie algorytmu). W jest funkcją wag krawędzi. Jak w algorytmie WSZERZ, numerujemy dowolnie wierzchołki. Rozwiązaniem tego problemu jest algorytm Dijkstry. Algorytm 3. DIJKSTRA(G): Dane: Graf prosty skierowany ze zbiorem wierzchołków V (G) = {1,..., n} i funkcją W wag krawędzi o wartościach nieujemnych (jeśli krawędź (v, w) nie istnieje to podstawiamy W (v, w) = ). Zmienne: L i V - zbiory wierzchołków, D - funkcja. I. L :=, V := {2,... n}. II. Dla i V wykonuj: D(i) := W (1, i) III. Dopóki V L =, wykonuj: III.1 wybierz k V L takie, że D(k) przyjmuje najmniejszą możliwą wartość. III.2 dołącz k do zbioru L. III.3 dla każdego j V L wykonuj: jeśli D(j) > D(k) + W (k, j) to zastąp D(j) sumą D(k) + W (k, j). Rezultat: D(j) to minimalna waga drogi z 1 do j. Jako wynik, otrzymujemy minimalną wagę drogi z wierzchołka 1 do każdego innego. Algorytm nie wypisuje jednak samej drogi. By ją otrzymać, potrzebujemy drobnej poprawki: tzw. algorytmu Dijkstry ze wskaźnikami. Algorytm 4. DIJKSTRAWSKAZNIK(G): Dane: Graf prosty skierowany ze zbiorem wierzchołków V (G) = {1,..., n} i funkcją W wag krawędzi o wartościach nieujemnych (jeśli krawędź (v, w) nie istnieje to podstawiamy W (v, w) = ). Zmienne: L i V - zbiory wierzchołków, D, P - funkcje. I. L :=, V := {2,... n}. II. Dla i V wykonuj: II.1 D(i) := W (1, i). II.2 Jeśli W (1, i) = to P (i) := 0, w innym wypadku P (i) := 1.

5 III. Dopóki V L =, wykonuj: III.1 wybierz k V L takie, że D(k) przyjmuje najmniejszą możliwą wartość. III.2 dołącz k do zbioru L. III.3 dla każdego j V L wykonuj: jeśli D(j) > D(k) + W (k, j) to zastąp D(j) sumą D(k) + W (k, j) i zastąp P (j) liczbą k. Rezultat: D(j) to minimalna waga drogi z 1 do j, P (k) to wskaźnik, który pokazuje poprzedni etap drogi z 1 do j. Jeśli dla jakiegoś j P (j) = 0, to oznacza, że droga z 1 do j nie istnieje. W innym wypadku, w ciągu j, P (j), P (P (j)),... występują wierzchołki drogi minimalnej od 1 do j w odwrotnej kolejności. Uwaga: Obydwa algorytmy Dijkstry można stosować również do grafów nieskierowanych z wagami. Wystarczy taki graf zmienić w skierowany zastępując każdą jego krawędź dwiema krawędziami łączącymi te same wierzchołki, a skierowanymi w przeciwne strony (wagi pozostają te same). Uwaga: By zapamiętać drogę w algorytmie wyszukiwania wszerz, wystarczy dodać wskaźniki (czyli funkcję P ) w ten sam sposób, co w algorytmie Dijkstry. VI. Sieci i przepływy Definicja 24. Sieć jest to graf skierowany z nieujemnymi wagami (funkcja wag jest w tym wypadku zwana przepustowością sieci) oraz dwoma wyróżnionymi wierzchołkami, które są odpowiednio nazywane źródłem i ujściem sieci. y Sieć wodociągowa, sieć komputerowa, sieć kolejowa. Dla sieci podstawowe jest pytanie: przy danej przepustowości łączy, ile można przesłać (wody, danych, towarów) od źródła do ujścia w jednostce czasu. Definicja 25. Przepływ sieci (V,E) z przepustowością c to funkcja f : E [0, ) spełniająca warunki: 1) 0 f(v, w) c(v, w) dla każdej krawędzi (v, w) (tj. przepływ wzdłuż krawędzi nie przekracza jej przepustowości). 2) x V,(x,v) E f(x, v) = x V,(v,x) E f(v, x) dla każdego wierzchołka v poza źródłem s i ujściem t. Równość ta oznacza, że sumaryczna wartość tego, co wpływa do wierzchołka jest równa sumarycznej wartości tego, co zeń wypływa. 3) x V (f(s, x) f(x, s)) = x V (f(x, t) f(t, x)) tzn. sumaryczna wartość tego, co wypływa ze źródła musi być równa sumarycznej wartości tego, co wpływa do ujścia. Wartość ta będzie określana wartością przepływu f. Właśnie maksymalna możliwa wartość przepływu będzie poszukiwaną przez nas wielkością. Przyda się do tego jeszcze para definicji: Definicja 26. Siecią residualną dla sieci G = (V, E) z przepustowością c i przepływem f, nazywamy sieć G f = (V, E f ), gdzie E f jest zdefiniowane następująco: E f = {(u, v) V V : c f (u, v) > 0}, gdzie c f (u, v) oznacza tzw. przepustowość residualną dla krawędzi (u, v). Ta natomiast jest dana wzorem: c f (u, v) = c(u, v) f(u, v), Krawędzie należące do E f, nazywa się krawędziami residualnymi. Bardziej intuicyjnie, przepustowość residualna dla pewnej krawędzi (u, v), oznacza, o ile można zwiększyć przepływ przez nią, tak jednak, aby nie przekroczył on jej przepustowości. Do sieci residualnej natomiast należą te krawędzie, przez które przepływ można zwiększyć. 5

