Transformacje stabilizujące wariancję

Wielkość: px
Rozpocząć pokaz od strony:

Download "Transformacje stabilizujące wariancję"

Transkrypt

1 ttysty Wyłd Adm Ćmel A4 0 cmel@gh.edu.pl Trsformce stblzuące rcę Przypuśćmy, że mmy ezleżych zmeych losoych,..., z rozłdó N(, σ ),...,, przy czym złdmy, że σ f(m ) f est zą fucą. W prtyce możemy zć tę fucę, gdyż ząc sposób pomru, możemy p. sterdzć, że błąd pomru yrżoy odchyleem stdrdoym est proporcoly do pozomu merzoe elośc. W ych przypdch możemy podste yresu emprycze zleżośc odchyle stdrdoego od rtośc średe rozpozć chrter te zleżośc. Ozczmy przez m σ rtość oczeą odchylee stdrdoe zmee losoe. Nech σ f(m ), gdze f est zą euemą fucą. m Problem. Chcemy zleźć tą trsformcę t, by cąg ezleżych zmeych losoych Y t( ),...,Y t( ) był cągem o stłe (choćby przyblżeu) rc V(Y )cost,,...,. tosuąc rozęce Tylor oół rtośc oczee możemy psć Y t( ) t(m )+ t (m )( - m ), sąd otrzymuemy V[Y ] [t (m )] V[ ] [t (m )] f (m ). Wrue V[Y ] cost prodz do ró różczoego t (x) f (x)c, sąd uzysuemy uż poszuą trsformcę postc t( x) c c, dx + f ( x) gdze stłe c c moż ybrć t, by trsformc mł ygodeszą postć. Zużmy, że eśl f(x)x, to (z dołdoścą do stłych) poszuą trsformcą est trsformc logrytmcz t(x)l x. Jeśl f(x)x α, α, to poszuą trsformcą (z dołdoścą do stłych) est trsformc α α x t ( x) x. Wyorzystuąc zy ft lm l, możemy oreślć szeroą lsę trsformc potęgoych zych o trsformce Box Cox stępuący sposób x 0 x t x, ( x) l x, 0 0, dl x>0. Wrue x>0 e est zbyto rępuący, gdyż zsze moż stępe przesuąć zres obseroych elośc obszr rtośc dodtch, co odpod zstąpeu rgumetu x trsformc t (x) przesuętą rtoścą x+c tego rgumetu. Trsformc t (x) odpod zleżośc f(x)x - pomędzy odchylem stdrdoym rtoścm oczeym cągu zmeych losoych. Jeżel rzeczyst zleżość est postc f(x)x - dl peego, to prmetr te yzcz oretą trsformcę z rodzy trsformc Box-Cox.

2 ttysty Wyłd Adm Ćmel A4 0 cmel@gh.edu.pl Normlzcy trsformc Box-Cox Trsformc Box-Cox moż róeż użyć o trsformc ormlzuące, tz. trsformc przesztłcące cągły rozłd de zmee losoe rozłd ormly, gdyż eśl zme loso m rozłd z bsolute cągłą ścśle rosącą dystrybutą F, to zme loso F () N ( m, σ ) m rozłd edosty przedzle (0,), ęc zme loso F [ F ( )], gdze F N ( m, σ ) ozcz dystrybutę rozłdu ormlego N(m,σ ), m rozłd ormly. Zbdmy ą rodzę rozłdó półproste x>0 moż trsformoć do ormlośc z pomocą trsformc Box- Cox. Ozczmy przez F f odpoedo dystrybutę fucę gęstośc zmee losoe. Przypuśćmy, że stee t rtość prmetru, że zme loso Y t () m rozłd N(m,σ ). Z mootoczośc trsformc t y, że F (x)p( x)p(t () t (x))p(y t (x)) F N(m,σ) ( t (x)). Wyorzystuąc postć dystrybuty rozłdu N(m,σ ) poprzez różczoe poyższe tożsmośc uzysuemy 3-prmetroą rodzę fuc gęstośc trsformolych do -prmetroe rodzy rozłdó ormlych z pomocą trsformc t ( t ( ) ) x m σ f ( x) x e πσ, x>0. Jeśl zme loso m rozłd o fuc gęstośc e leżące do poyższe lsy fuc gęstośc, to możemy próboć prosymoć ezą fucę gęstośc fucą z poyższe lsy. Iym słoy trsformc t może być użyt o przyblżo trsformc do ormlośc. Nezy prmetr moż yzczyć metodą ęsze rygodośc, złdąc (choćby przyblżeu), że zmee losoe Y t ( ),...,Y t ( ) są ezleże mą te sm rozłd N(m,σ ) o ezych prmetrch m σ. Fuc rygodośc m postć ( t ( ) m) m ) σ (, σ, ) ( ) ( e, L π σ e logrytm m postć l ( m, σ, ) l L( m, σ, ) l π lσ + ( ) l ( t ( ) m) σ Wrue oeczy ste estremum l l l 0, 0, 0 m σ prodz do ułdu róń.

