Kolorowanie wierzchołków

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kolorowanie wierzchołków"

Transkrypt

1 Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie nazywać będziemy właściwym. Czy pewne grafy mogą być pokolorowane za pomocą danej liczby kolorów? Jaka jest najmniejsza liczba kolorów potrzebna do pokolorowania grafu? Na ile sposobów można dany graf pokolorować przy użyciu zadanej liczby kolorów? Barbara Głut

2 Definicja: Graf jest k-kolorowalnykolorowalny (wierzchołkowo), jeśli każdemu wierzchołkowi możemy przypisać jeden z k kolorów tak, że żadne dwa wierzchołki sąsiednie nie mają tego samego koloru. Definicja: Jeśli G jest k-kolorowalny, ale nie jest (k-)-kolorowalny to mówimy, że graf jest k-chromatyczny. Definicja: Liczbą chromatyczną grafu χ(g) nazywamy najmniejszą liczbę kolorów niezbędną do właściwego pokolorowania wierzchołków grafu. Graf -chromatyczny Do pokolorowania grafu pełnego K n potrzeba n kolorów (wszystkie jego wierzchołki są sąsiednie). Graf zawierający graf pełny o r wierzchołkach jest co najmniej r-chromatyczny. Barbara Głut

3 Grafy cykliczne: χ(g)= χ(g)= parzysta liczba wierzchołków nieparzysta liczba wierzchołków Grafy dwudzielne (niepuste): χ(g)= Drzewa: Każde drzewo o dwóch lub więcej wierzchołkach jest -chromatyczne. Twierdzenie: Jeśli G jest grafem prostym, w którym największy stopień wierzchołka wynosi d, to graf G jest (d+)-kolorowalny. χ(g) d+ górne ograniczenie liczby chromatycznej Twierdzenie: Jeśli G jest spójnym grafem prostym, nie będącym grafem pełnym i jeśli największy stopień wierzchołka grafu G wynosi d (d ), to graf G jest d-kolorowalny (tzn. χ(g) d). Gdy wszystkie stopnie wierzchołków są w przybliżeniu takie same - można mieć korzyść z twierdzenia. Ale np. K,s - z twierdzenia wynika, że graf ten jest s-kolorowalny, a naprawdę jest -kolorowalny dla każdego s. Barbara Głut

4 Jeśli ograniczymy rozważania do grafów planarnych, to: Twierdzenie o czterech barwach (Appel, Haken,, 976): KAŻDY PLANARNY GRAF PROSTY JEST -KOLOROWALNY. Przykład zastosowania: Potrzeba przechować substancji chemicznych a, b, c, d, e Niektóre z tych substancji reagują gwałtownie w przypadku zetknięcia - powinny być przechowywane w odległych miejscach. a b c d e a b c d e pary substancji, które muszą być rozdzielone W ilu oddzielnych częściach magazynu możemy przechowywać te substancje? b Dwa wierzchołki sąsiednie, gdy substancje muszą być oddzielnie a c e Potrzebne są części magazynu. d Barbara Głut

5 Przykład zastosowania - rozkład godzin wykładów: Niektóre wykłady nie mogą się odbywać jednocześnie. Czy jest możliwe ułożenie planu zajęć? Graf wierzchołki wykłady krawędzie łączą te pary wykładów, które nie mogą być zaplanowane w tym samym czasie kolor wierzchołka godzina Pokolorowanie wierzchołków zaplanowanie zajęć Przykład - słowa kodowe Niektóre słowa kodowe są tak do siebie zbliżone, że można je pomylić. Pary takich słów łączy się krawędzią. Znaleźć największy zbiór słów kodowych dla niezawodnej łączności. Niezależny zbiór wierzchołków żadne dwa wierzchołki nie są sąsiednie. Problem znajdowania maksymalnego zbioru niezależnego o największej liczbie wierzchołków (dla przykładu { a, c, d, f } ) Liczba wierzchołków w największym zbiorze niezależnym grafu G o n wierzchołkach n/χ(g) a b c d e f g Barbara Głut

