PEWNE RODZINY CHARAKTERYSTYCZNE KODÓW LINIOWYCH
|
|
- Zbigniew Wieczorek
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zeszyty Naukowe WSInf Vol 12, Nr 1, 2013 Mariusz Frydrych 1,2, Maciej Kacperski 1,3, Grzegorz Zwoliński 1,3 1 Wyższa Szkoła Informatyki i Umiejętności 2 Uniwersytet Łódzki, Wydział Matematyki i Informatyki 3 Politechnika Łódzka, Instytut Mechatroniki i Systemów Informatycznych frydrych@wsinf.edu.pl, maciekka@wsinf.edu.pl, zwolinsk@wsinf.edu.pl PEWNE RODZINY CHARAKTERYSTYCZNE KODÓW LINIOWYCH Streszczenie W pracy przedstawiono metodę generowania pewnych rodzin kodów liniowych nad ciałami skończonymi charakterystyki większej niż dwa w najobszerniejszej klasie ze względu na rozmiar rozmaitości Grassmanna, tzn. gdy wymiar jest równy kowymiarowi. Metoda oparta jest na zanurzeniu pewnej prostej rzutowej w rozmaitość Grassmana. Słowa kluczowe: kodowanie, ciała skończone, kody liniowe, metryka Hamminga. 1 Wprowadzenie Kody liniowe stosowane są powszechnie w przesyłaniu danych w zaszumianym medium transmisyjnym. Wymiar kodu to przepustowość łącza transmitowanej informacji. Z kolei kowymiar kodu, mierzy tak zwaną nadmiarowość, wielkość niezbędną do wykrywania i ewentualnej korekcji błędów przesyłanych danych. Liniowość kodu znakomicie upraszcza procesy kodowania i dekodowania, co skutkuje dużą wydajnością implementowanych algorytmów. Z oczywistych powodów, najczęściej stosuje się kody zero-jedynkowe, co znacznie zawęża spektrum możliwej do uzyskania jakości kodu. Zastosowanie większej liczby stanów (ciał skończonych charakterystyki większej niż dwa), daje elastyczną strukturę kolekcji kodów liniowych. 2 Ciała Galois Folklor. Fq - ciało skończone (Galois) charakterystyki p = _(Fq), p - liczba pierwsza, q = pw, w N ([5], [1]). Realizacja: f Fp[X], deg f = w - nieprzywiedlny wielomian stopnia w nad ciałem Fp = {0, 1,.., p 1}, Fq Fp[X]/(f). 39
2 Pewne rodziny... Ciało Fq jest ciałem cyklotomicznym (grupa multiplikatywna F * q = Fq \ {0} jest grupą cykliczną), tzn. złożone jest z 0 i q -1 pierwiastków z jedynki stopnia q-1 = p w -1. Istnieje ξ Fq - pierwiastek pierwotny (jest ich φ(q - 1)) Fq = {1, ξ, ξ 2, ξ 3, ξ q-2 } {0}. (1) Przykład. F16 - ciało 16-elementowe Przykład (c.d.). (2) (3) 40
3 M. Frydrych, M. Kacperski, G. Zwoliński Przykład (c.d.). (4) 3 Kod liniowy Niech, k, n, p, w, q N; p - liczba pierwsza; q = p w, k n. Definicja. Każdą k-wymiarową podprzestrzeń wektorową C przestrzeni n- wymiarowej F n q nazywamy kodem liniowym o długości n, wymiaru k, nad ciałem Fq ([4], [3]). Uwaga. Wybór bazy B = (b1,, bk), b1,.., bk C Fnq indukuje monomorfizm przestrzeni liniowych zwany kodowaniem liniowym. Uwaga. Dostajemy (5) tzw. krótki ciąg dokładny przestrzeni wektorowych. codimc =dim Fnq/C = n-k. Składając π z dowolnym izomorfizmem Fnq/C F n-k q dostajemy ponownie (krótki ciąg dokładny). Operator (macierz) H nazywamy anihilatorem, macierzą kontrolną (check matrix) kodu C. (6) (7) 41
4 Pewne rodziny... Uwaga. Kowymiar podprzestrzeni codimc = n - k to ilość stopni kontrolnych kodu - nadmiarowość a wymiar dimc = k zawartość informacji. Wektory bazowe b1,.., bk Fnq są liniowo niezależne, więc znajdziemy podciąg 1 <= j1 <. < jk <= n, taki że macierz jest nieosobliwa. Uwaga (c.d.). (8) (9) P jest odpowiednią macierzą permutacji osi współrzędnych przestrzeni Fnq. Jest to tzw. standardowa postać bazowa kodu liniowego C. Uwaga. Dla postaci standardowej kodu C anihilator (macierz kontrolna, check matrix) H ma postać (10) (11) gdzie Ik,k, In-k,n-k są macierzami jednostkowymi odpowiednich wymiarów. 4 Metryka Hamminga Definicja. Rozszerzaja c metryke dyskretna (jedyna ) w ciele Fq 42 (12)
