Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka dyskretna. Andrzej Łachwa, UJ, /15"

Transkrypt

1 Matematyka dyskretna Andrzej Łachwa, UJ, /15

2 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami lub węzłami, E to skończony zbiór z powtórzeniami jedno i dwuelementowych podzbiorów V, zwanych krawędziami. Jednoelementowe podzbiory zbioru V nazywamy pętlami, a podzbiory powtarzające się nazywamy krawędziami wielokrotnymi. Graf prosty to graf G=(V, E), w którym E jest zbiorem dwuelementowych podzbiorów V. A zatem graf prosty to graf bez pętli i bez krawędzi wielokrotnych.

3 Krawędź łącząca v z w oznaczana będzie jako vw. Jeśli istnieje krawędź vw to mówimy, że wierzchołki v i w są sąsiadami; oraz że krawędź vw jest incydentna do v oraz incydentna do w. Podobnie dwie krawędzie naywamy sąsiednimi jeżeli mają wspólny wierzchołek. Dla grafu G symbolem V(G) będziemy oznaczać jego zbiór wierzchołków, zaś symbolem E(G) jego zbiór (lub zbiór z powtórzeniami) krawędzi. Czasem, dla odróżnienia grafu od grafu prostego, graf będziemy nazywać też grafem ogólnym. Często spotyka się w literaturze definicję, że stopień wierzchołka v w grafie G to liczba krawędzi incydentnych z v. Definicja powyższa jest poprawna jedynie dla grafów prostych. W grafie ogólnym stopień wierzchołka v trzeba zdefiniować inaczej, a mianowicie, że jest to suma podwojonej liczby pętli {v} i liczby krawędzi {v,w} nie będących pętlami. Stopień wierzchołka v oznaczany jest jako deg(v) lub deg v.

4 Przykład: graf ogólny deg(a)=5 deg(b)=2 deg(c)=3 G = (V, E) V = {a,b,c} E = {{a}, {a,b}, {a,b}, {a,c}, {c}}

5 Twierdzenie Jeśli G=(V, E) jest grafem ogólnym, to Wniosek: liczba wierzchołków o nieparzystym stopniu jest parzysta. Dowód Każda krawędź, która nie jest pętlą, jest incydentna do dwóch wierzchołków. Zliczając krawędzie incydentne do kolejnych wierzchołków, a następnie sumując te wartości, każda krawędź vw zostanie zliczona dwa razy: raz przy rozpatrywaniu wierzchołka v, a drugi raz przy w. Pętla zawsze liczone są podwójnie. Zatem mamy podwojoną liczbę krawędzi.

6 Dla grafów prostych G=(V, E), G 1 =(V 1, E 1 ), G 2 =(V 2, E 2 ) definiujemy następujące pojęcia: suma grafów, przecięcie grafów, różnica grafów, podgraf grafu G to graf H, w którym i, które nie budzą żadnych wątpliwości interpretacyjnych. W przypadku grafów ogólnych sprawa nie jest już taka prosta. Zbiory E, E 1, E 2 są wówczas zbiorami z powtórzeniami.

7 Skończony zbiór z powtórzeniami X=<x 1, x 1, x 2, x 2, x 3, x 3, x n, x n, > k 1 k 2 k 3 k n to rodzina elementów, w której x 1 powtarza się k 1 razy, x 2 powtarza się k 2 razy, itd. aż do x n które powtarza się k n razy. Zbiór taki zapisujemy również w postaci X = <k 1 *x 1, k 2 *x 2, k 3 *x 3, k n *x n >, a liczby k 1, k 2, k n nazywamy krotnościami. Inny sposób zapisania takiego zbioru to: X = <{x 1, x 2, x 3, x n }, {(x 1, k 1 ), (x 2, k 2 ), (x n, k n )} >. Moc zbioru z powtórzeniami to suma krotności jego elementów. Podzbiór skończonego zbioru z powtórzeniami X = <k 1 *x 1, k 2 *x 2, k n *x n > może być wyznaczony przez wektor (m 1, m 2, m n ), gdzie 0 m 1 k 1, 0 m 2 k 2, 0 m n k n. Liczba podzbiorów skończonego zbioru z powtórzeniami o krotnościach k 1, k 2, k n jest równa (k 1 +1)( k 2 +1) (k n +1).