6 Sprawiedliwe kolorowanie grafów Kolorowanie klasyczne wierzchołków z ograniczeniem, aby krotności użycia kolorów różniły się co najwyżej o jeden Zastosowanie: np. problem optymalnego podziału zbioru zawierającego konflikty na równoliczne podzbiory bezkonfliktowe. Przykład: W problemie dostaw wierzchołki grafu reprezentują miejsca dostaw. Dwa wierzchołki są połączone krawędzią, gdy miejsca dostaw nie mogą być obsłużone tego samego dnia. Problem przydziału jednego z 6 dni pracy każdemu miejscu pokolorowanie grafu sześcioma kolorami. Z uwagi na ograniczenie taboru w każdym dniu chcemy obsłużyć możliwie taką samą liczbę miejsc. Kontrastowe kolorowanie grafów Dodatkowy warunek wierzchołki sąsiadujące otrzymują kolory, których odległość nie należy do pewnego ustalonego zbioru T. Zastosowanie: problem przydziału częstotliwości, układanie rozkładów zajęć itd. Inne: sumacyjne (minimalna suma kolorów ), listowe (dla każdego wierzchołka zbiór dopuszczalnych kolorów jest ograniczony przez pewien podzbiór)... Barbara Głut 6

7 G graf prosty Wielomiany chromatyczne Funkcja chromatyczna P G (k) liczba sposobów pokolorowania właściwego wierzchołków grafu G dysponując k kolorami. Twierdzenie: Funkcja chromatyczna grafu prostego jest wielomianem. P G (k) - wielomian chromatyczny grafu G Jeśli graf G ma n wierzchołków, to wielomian P G (k) ma stopień n ze współczynnikiem przy k n. Wyraz wolny dowolnego wielomianu chromatycznego jest równy 0 (grafu nie można pokolorować, gdy k = 0, czyli nie mamy żadnego koloru). Wielomiany chromatyczne Np. jeśli G jest drzewem o wierzchołkach k- k k- P G ( k) = k ( k ) Jeśli G jest dowolnym drzewem o n wierzchołkach, to P n G ( k) = k ( k ) Barbara Głut 7

8 Wielomiany chromatyczne Np. G graf pełny o wierzchołkach k PG ( k) = k ( k ) ( k ) k- k- Dla grafu K n : PG ( k) = k ( k ) ( k ) K ( k n + ) Kolorowanie krawędzi Graf G jest k-barwny krawędziowo (k-barwny(e)), gdy jego krawędzie można tak pokolorować k barwami, aby żadne dwie krawędzie sąsiednie nie miały tego samego koloru. Gdy graf G jest k-barwny(e), lecz nie jest (k-)-barwny(e), to jego liczba chromatyczna krawędziowa - indeks chromatyczny χ (G) - wynosi k. χ (G) = Barbara Głut 8

9 Twierdzenie: Jeśli G jest grafem prostym, którego największy stopień wierzchołka wynosi d, to d χ (G) d+. Dokładne określenie, które grafy mają χ (G)=d, a które χ (G)= d+, jest problemem. Np. χ (C n ) =, gdy n jest parzyste lub χ (C n ) =, gdy n jest nieparzyste. Np. χ (K n ) = n, gdy n jest nieparzyste, χ (K n ) = n-, gdy n jest parzyste. Twierdzenie: Jeśli G jest grafem dwudzielnym z maksymalnym stopniem wierzchołka d, to χ (G) = d. Kolorowanie map Iloma kolorami można pokolorować mapę tych państw tak, aby żadne dwa państwa mające wspólną granicę nie były pomalowane tym samym kolorem? Co nazywamy mapą? Mapa - graf planarny -spójny. Nie zawiera rozcięć mających lub dwie krawędzie. Nie ma wierzchołków stopnia i. Barbara Głut 9

10 Mapa jest k-kolorowalna (f), jeśli jej ściany można pokolorować k kolorami tak, by żadne dwie ściany ograniczone wspólną krawędzią nie były pomalowane tym samym kolorem. () () () () () -kolorowalny(v) -kolorowalny(f) Twierdzenie: Niech G będzie grafem planarnym bez pętli i niech G* będzie grafem geometrycznie dualnym do grafu G. Graf G jest k kolorowalny(v) wtedy i tylko wtedy, gdy graf G* jest k kolorowalny(f). Dla dowolnego twierdzenia dotyczącego kolorowania wierzchołków grafu planarnego możemy utworzyć twierdzenie dualne mówiące o kolorowaniu ścian mapy. Twierdzenie o czterech barwach dla map jest równoważne z twierdzeniem o czterech barwach dla grafów planarnych. Barbara Głut 0