5 M. Frydrych, M. Kacperski, G. Zwoliński do normy L 1 w przestrzeni wektorowej Fnq wzorem (13) otrzymujemy, tzw. metrykę Hamminga Definicja. Dla kodu liniowego C F n q liczbę (14) (15) nazywamy minimalną odległością Hamminga lub krócej odległością Hamminga ([2]). Stwierdzenie. Odległość Hamminga kodu C F n q jest równa minimalnej liczbie liniowo zależnych kolumn anihilatora kodu C. Możemy wykryć d błędów kodu C oraz skorygować błędów ([2]). 5 Grassmanian Definicja. Ogół wszystkich podprzestrzeni k-wymiarowych przestrzeni n- wymiarowej F n q nazywamy rozmaitością Grassmana lub Grassmanianem i oznaczamy Uwaga. Z postaci standardowej widać, że Grassmanian Grass(k, n, Fq) jest rozmaitością wymiaru k (n - k) nad ciałem Fq i można go naturalnie zanurzyć jako kwadrykę w przestrzeni rzutowej (16) (17) Pełna grupa liniowa GL(F n q) działa tranzytywnie na podprzestrzeniach ustalonego wymiaru, stąd 43
6 Stwierdzenie. Grassmanian jest przestrzenią jednorodna Pewne rodziny... F(k, n, Fq) jest grupą macierzy postaci (18) gdzie (19) (20) b jest dowolną macierzą prostokątną o k wierszach i n-k kolumnach i elementach w ciele Fq. Ponieważ grupa liniowa składa się z (21) elementów, otrzymujemy Wniosek. Liczba elementów rozmaitości Grassmana wynosi (22) Przykład. Zestawienie: k - wymiar kodu, n - długość kodu, q - ilość elementów w ciele Fq, # [k, n]q - ilość elementów Grassmanianu Grass(k, n, Fq). 44
7 M. Frydrych, M. Kacperski, G. Zwoliński (23) 6 Generowanie szczególnych kodów Konstrukcja. Rozważmy teraz liczbę pierwszą p > 2, oraz liczby naturalne k, n = 2k. Będziemy poszukiwać k-wymiarowych kodów liniowych o długości n, tzn. długość kodu będzie równa podwojonemu wymiarowi. Grassmanian Grass(k, 2k, Fp) jest najbogatszy w wymiarze połówkowym bowiem składa się z (24) elementów. Przestrzeń wektorową F n p nad ciałem Fp możemy potraktować jako ciało Fpn poprzez rozszerzenie stopnia n ciała prostego Fp za pomocą nieprzywiedlnego wielomianu f Fp[X]; deg f = n. Od tej pory będziemy w powyższy sposób utożsamiać ciało Fpn z przestrzenią liniową F n p nad ciałem Fp: 45
8 Pewne rodziny... Rozważmy automorfizm Frobeniusa (25) (26) którego n-ta iteracja (27) jest identycznością (Id = 1) na F n p. Ponieważ n = 2k, to k-ta iteracja jest inwolucją. Oznaczmy ją przez τ. Otrzymaliśmy operator liniowy (28) który w naturalny sposób rozkłada przestrzeń F n p na sumę prostą dwóch podprzestrzeni własnych: (29) Ponieważ charakterystyka ciała jest różna od dwóch, dostajemy dwa operatory idempotentne (rzuty) spełniające warunki: (30) Z drugiej strony zauważmy, że 46 (31)
9 M. Frydrych, M. Kacperski, G. Zwoliński (32) co oznacza, że V + jest rozszerzeniem stopnia k ciała prostego Fp, tzn. jest izomorficzne z ciałem skończonym p k -elementowym Fpk. Podsumowując, otrzymaliśmy ciąg kolejnych ciał, rozszerzeń ciała prostego Fp: gdzie (33) (34) (35) Kluczowe dla naszej konstrukcji jest rozszerzenie stopnia dwa Fnp /V + ciała p k -elementowego V + przez ciało p n -elementowe F n p. Mianowicie, traktujemy ciało F n p jako dwuwymiarową przestrzeń wektorową nad ciałem V +. Automofizm ciała F n p jako operator liniowy nad ciałem prostym Fp (36) jest niezmienniczy na podprzestrzeni V +, więc możemy go traktować jako operator liniowy nad ciałem V + Fpk. Jeżeli wybierzemy dowolny element ξ V -, ξ 0 to mnożenie przez ξ -1 ustala izomorfizm pomiędzy podprzestrzeniami: a izomorfizmem odwrotnym jest: (37) (38) Ponieważ to tzn. element ξ realizuje rozszerzenie F n p /=V + stopnia dwa. W powyższy sposób dostajemy rozkład ciała F n p na sumę prostą podprzestrzeni liniowych (39) 47