8 Suma dwóch zbiorów z powtórzeniami jest tworzona przez określenie krotności każdego elementu w sumie jako maksimum krotności tego elementu w składnikach sumy. Odpowiednio dla iloczynu będzie to minimum krotności, a dla różnicy ograniczona (od dołu przez 0) różnica krotności. W przypadku takich zbiorów można również mówić o krotnościowej sumie zbiorów, w której krotność elementu to suma algebraiczna krotności tego elementu w składnikach. Przykład: <a, a, b, c> <a, b, b> = <a, a, a, b, b, b, c>

9 Dla grafów ogólnych G 1 =(V 1, E 1 ), G 2 =(V 2, E 2 ) suma grafów G 1 G 2 = (V 1 V 2, E 1 E 2 ), przy czym druga operacja sumy dotyczy zbiorów z powtórzeniami. Podobnie trzeba zdefiniować iloczyn grafów ogólnych i różnicę grafów ogólnych, a także w miarę potrzeb sumę krotnościową grafów. Podgraf grafu ogólnego G=(V, E) to graf ogólny H, w którym i, ale to drugie zawieranie jest operacją zawierania się zbiorów z powtórzeniami.

10

11 Restrykcja grafu prostego G=(V, E) do podzbioru X V to G X = (X, {{v,w}: v X, w X, {v,w} E}), zwany również podgrafem indukowanym (rozszerzenie na grafy ogólne jest oczywiste). Iloraz grafu prostego G przez relację równoważności na zbiorze jego wierzchołków to graf prosty postaci przy czym (v, w). W tym przypadku rozszerzenie na grafy ogólne nie jest trywialne. Można np. mówić o ilorazie grafu prostego, który to iloraz jest grafem ogólnym, w którym krawędź między klasami abstrakcji jest wielokrotna, a jej krotność wynika z liczby krawędzi między elementami tych klas w grafie prostym.

12 Ściągnięcie zbioru wierzchołków w grafie prostym G=(V, E) to szczególny przypadek ilorazu, w którym klasy równoważności wszystkich wierzchołków spoza X są jednoelementowe, a X stanowi dodatkową klasę, tzn.. W ten sposób zbiór X został ściągnięty do punktu, którego sąsiadami są sąsiedzi jakiegokolwiek wierzchołka z X. Z drugiej strony, jeśli jest relacją równoważności o klasach, to ściągając w grafie G kolejno zbiory otrzymamy graf ilorazowy. Ściągnięcie oznaczamy przez V c X. Dopełnienie grafu prostego G o zbiorze wierzchołków V, to graf prosty G o tym samym zbiorze wierzchołków i w którym dwa wierzchołki są siednie wtw gdy nie są sąsiednie w grafie G.

13 Graf skierowany (lub inaczej digraf) to para D = (V, E), gdzie V jest zbiorem wierzchołków, zaś E jest zbiorem z powtórzeniami krawędzi skierowanych, czyli. Krawędź digrafu przestawiamy graficznie jako strzałkę ukazującą kierunek uporządkowania elementów w parze.

14 Graf szkieletowy digrafu D to graf otrzymany z D poprzez zaniedbanie (usunięcie) kierunku krawędzi, ale nie samych krawędzi. Graf pusty to graf bez krawędzi, zwany często antykliką. Antyklikę o n wierzchołkach oznaczać będziemy przez. Graf pełny to graf, w którym każde dwa wierzchołki połączone są jedną krawędzią. Graf pełny nazywany jest także kliką i oznaczany przez, gdzie n jest liczbą jego wierzchołków. Twierdzenie Liczba krawędzi w klice wynosi.

15 Graf dwudzielny to graf, w którym zbiór V da się podzielić na dwa rozłączne podzbiory V 1 i V 2 tak, by żadne dwa wierzchołki w obrębie tego samego podzbioru nie były sąsiadami. Czasem, dla podkreślenia takiego podziału, graf dwudzielny będziemy oznaczać przez. Zauważmy jednak, że podział taki nie jest jednoznaczny, np. w antyklice dowolny podział zbioru wierzchołków na dwa podzbiory jest podziałem dwudzielnym. Pełny graf dwudzielny to graf dwudzielny, w którym każdy wierzchołek z jest połączony z każdym wierzchołkiem z. Pełny graf dwudzielny oznaczać będziemy przez, gdzie r jest rozmiarem, a s rozmiarem.