11 Graf G( V, E ) Pokrycia w grafach Pokryciem krawędziowym grafu nazywamy taki podzbiór jego krawędzi, że każdy wierzchołek grafu jest incydentny z przynajmniej jedną krawędzią tego podzbioru. Pokryciem wierzchołkowym grafu nazywamy taki podzbiór jego wierzchołków, że każda krawędź grafu jest incydentna z przynajmniej jednym wierzchołkiem z tego podzbioru. Zbiory wewnętrznie stabilne Wierzchołki v, v nazywamy niezależnymi, gdy nie są wierzchołkami sąsiednimi. Zbiorem wewnętrznie stabilnym Zbiorem wewnętrznie stabilnym wierzchołków grafu G nazywamy dowolny podzbiór wierzchołków parami niezależnych. Barbara Głut

12 Skojarzenia Krawędzie e, e grafu nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie nazywamy dowolny podzbiór krawędzi parami niezależnych. Skojarzenia w grafach dwudzielnych Graf dwudzielny G( V V, E ) Skojarzeniem całkowitym ze zbioru V w zbiór V grafu dwudzielnego G(V V, E) nazywamy takie skojarzenie w grafie G, że dla każdego wierzchołka v V istnieje w skojarzeniu krawędź incydentna z tym wierzchołkiem. istnieje skojarzenie całkowite nie istnieje skojarzenie całkowite Barbara Głut

13 G = G(V V, E) graf dwudzielny A podzbiór zbioru V zbiór ϕ(a) zbiór tych wierzchołków należących do V, które sąsiadują z co najmniej jednym wierzchołkiem ze zbioru A. A ϕ( A) Problem kojarzenia małżeństw Przykład: W grupie złożonej z siedmiu panów i sześciu pań w wieku małżeńskim: pani zna panów `, `, ` pani zna panów `, ` pani zna panów `, `, 7` pani zna panów `, ` pani zna panów `, `, ` pani 6 zna panów `, `, 6` Czy możliwe jest znalezienie męża dla każdej z pań (tj. dla każdej innego pana spośród tych, których zna)? NIE Cztery panie,,, znają tylko trzech panów `, `, ` Aby zaistniała szansa znalezienia męża dla każdej z pań, musi zachodzić taka sytuacja, że dowolny podzbiór r pań zna co najmniej r panów (warunek konieczny). Barbara Głut

14 Przykład: pani zna panów `, ` pani zna panów `, ` pani zna panów `, `, `, ` pani zna panów `, `, 6`, 7` pani zna panów `, `` pani 6 zna panów `, ` Każdy zbiór pań zna co najmniej tylu panów, ile jest w nim pań Np. panie {,, 6 } znają panów { `, `, ` } Czy możemy dla każdej pani znaleźć męża? Zaczynamy dla każdej pani wybierać różnych panów tak długo, jak długo nie znajdzie się pani, dla której nie został do wyboru żaden pan. Np. ` ` ` ` ` 6 zna tylko `, `, którzy są już zaangażowani Pani 6 urządza przyjęcie. Zaprasza wszystkich panów, których zna. Ci zapraszają swoje narzeczone. Panie te zapraszają wszystkich znajomych panów, którzy nie zostali jeszcze zaproszeni. Ci panowie zapraszają swoje narzeczone.... W końcu zostaje zaproszony pan C`, który nie jest zaręczony. C` = 6` nie jest zaręczony { } - { `, ` } - {, } - { ` } - { } - { `, ` } - {, } - { 6`, } (, ` ) (, ` ) (, ` ) (, 6` ) (, ` ) ( 6, ` ) Twierdzenie Halla ( wersja małżeńska): W grupie pań każda może wybrać męża spośród panów, których zna, wtedy i tylko wtedy, gdy w każdym podzbiorze r pań, panie te znają co najmniej r panów. Barbara Głut