10 Pewne rodziny... Każdej jednowymiarowej (nad V + Fpk ) podprzestrzeni wektorowej odpowiada naturalnie k-wymiarowa (nad Fp) podprzestrzeń liniowa przestrzeni F n p. (40) Wykorzystując współrzędne jednorodne, prostą rzutową P 1 (Fpk ) możemy utożsamić z Jawna postać włożenia Θ wygląda następująco: (41) (42) Przykład. Aby zilustrować powyższą konstrukcję rodzin kodów liniowych rozważmy ciało skończone F76 rzędu 7 6 = przyjmując następujące wartości parametrów: wielomian nieprzywiedlny f F7[X] stopnia n = 6: p = 7, k = 3, n = 2k = 6, (43) generator (pierwiastek pierwotny) g ciała F76 rzędu = (44) Realizacją ciała F76 jest ucięta algebra wielomianów: (45) 48 (46) Obliczenia będziemy prowadzić w uporządkowanej bazie sześciowymiarowej przestrzeni wektorowej F76 F67 nad ciałem F7:
11 M. Frydrych, M. Kacperski, G. Zwoliński (47) Macierze automorfizmu Frobeniusa oraz inwolucja operatory rzutu (idempotenty) (48) (49) bazy podprzestrzeni (jako odpowiednie kolumny macierzy): elementy (50) (51) Dla ujednolicenia oznaczeń, bazą przestrzeni F 6 7 jest (52) 49
12 Pewne rodziny... oraz baza podprzestrzeni V + (53) Mnożenie w ciele F 6 7 można przedstawić jako tensor (54) gdzie współczynniki są stałymi struktury (mnożenia). Gdy mnożenie przez lewy czynnik ograniczymy do podprzestrzeni to otrzymamy częściowy tensor w postaci trzech macierzy Włożenie generujące = 344 kodów liniowych (55) realizujemy teraz następująco: (56) (57) Ogólnie, każda podprzestrzeń jednowymiarowa nad F73 jest odwzorowywana na podprzestrzeń wymiaru trzy nad F7 za pomocą operacji 50
13 M. Frydrych, M. Kacperski, G. Zwoliński (58) 7 Podsumowanie Praca opisuje metodę szybkiego generowania kodów liniowych w wymiarze połówkowym, tzn. gdy wymiar kodu jest równy jego kowymiarowi. Kod jest reprezentowany w przestrzeni wektorowej nad ciałem skończonym charakterystyki większej niż dwa, co dało możliwość wykorzystania automorfizmu Frobeniusa do konstrukcji pewnych operatorów liniowych mających naturę geometryczną. Metodę zilustrowano przykładem w wymiarze trzy (wymiar i kowymiar kodu) nad ciałem charakterystyki siedem. 8 Literatura [1] Winter D., The Structure of Fields. Springer-Verlag New York- Heidelberg-Berlin, [2] MacWilliams F.J., Sloane N.J.A., The Theory of Error-Correcting Codes. North-Holland Publishing Company, [3] Pless V., Introduction to the Theory of Error-Correcting Codes.. John Wiley and Sons, Inc., [4] Biswas S., Introduction to Codding Theory: Basic codes and Shannon s theorem. Internet, [5] Browkin j., Teoria ciał. PWN, Biblioteka Matematyczna, tom 49, SOME CHARACTERISTIC FAMILIES OF LINEAR CODES Summary: The paper presents a method to generate some families of linear codes over finite fields of characteristics greater than two in the widest class due to the size of Grassmann manifold, i.e. when the dimension is equal to codimension. Our method applies some simple embedding of projective line into the Grassman manifold. Keywords: codding, finite fields, linear codes, Hamming metrics. 51