6 6 Definicja 27. Ścieżką powiększającą dla sieci G nazywamy dowolną drogę z s do t w sieci residualnej dla G. Przepustowość residualną dowolnej ścieżki powiększającej p, dla sieci G, określamy wzorem: c f (p) = min {c f (u, v) : (u, v) p}. Innymi słowy, przepustowość residualna jest to wartość, o jaką maksymalnie można zwiększyć przepływ przez wszystkie krawędzie należące do ścieżki p. Algorytmy wyznaczania maksymalnego przepływu opierają się na tzw. metodzie Forda- Fulkersona, czyli na stopniowym zwiększaniu przepływu wzdłuż każdej drogi prostej od źródła do ujścia. Sednem każdej takiej operacji jest warunek: jeśli istnieje ścieżka powiększająca, zwiększ maksymalnie przepływ wzdłuż tej ścieżki. Jako przykład, pokażemy jeden (nie najszybszy, ale najprostszy) ze sposobów wyznaczania maksymalnego przepływu: algorytm Edmondsa-Karpa. Jego ideą jest znajdowanie w każdym kroku najkrótszej (pod względem liczby krawędzi) ścieżki powiększającej. Algorytm 5. EDMONDS-KARP(G): Dane: Sieć (V, E) z wyróżnionym źródłem s V i ujściem t V, z przepustowością c. Zmienne: funkcja przepływu f : V V R, r : V V R, p - droga prosta w sieci, r - funkcja przepustowości residualnej, a-liczba. I. Dla każdej pary (u, v), f(u, v) := 0, r(u, v) := c(u, v), gdy (u, v) E oraz r(u, v) = 0 w przeciwnym wypadku. {w każdym momencie będzie r(u, v) = c(u, v) f(u, v), gdy (u, v) E} II. Dopóki istnieje jakakolwiek ścieżka powiększająca wykonaj: II.1 Wskaż najkrótszą ze względu na liczbę krawędzi ścieżkę powiększającą (np. z algorytmu przeszukiwania wszerz albo z algorytmu Dijkstry dla równych wag). Oznaczmy tę najkrótszą ścieżkę powiększającą przez p. II.2 a := min{r(u, v) : (u, v) należy do p}. II.3 Dla każdej krawędzi (u, v) należącej do p wykonaj: f(u, v) := f(u, v) + a, f(v, u) := f(v, u) a, r(u, v) := r(u, v) a, r(v, u) = r(u, v) + a. Rezultat: Funkcja zadana przez f na zbiorze E jest funkcją przepływu o maksymalnej wartości dla sieci (V, E). Uwaga W trakcie wykonywania tego algorytmu, mogą się pojawić przepływy ujemne tj. sieci residualne zawierające krawędzie, których w oryginalnej sieci nie było i dodawanie wartości przepływu wzdłuż tych krawędzi. To nic nie przeszkadza - wynik działania algorytmu i tak będzie dobry. Uwaga Algorytm ten można przerobić tak, by rozwiązywał też sytuację z wieloma źródłami i ujściami. Wystarczy do sieci dołożyć jedno superźródło i jedno superujście oraz krawędzie o nieskończonej przepustowości łączące je odpowiednio z wszystkimi źródłami i wszystkimi ujściami, a po przejściu algorytmu Edwardsa-Karpa usunąć te dodatki. VII. Grafy dwudzielne i skojarzenia Definicja 28. Graf dwudzielny to graf G = (V, E), w którym zbiór wierzchołków V da się podzielić na dwa rozłączne podzbiory V 1 oraz V 2 tak, by żadne dwa wierzchołki w obrębie tego samego podzbioru V i nie były sąsiadami. Dla podkreślenia takiego podziału, graf dwudzielny będziemy oznaczać przez (V 1 V 2, E). Twierdzenie 4. Graf jest dwudzielny wtedy i tylko wtedy, gdy każdy jego cykl ma parzystą długość. Problem biura matrymonialnego. Organy i dawcy.