15 Panie {d, d, d, d } znają panów { c, c, c, c, c } zgodnie z tabelą: d d d d c c c c c c c c c co daje graf dwudzielny: Problem kojarzenia małżeństw w języku teorii grafów: Jeżeli G = G(V V, E) jest grafem dwudzielnym, to kiedy istnieje skojarzenia całkowite z V do V w grafie G? Twierdzenie Halla ( wersja grafowa): Niech G = G(V V, E) będzie grafem dwudzielnym i niech dla każdego podzbioru A zbioru V zbiór ϕ(a) będzie zbiorem tych wierzchołków należących do V, które sąsiadują z co najmniej jednym wierzchołkiem ze zbioru A. Istnieje skojarzenie całkowite z V do V wtedy i tylko wtedy, gdy dla każdego podzbioru A zbioru V zachodzi nierówność A ϕ(a) Barbara Głut

16 Transwersale Rodzina zbiorów pewna uporządkowana lista zbiorów F = ( S,..., S m ) Niech A niepusty zbiór skończony S i niepuste podzbiory A Transwersalą rodziny F (systemem różnych reprezentantów) nazywamy zbiór m różnych elementów zbioru A, wybranych po jednym z każdego zbioru S i. Np. A = {,,,,, 6, 7 } S = {, } S = {, } S = {,,, } S = {,, 6, 7 } S = {, } S 6 = {, } Transwersala X = {,,, 7,, } Jakie warunki powinna spełniać rodzina zbiorów, aby miała transwersalę? Związek z problemem kojarzenia małżeństw: zbiór A reprezentuje zbiór panów S i zbiór tych panów, których zna pani d i dla i =,..., m Transwersala jest zbiorem panów, z których każdy jest narzeczonym kolejnej pani. Twierdzenie Halla ( wersja transwersalowa): Niech A będzie niepustym zbiorem skończonym i niech F = ( S,..., S m ) będzie rodzina niepustych podzbiorów zbioru A. Rodzina F ma transwersalę wtedy i tylko wtedy, gdy suma dowolnych k podzbiorów S i ma co najmniej k elementów ( dla k m). Barbara Głut 6

17 Np. A = {,,,,, 6 } S = S = {, } S = S = {, } S = {,,, 6 } Nie jest możliwe znalezienie pięciu różnych elementów zbioru A, po jednym z każdego podzbioru. Rodzina F nie ma transwersali. Ale: podrodzina F` = ( S, S, S, S ) ma transwersalę X` = {,,, } Transwersala podrodziny F nazywa się Twierdzenie: transwersalą częściową rodziny F. Rodzina F ma transwersalę częściową mającą t elementów wtedy i tylko wtedy, gdy suma dowolnych k podzbiorów S i ma co najmniej k+t m elementów. Kwadraty łacińskie Prostokątem tem łacińskim wymiaru mxn nazywamy macierz M = (m ij ) mxn, której wyrazy są liczbami całkowitymi spełniającymi następujące warunki: () m ij n () żadne dwa wyrazy stojące w tym samym wierszu lub w tej samej kolumnie nie są równe. Uwaga: m n Przykład: Barbara Głut 7

18 Barbara Głut 8 Jeśli m = n, to prostokąt nazywamy kwadratem kwadratem łaci acińskim skim. Mamy dany prostokąt łaciński wymiaru mxn (m < n). Kiedy można dołączyć do niego n m nowych wierszy tak, by powstał kwadrat łaciński? Przykład: Dodanie wiersza w celu utworzenia prostokąta łacińskiego x o elementach ze zbioru {,,,, } oznacza wyznaczenie różnych reprezentantów ze zbiorów: {,, } {,, } {,, } {,, } {,, } Następny wiersz: [ ] Kontynuując możemy rozszerzyć prostokąt do kwadratu x.