Quality characteristics of finite linear codes
Studia i Materiały Informatyki Stosowanej, Tom 6, Nr 17, 2014 str 10-15 OCENA JAKOŚCIOWA KODÓW LINIOWYCH O SKOŃCZONYCH CHARAKTERYSTYKACH Mariusz Frydrych, Wojciech Horzelski, Dariusz Doliwa Uniwersytet
arxiv: v1 [cs.it] 9 Nov 2014
arxiv:1411.2885v1 [cs.it] 9 Nov 2014 GENERATOR KODÓW LINIOWYCH O SKOŃCZONYCH CHARAKTERYSTYKACH Mariusz Frydrych, Wojciech Horzelski Uniwersytet Łódzki, Wydział Matematyki i Informatyki frydrych@math.uni.lodz.pl,
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =
Ciała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
Kody blokowe Wykład 1, 3 III 2011
Kody blokowe Wykład 1, 3 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding Theory
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry
Matematyka dyskretna
Matematyka dyskretna Wykład 7: Kody korygujące błędy Gniewomir Sarbicki Błędy transmisji i kodowanie nadmiarowe Zakładamy, że przy pewnym małym prawdopodobieństwie ɛ przy transmisji bit zmienia wartość.
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Kryptografia - zastosowanie krzywych eliptycznych
Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest
3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
4 Przekształcenia liniowe
MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami
Kombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1
Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 1. (a) Udowodnić, że jeśli grupa ilorazowa G/Z(G) jest cykliczna, to grupa G jest abelowa (Z(G) oznacza centrum grupy
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.
Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Kody blokowe Wykład 2, 10 III 2011
Kody blokowe Wykład 2, 10 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding
spis treści 1 Zbiory i zdania... 5
wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
Postać Jordana macierzy
Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algebra z Geometria Analityczna Nazwa w języku angielskim : Algebra and Analytic Geometry Kierunek studiów
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Wykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
W11 Kody nadmiarowe, zastosowania w transmisji danych
W11 Kody nadmiarowe, zastosowania w transmisji danych Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Plan wykładu 1. Kody nadmiarowe w systemach transmisji cyfrowej 2. Typy kodów,
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Endomorfizmy liniowe
Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
DB Algebra liniowa 1 semestr letni 2018
DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i
15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Zestaw zadań 14: Wektory i wartości własne. ) =
Zestaw zadań 4: Wektory i wartości własne () Niech V = V V 2 będzie przestrzenią liniową nad ciałem K, w którym + 0 Znaleźć wszystkie podprzestrzenie niezmiennicze rzutu V na V wzdłuż V 2 oraz symetrii
Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
Imię i nazwisko... Grupa...
Algebra i teoria mnogości 2.09.2014 Za każde zadanie można otrzymać 0-3 pkt. W zadaniach 1-5 w puste pola należy wpisać TAK lub NIE. Każda odpowiedź oceniana jest osobno (1pkt za poprawną odpowiedź, 0.5pkt
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).