16 Przykłady grafów pełnych

17 Przykłady pełnych grafów dwudzielnych

18 Reprezentacje Pierwszą wygodną reprezentacją grafu jest lista list, czyli lista nazw wierzchołków, gdzie po każdej nazwie wierzchołka występuje lista nazw jego wierzchołków sąsiednich. Drugą reprezentacją jest macierz sąsiedztwa. Dla grafu o n wierzchołkach jest to macierz nxn, której wyraz o indeksach i, j jest równy liczbie krawędzi łączących wierzchołek i ty z j tym. Trzecią reprezentacją jest macierz incydencji. Dla grafu o n wierzchołkach i m krawędziach jest to macierz nxm, której wyraz o indeksach i, j jest równy 1 jeżeli wierzchołek i ty jest incydenty z krawędzią j tą, oraz 0 w przeciwnym razie. W przypadku digrafów reprezentacje te są odpowiednio modyfikowane.

19 a b c 1 3 a b c aabbc baa cca 2 5 a b c

20 Graf, w którym każdy wierzchołek ma ten sam stopień nazywamy grafem regularnym. Jeśli każdy wierzchołek ma stopień r, to graf nazywamy regularnym stopnia r. Graf pusty jest grafem regularnym stopnia 0. Grafy regularne stopnia 3 nazywamy grafami kubicznymi. Graf pełny jest grafem regularnym stopnia n 1.

21

22

23 Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie marszrutę taką oznaczamy przez, przy czym strzałki oznaczają tu krawędzie nieskierowane! Wierzchołek w nazywać będziemy początkowym, a u końcowym wierzchołkiem marszruty. Marszruta zamknięta to marszruta kończąca się w punkcie wyjścia, czyli taka, w której. Długość marszruty to liczba jej krawędzi. Uwaga: niektóre wierzchołki, a nawet krawędzie, mogą powtarzać się w marszrucie! Marszruta może być również zdefiniowana w grafach skierowanych. Definiuje się ją analogicznie, uwzględniając jednak kierunek krawędzi. Marszruta, zgodna z kierunkiem krawędzi nazywana jest skierowaną.

24 Marszrutę, w której wszystkie krawędzie są różne nazywa się ścieżką. Droga to ścieżka bez powtarzających się wierzchołków, z wyjątkiem pierwszego i ostatniego, które mogą być równe. Cykl to marszruta zamknięta, w której jedynym powtarzającym się wierzchołkiem jest jej początek (będący oczywiście również jej końcem). A zatem cykl jest ścieżką i drogą. Czasem wygodnie jest traktować marszruty w grafie (a więc w szczególności również drogi, cykle i ścieżki) jako podgrafy

25 Graf spójny to graf, w którym między dwoma dowolnymi wierzchołkami istnieje droga. Graf niespójny to graf, który nie jest spójny. Spójna składowa grafu to maksymalny (w sensie inkluzji) podzbiór, indukujący graf spójny. Dowolny graf G rozpada się na spójne składowe tworzące podział zbioru V. Grafy spójne mają jedynie jedną spójną składową, w przeciwieństwie do grafów niespójnych posiadających ich więcej. Rozkład na spójne składowe wyznacza relację równoważności, dla której graf ilorazowy jest antykliką. Wierzchołek izolowany to wierzchołek nie posiadający sąsiadów. Punkty izolowane tworzą jednoelementowe spójne składowe.

26 Intuicyjnie wydaje się, że graf spójny powinien mieć dostatecznie dużo krawędzi w stosunku do liczby wierzchołków. Okazuje się jednak, że w grafie spójnym liczba krawędzi musi należeć do przedziału [, ]. Rezultat ten można uzyskać z bardziej ogólnego wyniku: Twierdzenie W grafie prostym o k składowych spójnych liczba jego krawędzi spełnia nierówności Ponadto, są to najlepsze możliwe ograniczenia, tzn. istnieje graf prosty o dokładnie k składowych spójnych, w którym, a także istnieje graf prosty o dokładnie k składowych spójnych, w którym.