3 ttysty Wyłd Adm Ćmel A4 0 cmel@gh.edu.pl m( ) t ( ) σ ( ) ( t ( ) m( )) t ( ) σ ( ) l ( t ( ) m( )) Zmst rozązyć poyższy ułd róń moż, yorzystuąc możlość deompozyc zd msymlzc fuc rygodośc, yorzystuąc d persze ró zleźć roząze problemu postc : ˆ rg mx l( m( ), σ ( ), ) rg mx (( ) l lσ ( )) Ug. Jeżel stępe przesluemy zmee dzeląc żdą z ch przez średą geometryczą, to optymle yzczmy z eco prostszego ruu ˆ rg m σ ( ). Krót przegląd osertyych testó post hoc. Wszyste rozże testy osertye prodzą do stępuące reguły Średe m m są stote róże eżel > rtość progo (łśc dl dego testu) Rozże testy otroluą prdopodobeńst różych błędó Test Fsher NIR (mesz stot różc) (cze LD lest sgfct dffrece). Algorytm. Przeprodzć ANOVA celu przetesto H 0 : m m przeco ltertye H : co me de średe różą sę mędzy sobą. Jeżel e m podst do odrzuce H 0 ończymy lzę. 3. Jeżel H 0 zostł odrzuco, to defuemy meszą stotą różcę NIR (LD) pomędzy średm próboym, tórą leży zobseroć, by uzć odpodące m średe odpoedch populcch z stote roże. 4. Dl yspecyfoe rtośc α celu poró m z m oblczmy NIR g zoru NIR t + α, ( stopch sobody ), gdze t est tylem rzędu α, α rozłdu t-tudet o est sumą drtó eątrz grup (z ANOVA) 5. Poróuemy szyste pry średch próboych. Jeżel NIR, to uzemy, że m m są stote róże. 6. Dl szystch poróń pr prdopodobeństo błędu I rodzu est ustloe pozome α 3