19 Barbara Głut 9 Twierdzenie: Twierdzenie: Każdy prostokąt łaciński wymiaru m x n (m < n) o elementach ze zbioru {,,..., n } może być rozszerzony do kwadratu łacińskiego n x n. (konsekwencja twierdzenia Halla) Przykład: Czy można rozszerzyć do kwadratu łacińskiego x? Korzystamy z transwersali, żeby rozszerzyć do prostokąta x. Ale uważnie! Ale uważnie! Wybieramy np.: co daje: Nie możemy wybrać np.: Nie możemy wybrać np.: { } { } { }

20 Przykład: x Czy można rozszerzyć do kwadratu łacińskiego x? NIE. W zadanym prostokącie nie występuje wystarczającą liczbę razy. q nq - p np - Twierdzenie: Prostokąt łaciński wymiaru p x q (p, q < n) o elementach ze zbioru {,,..., n } może być rozszerzony do kwadratu łacińskiego n x n wtedy i tylko wtedy, gdy K(i) oznaczające liczbę wystąpień elementu i w K, spełnia warunek: K(i) p+q n dla każdego i =,,..., n. Barbara Głut 0

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 15/15 Twierdzenie Dla grafu prostego następujące warunki są równoważne: 1) jest drzewem, 2) nie zawiera cykli i ma krawędzi, 3)

Bardziej szczegółowo

6d. Grafy dwudzielne i kolorowania

6d. Grafy dwudzielne i kolorowania 6d. Grafy dwudzielne i kolorowania Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w6d. Krakowie) Grafy dwudzielne i kolorowania zima

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Kolorowanie grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: -8-9-, p./ Zakład Badań Operacyjnych i Wspomagania

Bardziej szczegółowo

E ' E G nazywamy krawędziowym zbiorem

E ' E G nazywamy krawędziowym zbiorem Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 15/15 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy

Bardziej szczegółowo

Twierdzenie Halla o małżeństwach

Twierdzenie Halla o małżeństwach Twierdzenie Halla o małżeństwach Tomasz Tkocz Streszczenie. Notatki te, przygotowane do referatu wygłoszonego na kółku w II LO w Rybniku, pokazują jak można rozwiązywać życiowe problemy oraz te bardziej

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 8/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna

Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna Q1.: Mamy dany zbiór artykułów, z których każdy ma co najmniej k z n możliwych tagów. Chcemy bardzo z grubsza pokategoryzować artykuły w jak najmniejszą

Bardziej szczegółowo

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa

Bardziej szczegółowo

Teoria grafów. Magdalena Lemańska

Teoria grafów. Magdalena Lemańska Teoria grafów Magdalena Lemańska Literatura Aspekty kombinatoryki Victor Bryant Graph Theory V.K. Balakrishnan Fundamentals of domination in graphs T. Haynes, S. Hedetniemi, P. Slater Wstęp Graf Grafem

Bardziej szczegółowo

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie:

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie: Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1A/14 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,

Bardziej szczegółowo

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów II Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Graf planarny Graf planarny Graf, który może być narysowany tak, by uniknąć przecinania się krawędzi, nazywamy grafem

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl 14/14 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy - dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - KOLOKWIUM 2

MATEMATYKA DYSKRETNA - KOLOKWIUM 2 1 MATEMATYKA DYSKRETNA - KOLOKWIUM 2 GRUPA A RACHUNKI+KRÓTKIE WYJAŚNIENIA! NA TEJ KARTCE! KAŻDA DODATKOWA KARTKA TO MINUS 1 PUNKT! Imię i nazwisko...... Nr indeksu... 1. (3p.) Znajdź drzewo o kodzie Prufera

Bardziej szczegółowo

10. Kolorowanie wierzchołków grafu

10. Kolorowanie wierzchołków grafu p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.

Bardziej szczegółowo

Wojciech Guzicki. Konferencja SEM(Kolory matematyki) Sielpia, 26 października 2018 r.

Wojciech Guzicki. Konferencja SEM(Kolory matematyki) Sielpia, 26 października 2018 r. 1 O KOLOROWANIU Wojciech Guzicki Konferencja SEM(Kolory matematyki) Sielpia, 26 października 2018 r. W. Guzicki: O kolorowaniu 2 KILKA ZADAŃ OLIMPIJSKICH NA DOBRY POCZĄTEK W. Guzicki: O kolorowaniu 3 Zadanie

Bardziej szczegółowo

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 15 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich. Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz

Bardziej szczegółowo

MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna PROSTOKĄTY ŁACIŃSKIE

MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna  PROSTOKĄTY ŁACIŃSKIE MATEMATYKA DYSKRETNA (0/0) dr hab. inż. Małgorzata Sterna malgorzata.sterna@cs.put.poznan.pl www.cs.put.poznan.pl/msterna/ PROSTOKĄTY ŁACIŃSKIE PROSTOKĄTY ŁACIŃSKIE Prostokąt łaciński o wymiarze pq o elementach