27

28 Hipergrafy Hipergraf to para H = (V, E), gdzie V jest dowolnym, niepustym zbiorem wierzchołków; E jest podzbiorem zbioru P(V) wszystkich możliwych niepustych zbiorów, których elementy należą do V. Elementy E nazywamy hiperkrawędziami. Macierz incydencji jest jedną z najpopularniejszych i najwygodniejszych metod reprezentacji hipergrafu. W macierzy incydencji wiersze odpowiadają krawędziom, a kolumny wierzchołkom hipergrafu. Jeśli element macierzy jest równy 1, to i ta krawędź jest incydentna do j tego wierzchołka. W przeciwnym przypadku element ten jest równy 0.

29

30

31

32

33 Twierdzenie Dla grafu prostego następujące warunki są równoważne: 1) jest drzewem, 2) nie zawiera cykli i ma krawędzi, 3) jest spójny i ma krawędzi, 4) jest spójny, zaś usunięcie dowolnej krawędzi tworzy dokładnie dwie spójne składowe, 5) dowolne dwa wierzchołki grafu są połączone dokładnie jedną drogą, 6) nie zawiera cykli, lecz dodanie dowolnej nowej krawędzi tworzy dokładnie jeden cykl.

34 Wniosek Każdy las o k składowych spójnych posiada krawędzi.

35 Grafy eulerowskie Cykl Eulera to zamknięta marszruta przechodząca przez każdą krawędź grafu dokładnie raz. Graf eulerowski to graf posiadający cykl Eulera.

36 Twierdzenie Graf jest eulerowski wtedy i tylko wtedy, gdy jest spójny i stopień każdego wierzchołka jest parzysty. Twierdzenie to jest nie tylko ładną charakterystyką grafów eulerowskich, ale umożliwia prostą i szybką weryfikację omawianej własności.

37 Wniosek Graf spójny jest eulerowski wtedy i tylko wtedy, gdy rodzinę jego krawędzi da się podzielić na rozłączne krawędziowo cykle.

38 Grafy jednokreślne Graf jednokreślny (tzn. taki, który można narysować bez odrywania ołówka i rysując każdą krawędź dokładnie raz) to graf posiadający marszrutę przechodzącą dokładnie raz przez każdą krawędź. Wniosek Graf jest jednokreślny wtedy i tylko wtedy, gdy jest spójny i jego wszystkie wierzchołki, poza co najwyżej dwoma, mają parzysty stopień.

39 Grafy hamiltonowskie Inny, ciekawy problem można przedstawić na przykładzie firmy rozwożącej przesyłki. Dotyczy on pracy kuriera mającego rozwieść przesyłki do odbiorców, w ten sposób by odwiedzić każdego klienta jedynie raz, a na końcu wrócić do siedziby firmy. Cykl Hamiltona to marszruta zamknięta odwiedzająca każdy wierzchołek dokładnie raz. Graf hamiltonowski to graf posiadający cykl Hamiltona. Ścieżka Hamiltona to marszruta przechodząca przez wszystkie wierzchołki, każdy odwiedzając jedynie jeden raz.

40

41

42 W odróżnieniu od grafów eulerowskich, grafy hamiltonowskie nie posiadają prostej i szybkiej w użyciu charakteryzacji. Nie znana jest żadna metoda, pozwalająca szybko (tzn. w czasie wielomianowym) stwierdzić czy dany graf jest hamiltonowski. Nie udowodniono również, że nie ma takiego algorytmu. Problem jest więc otwarty! Są natomiast znane pewne warunki wystarczające na to, by graf był hamiltonowski, np. o Graf prosty, w którym każdy wierzchołek ma stopień co najmniej jest hamiltonowski. o Jeśli w grafie prostym o co najmniej 3 wierzchołkach dowolne dwa niesąsiednie wierzchołki v i w spełniają nierówność, to graf jest hamiltonowski.

43

44 Twierdzenie Graf pełny K n jest hamiltonowski dla każdego n>2 i zawiera Hamiltona. n 1! 2 cykli

45 Grafy planarne Graf płaski to para, gdzie: jest jakimś zbiorem punktów płaszczyzny, jest zbiorem nie przecinających się odcinków lub łuków w o końcach w zbiorze. Graf planarny to graf, który jest prezentowalny jako graf płaski. Uwaga: graf płaski jest zbiorem punktów płaszczyzny i zbiorem nie przecinających się odcinków lub łuków łączących te punkty. A zatem jest to RYSUNEK! Natomiast graf planarny to graf, który jest prezentowalny jako graf płaski. Grafy i nie są planarne.