4 ttysty Wyłd Adm Ćmel A4 0 cmel@gh.edu.pl Komputeroe symulce yzły, że eśl stosuemy test Fsher połączeu z ANOVA (t opso poyże), to pozom stotośc złożoego testu poróń elorotych est przyblżeu róy pozomo stotośc testu F (procedur Fsher s protected LD). Jeżel stosuemy test NIR smodzele (bez ANOVA), to otroluemy edye błąd przy poedyczych poróch (per comprso). Odpod to elorotemu stosou testu stotośc różcy dóch średch oprtego sttystyce t-tudet, przy czym estymtor rc opermy cłe próbe (z poodu edorodośc rc grupch) e tylo obsercch z tule poróyych grup. Test W Tuey oprty est studetyzoym rozstępe mx m pomędzy średm próboym. Algorytm (dl edoo lczych grup). Uporządoć średe próboe,,...,. m m są stote róże eżel W, gdze W qα (, df ), df est lczbą stop sobody, lość obserc żde grupe, q α (, df ) prostro rtość rytycz studetyzoego rozstępu (tblce). 3. Prdopodobeństo zobsero fłszye stote różcy dl poróń prm est róe α. W Jeżel grupy e są róolcze, to zmst W leży użyć W q (, df ) ( + ) α Test Tuey' otrolue błąd I rodzu dl szystch poróń prm, tz. prdopodobeństo (przy H 0 : m m ) zobsero tego ułdu średch próboych,,...,, dl tórego przyme ed różc pomędzy średm m est fłszye uz z stotą est róe α. Jeżel est grup, to test Tuey, otrolue łączy błąd I rodzu dl ( ) poróń edocześe (per expermet) Test Nem-Keuls est modyfcą testu Tuey yorzystuącą formcę o lośc mesc pomędzy bdym średm uporządoym cągu średch. Algorytm (dl edoo lczych grup). Uporządoć średe próboe,,...,. Dl dóch średch stote róże eżel odległych o r mesc odpodące m średe m m są W Wr, gdze Wr qα ( r, df ) W, df est lczbą stop sobody, lość obserc żde grupe, q α ( r, df ) prostro rtość rytycz studetyzoego rozstępu (tblce). Ug. Przymuemy, że sąsede średe odległe są o sre o czyl r rg( ) - rg( ) + W Jeżel grupy e są róolcze, to zmst W r leży użyć W q α ( r, df ) ( + ). Test elorotych rozstępó Duc est podoby do dóch poprzedch, gdyż est oprty studetyzoym rozstępe, lecz róż sę od poprzedch tym, że zmey est pozom stotośc przy poszczególych poróch. Gdy średe próboe zostą uporządoe są odległe o r r 4

5 ttysty Wyłd Adm Ćmel A4 0 cmel@gh.edu.pl mesc, to stotość różcy odpodących m średch populcch est testo pozome -(-α) r- Algorytm (dl edoo lczych grup). Uporządoć średe próboe,,...,. Średe m m są stote róże eżel odpodące m średe próboe odległe o r mesc spełą rue ' Wr ' W, gdze Wr q' α ( r, df ), df est lczbą stop sobody, lość obserc żde grupe, ( r, df ) prostro rtość rytycz testu Duc (tblce). Jeżel grupy są przyblżeu róolcze, to zmst leży użyć ~. Test cheffe go. Rozżmy dooly otrst I m H 0 :, ' q α I m 0 obec ltertyy H : I Chcemy zeryfoć hpotezę. Rozżmy dooly otrst próboy Iˆ dl tórego eobcążoym estymtorem rc est Vˆ( Iˆ) 3. Kotrst I uzmy z stoty (stote róży od 0), gdy gdze, ( ) Iˆ ( ),, α > F,, α, F est tylem rzędu -α rozłdu cetrlego edecor Fsher F. 4. Prdopodobeństo zobsero fłszye stotego otrstu est róe α. Test cheffe'go otrolue łączy błąd ęsze lczby poróń ż test Tuey', ęc est brdze osertyy (trude odrzucć H 0 ). W teśce cheffego pozome α prdopodobeństo zobsero fłszye stotego otrstu e przercz α. Poró testó. W poższe tbel zestoo rtośc progoe po przeroczeu tórych różce uzemy z stote. Rozżoo poróe 6 grup, przy czym prób dl żde grupy lczy 5 elemetó 45. Test Lczb mesc pomędzy średm r Fsher NIR Tuey Nem-Keuls Duc cheffe

6 ttysty Wyłd Adm Ćmel A4 0 cmel@gh.edu.pl Wdć, że brdze osertyy est test cheffe go me osertyy (czyl brdze czuły) test NIR. Z ug otrolę błędu gody polece est test Tuey. ymulce preferuą rcze test Nem-Keulus. Z ug czułość duże uze śród prtyó zbudzł test Duc. N ugą zsługue eszcze test Duett elorotych poróń z yróżoą grupą otrolą 6

Nadokreślony Układ Równań

Nadokreślony Układ Równań Mchł Pzos Istytut echolog Iforcyych Iżyer Ląoe Wyzł Iżyer Ląoe Poltech Kros Noreśloy Uł Róń Z oreśloy ułe loych róń lgebrczych y o czye sytuc, gy lczb loo ezleżych róń est ęsz ż yr przestrze (lczb zeych).