7 Definicja 29. Skojarzenie w grafie dwudzielnym G = (V 1 V 2, E) to podzbiór krawędzi M E(G), w którym żadne dwie v 1 v 2, u 1 u 2 M nie wychodzą z tego samego wierzchołka (czyli zbiór rozłącznych par elementów połączonych krawędziami). Mówimy, że v V i jest skojarzony, jeśli istnieje w V 3 i taki, że krawędź vw należy do skojarzenia. Definicja 30. Pełne skojarzenie w grafie dwudzielnym G = (V 1 V 2, E) to skojarzenie, w którym każdy wierzchołek z V 1 jest skojarzony. Kiedy takie skojarzenie da się skonstruować? By odpowiedzieć na to pytanie, trzeba wpierw skonstruować funkcję: Φ, która zbiorowi A V 1 przyporządkowuje zbiór tych wierzchołków V 2, które są sąsiednie z przynajmniej jednym wierzchołkiem w A. Twierdzenie 5 (Hall). Niech G = (V 1 V 2, E) będzie grafem dwudzielnym. Wówczas pełne skojarzenie w G istnieje wtedy i tylko wtedy, gdy A Φ(A) dla każdego podzbioru A zbioru V 1. Grafy dwudzielne badał Lloyd Shapley, który w 2012 roku otrzymał nagrodę Nobla z ekonomii między innymi za modelowanie i rozwiązanie problemu optymalizacyjnego zwanego problemem stabilnego małżeństwa. Jest to problem, w którym każdy kawaler i panna na wydaniu posiadają swój ranking płci przeciwnej i trzeba ich tak połączyć w pary małżeńskie, żeby nie doszło do pokusy zdrady, czyli sytuacji, gdy pewna para (niemałżeńska) woli siebie nawzajem od swoich partnerów w małżeństwie. Okazuje się, że bez względu na ranking indywidualnych preferencji, zawsze istnieje szczęśliwe rozwiązanie tego problemu. Wspólnie z Davidem Gale em, Shapley stworzył wydajny algorytm rozwiązujący ten problem. 7

Matematyka dyskretna - 6.Grafy

Matematyka dyskretna - 6.Grafy Matematyka dyskretna - 6.Grafy W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

6. Wstępne pojęcia teorii grafów

6. Wstępne pojęcia teorii grafów 6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie:

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie: Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

6d. Grafy dwudzielne i kolorowania

6d. Grafy dwudzielne i kolorowania 6d. Grafy dwudzielne i kolorowania Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w6d. Krakowie) Grafy dwudzielne i kolorowania zima

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

6a. Grafy eulerowskie i hamiltonowskie

6a. Grafy eulerowskie i hamiltonowskie 6a. Grafy eulerowskie i hamiltonowskie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny6a. w Krakowie) Grafy eulerowskie i hamiltonowskie

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Opracowanie prof. J. Domsta 1

Opracowanie prof. J. Domsta 1 Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska.

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska. Grafy dla każdego dr Krzysztof Bryś brys@mini.pw.edu.pl Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska www.mini.pw.edu.pl Warszawa, 28 marca 2015 Graf składa się z elementów pewnego zbioru

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 8/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1A/14 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,

Bardziej szczegółowo

E ' E G nazywamy krawędziowym zbiorem

E ' E G nazywamy krawędziowym zbiorem Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie

Bardziej szczegółowo

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów II Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Graf planarny Graf planarny Graf, który może być narysowany tak, by uniknąć przecinania się krawędzi, nazywamy grafem

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

7. Teoria drzew - spinanie i przeszukiwanie

7. Teoria drzew - spinanie i przeszukiwanie 7. Teoria drzew - spinanie i przeszukiwanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. wteoria Krakowie) drzew - spinanie i przeszukiwanie

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Wykład 4. Droga i cykl Eulera i Hamiltona

Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 15/15 Twierdzenie Dla grafu prostego następujące warunki są równoważne: 1) jest drzewem, 2) nie zawiera cykli i ma krawędzi, 3)

Bardziej szczegółowo

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie

Bardziej szczegółowo

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A WYKŁAD 5() ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań Matematyka zbudowana jest z pierwotnych twierdzeń (nazywamy

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3} Grafy Definicja grafu nieskierowanego. Grafem nieskierowanym nazywamy uporządkowaną trójkę: gdzie: V- niepusty zbiór wierzchołków grafu G E- zbiór wszystkich krawędzi grafu G - funkcja ze zbioru E w zbiór