B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 1. Sprawdzić, czy następujące podzbiory są podprzestrzeniami liniowymi przestrzeni R n (dla odpowiednich n) (a) {[u, v, 2u, 4v] ; u, v R} R 4, (b) {[u, v,
Przekształcenia liniowe
Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Instytut Informatyki Politechnika Poznańska Proces transmisji może w prowadzać błędy do przesyłanych wiadomości błędy pojedyncze lub grupowe Detekcja: Wymaga uznania, że niektóre wiadomości są nieważne
Algebry skończonego typu i formy kwadratowe
Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite
13. Cia la. Rozszerzenia cia l.
59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja
Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie
Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie
z = x + i y := e i ϕ z. cos ϕ sin ϕ = sin ϕ cos ϕ
Izometrie liniowe Przypomnijmy, że jeśli V jest przestrzenią euklidesową (skończonego wymiaru), to U End V jest izometrią wtedy i tylko wtedy, gdy U U = UU = E, to znaczy, gdy jest odwzorowaniem ortogonalnym.
Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
Zał. nr do ZW WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim PODSTAWY TEORII INFORMACJI Nazwa w języku angielskim Introduction to Information Theory Kierunek studiów (jeśli dotyczy): Matematyka
1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Laboratorium ochrony danych
Laboratorium ochrony danych Ćwiczenie nr 3 Temat ćwiczenia: Kod BCH Cel dydaktyczny: Zapoznanie się z metodami detekcji i korekcji błędów transmisyjnych za pomocą binarnych kodów cyklicznych, na przykładzie
Podstawy Informatyki: Kody. Korekcja błędów.
Podstawy Informatyki: Kody. Korekcja błędów. Adam Kolany Instytut Techniczny adamkolany@pm.katowice.pl Adam Kolany (PWSZ Nowy Sącz, IT) Podstawy Informatyki: Kody. Korekcja błędów. 11 stycznia 2012 1 /
1 Działania na zbiorach
Algebra liniowa z geometrią /4 Działania na zbiorach Zadanie Czy działanie : R R R określone wzorem (x x ) (y y ) := (x y x y x y + x y ) jest przemienne? Zadanie W dowolnym zbiorze X określamy działanie
Projekt matematyczny
Projekt matematyczny Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki Katowice VI Święto Liczby π 15 marca 2012 r. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 1 / 32 Wielkie twierdzenie
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Przestrzeń liniowa. Algebra. Aleksander Denisiuk
Algebra Przestrzeń liniowa Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p.
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Algebra z Geometrią Analityczną. { x + 2y = 5 x y = 9. 4x + 5y 3z = 9, 2x + 4y 3z = 1. { 2x + 3y + z = 5 4x + 5y 3z = 9 7 1,
Lista Algebra z Geometrią Analityczną Układy równań. Zadanie 1 Wyjaśnij na czym polega metoda elininacji Gaussa rozwiązując układ równań: { x + 2y = 5 x y = 9 Zadanie 2 Rozwiąż układ równań metodą eliminacji
1 Rząd macierzy. 2 Liniowa niezależność. Algebra liniowa. V. Rząd macierzy. Baza podprzestrzeni wektorowej
1 Rząd macierzy Rozpatrzmy równanie jednorodne Ax = 0, gdzie A M(n, k). Wiemy, że posiada ono rozwiązanie. Jednakże wymiar macierzy A, a tym samym liczba równań w odpowiadającym jej układzie równań liniowych
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad
Praca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Przekształcenia liniowe
ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przekształcenia liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4
Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez
1 Przestrzeń liniowa. α 1 x α k x k = 0
Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek
Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).
Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich
Algebra i jej zastosowania ćwiczenia
Algebra i jej zastosowania ćwiczenia 13 stycznia 013 1 Reprezentacje liniowe grup skończonych 1. Pokazać, że zbiór wszystkich pierwiastków stopnia n z jedności jest grupa abelowa wzgle dem mnożenia.. Pokazać,