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

Michał Pazdanowski Instytut Technologii Informacyjnych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechnika Krakowska.

Michał Pazdanowski Instytut Technologii Informacyjnych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechnika Krakowska. chł Pzdos Istytut Techolog Iforcyych Iżyer ądoe Wydzł Iżyer ądoe Poltech Kros Aprosyc Aprosycą zyy procedurę zstępo ede fuc (fuc prosyo) ą fucą (fuc prosyuąc) t sposób, by fuce te eele sę różły sese oreśloe

Bardziej szczegółowo

R, R, R n itd. przestrzenie wektorowe, których elementami są wektory określone przez długość, kierunek i zwrot.

R, R, R n itd. przestrzenie wektorowe, których elementami są wektory określone przez długość, kierunek i zwrot. WYKŁAD. PRZESTRZENIE AFINICZNE, PROSTA. PŁASZCZYZNA. E PRZESTRZENIE AFINICZNE y P(,, c) x z E, E, E d. - rzesrzee ukoe, kórych elemem są uky ose rzy omocy sółrzędych, j. ukłdó lcz rzeczysych osc (, ),

Bardziej szczegółowo

Rozkłady prawdopodobieństwa 1

Rozkłady prawdopodobieństwa 1 Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Wykład 6. Stabilność układów dynamicznych

Wykład 6. Stabilność układów dynamicznych Wyłd 6. Sblość ułdó dymcych Rożmy obe dymcy (uoomcy e poddy ymueom) d d d F( ) dm d Pu róog d F( ) r d Obe loy r r mcer( ) de Ułd e bly eżel yrącoy e u róog oe prodoy do u róog Defc blośc ee Lpuo Pu róog

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody umerycze w przyłdch Podręcz Poltech Lubels Poltech Lubels Wydzł Eletrotech Iformty ul. Ndbystrzyc 38A -68 Lubl Bet Pńczy Edyt Łus J Sor Teres Guz Metody umerycze w przyłdch Poltech Lubels Lubl Recezet:

Bardziej szczegółowo

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,

Bardziej szczegółowo

INFORMATYKA W CHEMII Dr Piotr Szczepański

INFORMATYKA W CHEMII Dr Piotr Szczepański INFORMATYKA W CHEMII Dr Potr Szczepńk Ktedr Chem Fzczej Fzkochem Polmeró ANALIZA REGRESJI REGRESJA LINIOWA. REGRESJA LINIOWA - metod jmejzch kdrtó. REGRESJA WAŻONA 3. ANALIZA RESZT 4. WSPÓŁCZYNNIK KORELACJI,

Bardziej szczegółowo

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego). TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi o tym samym 2 x

będą niezależnymi zmiennymi losowymi o tym samym 2 x Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW

DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jacka wykład II, 3.05.016 PORÓWNANIE WIĘCEJ NIŻ DWÓCH POPULACJI TESTY NIEPARAMETRYCZNE Pla a dzsaj 1. Porówywae węcej ż dwóch populacj test jedoczykowej aalzy waracj (ANOVA).

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

4/1. Wnioskowanie statystyczne: hipotezy 1 Statystyka w zadaniach. Małgorzata Podogrodzka

4/1. Wnioskowanie statystyczne: hipotezy 1 Statystyka w zadaniach. Małgorzata Podogrodzka Młgorzt Podogrodz Wosowe sttystycze: hpotezy ttysty w zdch 4/ Wosowe sttystycze zjduje rdzo szeroe zstosowe prwe we wszystch dzedzch u. Osy zgłęjące wedzę z tego przedmotu, e mją ogół prlemów z dorem odpowedch