Bardziej szczegółowo

c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie

c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie 8: Kolorowanie Grafów Spis zagadnie«kolorowanie wierzchoªków Kolorowanie map Kolorowanie kraw dzi Wielomian chromatyczny Zastosowania Problem kolorowania grafów ma wiele odmian (np. kolorowanie wierzchoªków,

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Znajdowanie skojarzeń na maszynie równoległej

Znajdowanie skojarzeń na maszynie równoległej 11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Matematyka od zaraz zatrudnię

Matematyka od zaraz zatrudnię Uniwersytet Jagielloński Gdzie jest matematyka? Soczewka, 26-28 listopada 2010 Kolorowanie grafów Dobre kolorowanie wierzchołków grafu, to nadanie im kolorów w taki sposób, że każde dwa wierzchołki połaczone

Bardziej szczegółowo

Problem Hadwigera-Nelsona. Agnieszka Maślanka

Problem Hadwigera-Nelsona. Agnieszka Maślanka Problem Hadwigera-Nelsona Agnieszka Maślanka Spis treści 1 Wstęp 2 2 Liczba chromatyczna grafów o różnych typach 3 3 Liczba chromatyczna różnych obiektów matematycznych 5 4 Oszacowanie dolne dla rozwiązań

Bardziej szczegółowo

Elementy teorii grafów Elementy teorii grafów

Elementy teorii grafów Elementy teorii grafów Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

Kolorowanie wierzchołków grafu

Kolorowanie wierzchołków grafu Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,

Bardziej szczegółowo

Kody blokowe Wykład 5a;

Kody blokowe Wykład 5a; Kody blokowe Wykład 5a; 31.03.2011 1 1 Kolorowanie hiperkostki Definicja. W teorii grafów symbol Q n oznacza kostkę n-wymiarową, czyli graf o zbiorze wierzchołków V (Q n ) = {0, 1} n i zbiorze krawędzi

Bardziej szczegółowo

Ilustracja S1 S2. S3 ściana zewnętrzna

Ilustracja S1 S2. S3 ściana zewnętrzna Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają

Bardziej szczegółowo

Opracowanie prof. J. Domsta 1

Opracowanie prof. J. Domsta 1 Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu

Bardziej szczegółowo

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne Spis treści 1 Podstawowe definicje 4 1.1 Grafy................................ 4 1.2 Przykłady grafów......................... 12 1.2.1 Grafy puste i pełne.................... 12 1.2.2 Grafy dwudzielne.....................

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Matematyczne kolorowanki. Tomasz Szemberg. Wykład dla studentów IM UP Kraków, 18 maja 2016

Matematyczne kolorowanki. Tomasz Szemberg. Wykład dla studentów IM UP Kraków, 18 maja 2016 Wykład dla studentów IM UP Kraków, 18 maja 2016 Gra wstępna Dany jest prostokąt podzielony na 8 pól. Gracze zamalowują pola na zmianę. Jeden na kolor czerwony, a drugi na kolor niebieski. Gra wstępna Dany

Bardziej szczegółowo

STUDIUM PODYPLOMOWE INFORMATYKI SPI 51

STUDIUM PODYPLOMOWE INFORMATYKI SPI 51 STUDIUM PODYPLOMOWE INFORMATYKI SPI 51 ALGORYTMIKA I ROZWIĄZYWANIE PROBLEMÓW Temat: Kolorowanie figur (uproszczona wersja kolorowania map grafy). Zastosowanie: Edukacja wczesnoszkolna: matematyczna, plastyczna,

Bardziej szczegółowo

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy:

Bardziej szczegółowo

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Matematyka dyskretna - 6.Grafy

Matematyka dyskretna - 6.Grafy Matematyka dyskretna - 6.Grafy W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Rzut oka na współczesną matematykę spotkanie 9-10: Zagadnienie czterech barw i teoria grafów

Rzut oka na współczesną matematykę spotkanie 9-10: Zagadnienie czterech barw i teoria grafów Rzut oka na współczesną matematykę spotkanie 9-10: Zagadnienie czterech barw i teoria grafów P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Wprowadzenie do teorii grafów. Dr inż. Krzysztof Lisiecki