46 Homeomorfizm Graf jest homeomorficzny z grafem, jeśli jeden otrzymamy z drugiego poprzez wykonanie skończenie wielu poniższych operacji: Dodawanie wierzchołków stopnia dwa na krawędzi. Jeśli oraz, to operacja ta zastępuje graf grafem. Usuwanie wierzchołków stopnia dwa. Jeśli ma jedynie dwóch sąsiadów, to operacja ta zastępuje graf grafem.

47 Twierdzenie Kuratowskiego Graf jest planarny wtedy i tylko wtedy, gdy żaden jego podgraf nie jest homeomorficzny z ani z. Inna charakterystyka grafów planarnych odwołuje się do znanego nam już pojęcia ściągalności, lub grafu ilorazowego: Graf jest planarny wtedy i tylko wtedy, gdy nie zawiera podgrafu ściągalnego do lub.

48 Ściany W grafach płaskich poza wierzchołkami oraz krawędziami można rozważać również ściany, czyli obszary płaszczyzny otoczone krawędziami i nie zawierające krawędzi. Formalnie ściana w grafie płaskim to zbiór punktów płaszczyzny, które da się połączyć krzywą nieprzecinającą żadnej krawędzi. Wszystkie grafy płaskie mają dokładnie jedną ścianę nieskończoną. Zauważmy, że las jest grafem planarnym, ale w żadnej reprezentacji płaskiej nie posiada ścian ograniczonych. Tak więc posiada w ogóle tylko jedną ścianę. Twierdzenie W grafie płaskim o ścianach i składowych spójnych zachodzi

49 Kolorowanie grafów Problem kolorowania polega na tym, by przypisać wierzchołkom grafu różne kolory w taki sposób, by każde dwa sąsiednie wierzchołki miały inne kolory. Kolorowanie grafu to funkcja taka, że ilekroć jest krawędzią grafu. Kolorowanie grafu na k kolorów wyznacza rozbicie zbioru na sumę rozłączną jednobarwnych zbiorów, przy czym każdy graf indukowany postaci jest antykliką. Na odwrót, takie rozbicie pozwala na pokolorowanie grafu na k kolorów. Graf k kolorowalny (k barwny) to graf dający się pokolorować k barwami.

50 Liczba chromatyczna grafu, można pokolorować graf., to najmniejsza liczba barw, którymi Optymalne kolorowanie grafu to kolorowanie używające dokładnie kolorów. Oszacowania (G) gdzie jest rozmiarem maksymalnego podgrafu pełnego (kliki) (G) +1 gdzie jest maksymalnym stopniem wierzchołka w G

51 Obserwacja Graf jest dwudzielny wtedy i tylko wtedy, gdy jest kolorowalny. Twierdzenie (1890) Każdy graf planarny jest 5 kolorowalny. Twierdzenie (1976) Każdy graf planarny jest 4 kolorowalny.

52 MAPY Zbiór rozspajający wierzchołki u, v to zbiór krawędzi F E taki, że każda droga z u do v zawiera jakąś krawędź z F. Rozcięcie wierzchołków u, v to zbiór rozspajający wierzchołki u, v, którego żaden podzbiór właściwy nie rozspaja u z v. Zbiór krawędzi F będziemy nazywać rozcięciem, jeśli F jest rozcięciem jakichś dwu wierzchołków u, v. Most to taka krawędź e, że zbiór { e } tworzy rozcięcie. Mapa to graf płaski nie zawierający mostów. Mapa ma k kolorowalne ściany jeśli jej ściany można pokolorować k kolorami w ten sposób, by żadne dwie graniczące ze sobą ściany nie miały tego samego koloru. Innymi słowy, mapa M ma k kolorowalne ściany, jeśli jej geometrycznie dualny graf M* jest k kolorowalny.