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - KOLOKWIUM 2

MATEMATYKA DYSKRETNA - KOLOKWIUM 2 1 MATEMATYKA DYSKRETNA - KOLOKWIUM 2 GRUPA A RACHUNKI+KRÓTKIE WYJAŚNIENIA! NA TEJ KARTCE! KAŻDA DODATKOWA KARTKA TO MINUS 1 PUNKT! Imię i nazwisko...... Nr indeksu... 1. (3p.) Znajdź drzewo o kodzie Prufera

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie

Bardziej szczegółowo

Elementy teorii grafów Elementy teorii grafów

Elementy teorii grafów Elementy teorii grafów Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę

Bardziej szczegółowo

Matematyka dyskretna - 8. Egzaminy próbne. Uwaga! Niektórych z tych zadań nie obejmuje program dla studiów zaocznych - proszę się tym nie niepokoić -

Matematyka dyskretna - 8. Egzaminy próbne. Uwaga! Niektórych z tych zadań nie obejmuje program dla studiów zaocznych - proszę się tym nie niepokoić - Matematyka dyskretna - 8. Egzaminy próbne. Uwaga! Niektórych z tych zadań nie obejmuje program dla studiów zaocznych - proszę się tym nie niepokoić - takie zadania pojawią się tylko na egzaminach dla studentów

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie Odpowiedzi do zadania domowego www.akademia.etrapez.pl Strona 1 Część 1: TEST 1) b 2) a 3) b 4) d 5) c 6) d 7) b 8) b 9) d 10) a Zad. 1 ODPOWIEDZI

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny

Bardziej szczegółowo

Ilustracja S1 S2. S3 ściana zewnętrzna

Ilustracja S1 S2. S3 ściana zewnętrzna Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 15 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 53

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 15/15 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy

Bardziej szczegółowo

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach

Bardziej szczegółowo

Programowanie sieciowe. Tadeusz Trzaskalik

Programowanie sieciowe. Tadeusz Trzaskalik Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście

Bardziej szczegółowo

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x 2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład

Bardziej szczegółowo

Znajdowanie skojarzeń na maszynie równoległej

Znajdowanie skojarzeń na maszynie równoległej 11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia

Bardziej szczegółowo

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Drzewa: Drzewo (ang. tree) jest strukturą danych zbudowaną z elementów, które nazywamy węzłami (ang. node).

Bardziej szczegółowo

Lista 4. Kamil Matuszewski 22 marca 2016

Lista 4. Kamil Matuszewski 22 marca 2016 Lista 4 Kamil Matuszewski 22 marca 2016 1 2 3 4 5 6 7 8 9 10 Zadanie 2 Ułóż algorytm który dla danego n-wierzchołkowego drzewa i liczby k pokoloruje jak najwięcej wierzchołków tak, by na każdej ścieżce

Bardziej szczegółowo

Algorytmy z powracaniem

Algorytmy z powracaniem Algorytmy z powracaniem Materiały Grafem nazywamy zbiór G = (V, E), gdzie: V jest zbiorem wierzchołków (ang. vertex) E jest zbiorem krawędzi (E można też określić jako podzbiór zbioru nieuporządkowanych

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku ( Rozdział 1 Grafy skierowane W tym rozdziale zajmiemy siȩ algorytmami wyszukiwania najkrótszej drogi w grafach skierowanych Każdej krawȩdzi

Bardziej szczegółowo

Teoria grafów dla małolatów

Teoria grafów dla małolatów Teoria grafów dla małolatów Andrzej P.Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka w szkole podstawowej kojarzy się przede wszystkim z arytmetyką, ale współcześni matematycy rzadko

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne Spis treści 1 Podstawowe definicje 4 1.1 Grafy................................ 4 1.2 Przykłady grafów......................... 12 1.2.1 Grafy puste i pełne.................... 12 1.2.2 Grafy dwudzielne.....................

Bardziej szczegółowo

Minimalne drzewa rozpinające

Minimalne drzewa rozpinające KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Grafy

Bardziej szczegółowo

Zagadnienie najkrótszej drogi w sieci

Zagadnienie najkrótszej drogi w sieci L L Zagadnienie najkrótszej drogi w sieci 1 Rozważmy sieć, gdzie graf jest grafem skierowanym (digrafem) a jest funkcją określoną na zbiorze łuków. Wartość tej funkcji na łuku!"$#%'&, którą oznaczać będziemy

Bardziej szczegółowo

Sieć (graf skierowany)

Sieć (graf skierowany) Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B),(A, D),(A, C),(B, C),...,} Ścieżki i cykle Ciag wierzchołków

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

Podejście zachłanne, a programowanie dynamiczne

Podejście zachłanne, a programowanie dynamiczne Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów

Bardziej szczegółowo