Bardziej szczegółowo

są dyspersjami wartości mierzonych parametrów A

są dyspersjami wartości mierzonych parametrów A Dopsoe ucj oej eou Dopsoe ucj oej eou Dopsoe ucj oej Ze Y jest oą ucją X Y A A X W poró Y ją rozłd or o dspersj Y tór ogó przpdu róeż zeż od X. Wrtośc X e są orczoe łęd u jgorsz pdu oż je poąć poróu z

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki: Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa) Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe

Bardziej szczegółowo

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84 Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel, utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 1. Metody obliczeniowe

Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 1. Metody obliczeniowe Nr: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch t, y zde mogło yć rozwąze przez omputer. Rozwązywe ułdów rówń lowych.

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz

Bardziej szczegółowo

Przegląd wybranych testów

Przegląd wybranych testów Statystya Wyład 7 Adam Ćmel A3-A4 3a cmel@agh.edu.pl Przegląd wybraych testów Testy dotyczące wartośc oczewae w rozładze ormalym problem testowaa rówośc średch w dwóch zależych populacach o rozładze ormalym.

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

MECHANIKA BUDOWLI 13

MECHANIKA BUDOWLI 13 1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym

Bardziej szczegółowo

Zasada wariacyjna mechaniki kwantowej

Zasada wariacyjna mechaniki kwantowej Zsd wry meh wtwe uł eerg: K ( [ ] Hˆ ( K de rmwe (łwe z wdrtem fu przyprz dw est wrt zew eerg w ste psym t fu. Jest t p e gze d p fu. u przyprz dwue wrt zbwe zb wrt fu. Argumetm s zby. D fułu rgumetm s

Bardziej szczegółowo

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12.

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12. Zadae p (X p (X ( ( π 6 6 e 6 X m ( π 6 6 e 6 ( X C e m 6 X, gdze staªa C e zale»y od statystyk X (X,, X 6, a m jest w ksze od zera Zatem p (X/p (X jest emalej c fukcj statystyk T (X 6 X ªatwo pokaza,»e

Bardziej szczegółowo

ĆWICZENIE 5 TESTY STATYSTYCZNE

ĆWICZENIE 5 TESTY STATYSTYCZNE ĆWICZENIE 5 TESTY STATYSTYCZNE Cel Przedstawee wybraych testów statystyczych zasad wyboru właścwego testu przeprowadzea go oraz terpretac wyów. Wprowadzee teoretycze Testem statystyczym azywamy metodę

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów

r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów Opowł: Jo Kselńs EKONOMETRIA - WZORY Metod doou zmeh Metod Now * t I I I Metod Hellwg om L l l K p p pk h l l K p H l h pk Metod mometów e Regesj post Modele: MNK m s s Y X C s v Opowł: Jo Kselńs Współz:

Bardziej szczegółowo

Projekt 3 3. APROKSYMACJA FUNKCJI

Projekt 3 3. APROKSYMACJA FUNKCJI Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle

Bardziej szczegółowo

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

Rozpraszania twardych kul

Rozpraszania twardych kul Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne

Bardziej szczegółowo

Kwadratury numeryczne

Kwadratury numeryczne Kdrtur umercze Kdrturm umerczm zm zor służące do przlżoego zcz rtośc cłe ozczoch oszrze edo lu elo mrom. Olcze cłe ozczoch oszrze elomrom sprodz sę do elorotego zstoso drtur dl oszru edomroego. Ide postępo

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA POLIECHIK CZĘSOCHOWSK KEDR IŻYIERII KOMPUEROWEJ PRC DOKORSK SYSEMY ROZMYO-EUROOWE RELIZUJĄCE RÓŻE SPOSOY ROZMYEGO WIOSKOWI Roert owc Promotor: dr h. ż. Dut Rutows rof. dzw. P.Cz. Częstochow 999 eszm chcłm

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

Estymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości parametrów rozkładu populacji.

Estymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości parametrów rozkładu populacji. Botatytyka, 018/019 dla Fzyk Medyczej, tuda magterke etymacja etymacja średej puktowa przedzał ufośc średej rozkładu ormalego etymacja puktowa przedzałowa waracj rozkładu ormalego etymacja parametrów rozkładu

Bardziej szczegółowo

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj

Bardziej szczegółowo

11. Aproksymacja metodą najmniejszych kwadratów

11. Aproksymacja metodą najmniejszych kwadratów . Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""

6. *21! 4 % rezerwy matematycznej. oraz (ii) $ :;! +!!4 oraz  % & !4!  )$!!4 1 1!4 )$$$  ' Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA prwch rękops do żytk słżboweo ISTYTUT RGOLKTRYKI POLITCHIKI WROCŁAWSKIJ Rport ser SPRAWODAIA r LABORATORIUM TORII I THCIKI STROWAIA ISTRUKCJA LABORATORYJA ĆWICI r 9 Sterowe optymle dyskretym obektem dymcym

Bardziej szczegółowo

Ó Ó ą ć ą ą ą Ź ą ą Ż Ż Ę Ó Ż ą ć ć ź Ó Ź ź ź ą Ó Ś ą ą ć ć Ż ą Ż ą Ó ą ć ą Ż Ó ć ć ć Ę ą Ó Ł Ó Ź Ę ą ć ć ź Ó Ź Ó Ź ć ć ą Ż ą ź Ż Ź ć ć ć Ż Ę Ą ą ą Ź Ż Ź Ź ź ź Ź ć ą ą ź ź Ż Ż Ą ź Ę ą ć ą ą Ó Ź ć Ę ź ź

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost

Bardziej szczegółowo

Matematyczny opis ryzyka

Matematyczny opis ryzyka Aalza ryzyka kosztowego robót remotowo-budowlaych w warukach epełe formac Mgr ż Mchał Bętkowsk dr ż Adrze Powuk Wydzał Budowctwa Poltechka Śląska w Glwcach MchalBetkowsk@polslpl AdrzePowuk@polslpl Streszczee

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZA ITELIGECJA WYKŁAD. SYSTEMY EUROOWO-ROZMYTE Częstocow 4 Dr b. ż. Grzegorz Dude Wdzł Eletrcz Poltec Częstocows SIECI EUROOWO-ROZMYTE Sec euroowo-rozmte pozwlją utomtcze tworzee reguł podstwe przłdów

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce.

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce. Metody probablstycze statystyka Wykład 7: Statystyka opsowa. Rozkłady prawdopodobestwa wystpujce w statystyce. Podstawowe pojca Populacja geerala - zbór elemetów majcy przyajmej jed włacwo wspól dla wszystkch

Bardziej szczegółowo

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą. Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe. Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys.

Bardziej szczegółowo

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna. terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest

Bardziej szczegółowo

Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci

Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy

Bardziej szczegółowo

Ł Ł ć

Ł Ł ć Ą Ł Ł Ł Ś Ł Ś Ć Ł Ł ć ź ć ż ć ź ź Ą Ś ż ć Ż ż Ą Ż Ś ćż Ą ż Ż ć Ś ć ć ć Ł Ą ź ź Ł Ż Ź ć ć ć Ż Ś ż ż ć Ł ć ź ż ż ż ć Ą ź ż ć ż ż ż ź ż Ą Ż Ż ż Ż Ą ż ć ź ż ź ć Ż Ł ż Ś ć Ż ć ć ż ć Ć ć ć ć ć ż ć Ż Ł Ł Ż Ź

Bardziej szczegółowo

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19 Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

ć ć ź ć ć ć Ź ź Ź ź

ć ć ź ć ć ć Ź ź Ź ź ć Ż Ż ć ć ć ź ć ć ć Ź ź Ź ź ć ź ć ź ć ź ź ź ź ź ź ź ć ć ź ć źć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ź ć ć ć ć Ź ć ć ć Ó Ż ć ć Ź ć ć ć ć ć ć ć ć ć ć ć Ź ć ź ć ć ć ć ź ć ć ć

Bardziej szczegółowo