Wprowadzenie do teorii grafów. Dr inż. Krzysztof Lisiecki 1 Reguły gry (1): Uczymy się systematycznie Nie używamy telefonów Zaliczamy w terminie 2 Kontakt: konsultacje poniedziałek 8.45 10.15 (pokój wykładowców) e-mail : krzysztof.lisiecki@p.lodz.pl lub krzysztof@lisiecki.org.pl

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

Modele i metody kolorowania grafów. Część II

Modele i metody kolorowania grafów. Część II Marek KUBALE Politechnika Gdańska, Katedra Algorytmów i Modelowania Systemów Modele i metody kolorowania grafów. Część II Streszczenie. Niniejszy artykuł jest drugą częścią -odcinkowego cyklu przeglądowego

Bardziej szczegółowo

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny

Bardziej szczegółowo

Lista zadań - Relacje

Lista zadań - Relacje MATEMATYKA DYSKRETNA Lista zadań - Relacje Zadania obliczeniowe Zad. 1. Która z poniższych relacji jest funkcją? a) Relacja składająca się ze wszystkich par uporządkowanych, których poprzednikami są studenci,

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra: Katedra Algorytmów i Modelowania Systemów Forma i poziom studiów: stacjonarne, jednolite magisterskie Kierunek studiów: Informatyka

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski. Typeset by AMS-TEX

TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski. Typeset by AMS-TEX TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski 20 Typeset by AMS-TEX 8. GRAFY PLANARNE. 8.1. Grafy p laskie i planarne. TEORIA GRAFÓW. MATERIA LY VI. 21 Mówimy, że graf jest uk ladalny

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Znajdowanie maksymalnych skojarzeń przy pomocy eliminacji Gaussa

Znajdowanie maksymalnych skojarzeń przy pomocy eliminacji Gaussa Znajdowanie maksymalnych skojarzeń przy pomocy eliminacji Gaussa Marcin Mucha, Piotr Sankowski Instytut Informatyki, Uniwersytet Warszawski - p. 1/55 Definicja problemu Skojarzeniem w grafie G = (V, E)

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=

Bardziej szczegółowo

Dzień pierwszy- grupa młodsza

Dzień pierwszy- grupa młodsza Dzień pierwszy- grupa młodsza 1.TomekmaTlat.Tylesamolatliczysobiewsumietrójkajegodzieci.NlattemuwiekTomkarówny był dwukrotności sumy lat swoich dzieci. Wyznacz T/N. 2.Niechk=2012 2 +2 2012.Ilewynosicyfrajednościliczbyk

Bardziej szczegółowo

Kernelizacja ćwiczenia 1

Kernelizacja ćwiczenia 1 Kernelizacja ćwiczenia 1 kernelizacja na palcach, lemat o słoneczniku Zadanie 1. W problemie Max-SAT, mając daną formułę CNF-SAT i liczbę k pytamy, czy istnieje wartościowanie tej formuły spełniające co

Bardziej szczegółowo

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x 2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)

Bardziej szczegółowo

Kolorowanie płaszczyzny, prostych i okręgów

Kolorowanie płaszczyzny, prostych i okręgów Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej

Bardziej szczegółowo

Matematyka dyskretna - 5.Grafy.

Matematyka dyskretna - 5.Grafy. Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Wykład 4. Droga i cykl Eulera i Hamiltona

Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką

Bardziej szczegółowo

Teoretyczne podstawy programowania liniowego

Teoretyczne podstawy programowania liniowego Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów 18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Tytuł rozprawy w języku polskim: Analiza właściwości algorytmicznych problemu szkieletowego kolorowania grafów

Tytuł rozprawy w języku polskim: Analiza właściwości algorytmicznych problemu szkieletowego kolorowania grafów Załącznik nr 1/1 do Zarządzenia Rektora PG nr 5/2015 z 10 lutego 2015 r. Imię i nazwisko autora rozprawy: Krzysztof Turowski Dyscyplina naukowa: Informatyka ROZPRAWA DOKTORSKA Tytuł rozprawy w języku polskim:

Bardziej szczegółowo