53 Dwa twierdzenia o kolorowaniu Mapa M ma 2 kolorowalne ściany wtedy i tylko wtedy, gdy graf M jest eulerowski. Każda mapa ma 4 kolorowalne ściany. Robin J. Wilson: Wprowadzenie do teorii grafów. WN PWN Warszawa 2007 Wykłady z matematyki dyskretnej, 12 15, K. A. Ross, CH. R. b. Wright: Matematyka dyskretna. WN PWN 1999 J. Grygiel: Wprowadzenie do matematyki dyskretnej. AOW EXIT

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1A/14 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,

Bardziej szczegółowo

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie:

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie: Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 15/15 Twierdzenie Dla grafu prostego następujące warunki są równoważne: 1) jest drzewem, 2) nie zawiera cykli i ma krawędzi, 3)

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy

Bardziej szczegółowo

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Opracowanie prof. J. Domsta 1

Opracowanie prof. J. Domsta 1 Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa

Bardziej szczegółowo

Ilustracja S1 S2. S3 ściana zewnętrzna

Ilustracja S1 S2. S3 ściana zewnętrzna Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają

Bardziej szczegółowo

6. Wstępne pojęcia teorii grafów

6. Wstępne pojęcia teorii grafów 6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz

Bardziej szczegółowo

E ' E G nazywamy krawędziowym zbiorem

E ' E G nazywamy krawędziowym zbiorem Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 15 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - KOLOKWIUM 2

MATEMATYKA DYSKRETNA - KOLOKWIUM 2 1 MATEMATYKA DYSKRETNA - KOLOKWIUM 2 GRUPA A RACHUNKI+KRÓTKIE WYJAŚNIENIA! NA TEJ KARTCE! KAŻDA DODATKOWA KARTKA TO MINUS 1 PUNKT! Imię i nazwisko...... Nr indeksu... 1. (3p.) Znajdź drzewo o kodzie Prufera

Bardziej szczegółowo

Matematyka dyskretna - 5.Grafy.

Matematyka dyskretna - 5.Grafy. Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

6d. Grafy dwudzielne i kolorowania

6d. Grafy dwudzielne i kolorowania 6d. Grafy dwudzielne i kolorowania Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w6d. Krakowie) Grafy dwudzielne i kolorowania zima

Bardziej szczegółowo

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A WYKŁAD 5() ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań Matematyka zbudowana jest z pierwotnych twierdzeń (nazywamy

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska.

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska. Grafy dla każdego dr Krzysztof Bryś brys@mini.pw.edu.pl Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska www.mini.pw.edu.pl Warszawa, 28 marca 2015 Graf składa się z elementów pewnego zbioru

Bardziej szczegółowo

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich. Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Bardziej szczegółowo

10. Kolorowanie wierzchołków grafu

10. Kolorowanie wierzchołków grafu p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Elementy teorii grafów Elementy teorii grafów

Elementy teorii grafów Elementy teorii grafów Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę

Bardziej szczegółowo

Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna

Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna Q1.: Mamy dany zbiór artykułów, z których każdy ma co najmniej k z n możliwych tagów. Chcemy bardzo z grubsza pokategoryzować artykuły w jak najmniejszą

Bardziej szczegółowo

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Matematyka dyskretna - 6.Grafy

Matematyka dyskretna - 6.Grafy Matematyka dyskretna - 6.Grafy W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

6a. Grafy eulerowskie i hamiltonowskie

6a. Grafy eulerowskie i hamiltonowskie 6a. Grafy eulerowskie i hamiltonowskie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny6a. w Krakowie) Grafy eulerowskie i hamiltonowskie

Bardziej szczegółowo

TEORIA wiązań Magdalena Pawłowska Gr. 10B2

TEORIA wiązań Magdalena Pawłowska Gr. 10B2 TEORIA wiązań Magdalena Pawłowska Gr. 10B2 Techniki kombinatoryczne rozróżniania węzłów i splotów ØLiczba skrzyżowań, ØLiczba mostów, ØKolorowanie, ØIndeks zaczepienia, ØSzkic elementów arytmetyki węzłów.

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl 14/14 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy - dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy

Bardziej szczegółowo

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Wykłady popularne z matematyki Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Joanna Jaszuńska Politechnika Warszawska, 6 maja 2010 Grafy Wykłady popularne z matematyki,

Bardziej szczegółowo

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów II Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Graf planarny Graf planarny Graf, który może być narysowany tak, by uniknąć przecinania się krawędzi, nazywamy grafem

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne Spis treści 1 Podstawowe definicje 4 1.1 Grafy................................ 4 1.2 Przykłady grafów......................... 12 1.2.1 Grafy puste i pełne.................... 12 1.2.2 Grafy dwudzielne.....................

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Teoria grafów. Magdalena Lemańska

Teoria grafów. Magdalena Lemańska Teoria grafów Magdalena Lemańska Literatura Aspekty kombinatoryki Victor Bryant Graph Theory V.K. Balakrishnan Fundamentals of domination in graphs T. Haynes, S. Hedetniemi, P. Slater Wstęp Graf Grafem

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie Odpowiedzi do zadania domowego www.akademia.etrapez.pl Strona 1 Część 1: TEST 1) b 2) a 3) b 4) d 5) c 6) d 7) b 8) b 9) d 10) a Zad. 1 ODPOWIEDZI

Bardziej szczegółowo

Lista 4. Kamil Matuszewski 22 marca 2016

Lista 4. Kamil Matuszewski 22 marca 2016 Lista 4 Kamil Matuszewski 22 marca 2016 1 2 3 4 5 6 7 8 9 10 Zadanie 2 Ułóż algorytm który dla danego n-wierzchołkowego drzewa i liczby k pokoloruje jak najwięcej wierzchołków tak, by na każdej ścieżce

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład

Bardziej szczegółowo

Teoria grafów - Teoria rewersali - Teoria śladów

Teoria grafów - Teoria rewersali - Teoria śladów 17 maja 2012 1 Planarność Wzór Eulera Kryterium Kuratowskiego Algorytmy testujące planarność 2 Genom i jego przekształcenia Grafy złamań Sortowanie przez odwrócenia Inne rodzaje sortowania Algorytmy sortujące

Bardziej szczegółowo

Algorytmy z powracaniem

Algorytmy z powracaniem Algorytmy z powracaniem Materiały Grafem nazywamy zbiór G = (V, E), gdzie: V jest zbiorem wierzchołków (ang. vertex) E jest zbiorem krawędzi (E można też określić jako podzbiór zbioru nieuporządkowanych

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 15/15 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy

Bardziej szczegółowo

Ścieżki w grafach. Grafy acykliczne i spójne

Ścieżki w grafach. Grafy acykliczne i spójne TEORIA GRAFÓW I SIECI - ROZDZIAL II Ścieżki w grafach. Grafy acykliczne i spójne Ścieżka lub droga w grafie [digrafie] G nazywamy dowolny ciag d = (a 0, k 1, a 1,..., k n, a n ), gdzie n N {0}, a i V G,

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x 2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)

Bardziej szczegółowo

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Drzewa: Drzewo (ang. tree) jest strukturą danych zbudowaną z elementów, które nazywamy węzłami (ang. node).

Bardziej szczegółowo

Kolorowanie wierzchołków grafu

Kolorowanie wierzchołków grafu Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ELEMENTY TEORII GRAFÓW Literatura: N.Deo Teoria grafów i e zastosowania... PWN (1980) Ross, Wright Matematyka yskretna PWN (199) R.Wilson Wprowazenie o teorii grafów PWN (1999) J.Kulikowski Zarys teorii

Bardziej szczegółowo

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie

Bardziej szczegółowo

Znajdowanie skojarzeń na maszynie równoległej

Znajdowanie skojarzeń na maszynie równoległej 11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia

Bardziej szczegółowo

ELEMENTY TEORII WĘZŁÓW

ELEMENTY TEORII WĘZŁÓW Łukasz Janus 10B2 ELEMENTY TEORII WĘZŁÓW Elementarne deformacje węzła Równoważność węzłów Węzły trywialne Ruchy Reidemeistera Twierdzenie o równoważności węzłów Grafy Powtórzmy Diagram węzła Węzły reprezentuje

Bardziej szczegółowo

Siedem cudów informatyki czyli o algorytmach zdumiewajacych

Siedem cudów informatyki czyli o algorytmach zdumiewajacych Siedem cudów informatyki czyli o algorytmach zdumiewajacych Łukasz Kowalik kowalik@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Łukasz Kowalik, Siedem cudów informatyki p. 1/25 Problem 1: mnożenie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 6/10 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to

Bardziej szczegółowo

Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow

Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow 9: Digrafy (grafy skierowane) Spis zagadnień Digrafy Porządki częściowe Turnieje Przykłady: głosowanie większościowe, ścieżka krytyczna Digraf (graf skierowany) Digraf to równoważny termin z terminem graf

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 9A/14 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania

Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania Grafy i Grafy i 5: Rozpinające Spis zagadnień Grafy i i lasy cykle fundamentalne i własności cykli i rozcięć przestrzenie cykli i rozcięć* : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*

Bardziej szczegółowo