Quality characteristics of finite linear codes
|
|
- Jolanta Przybylska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Studia i Materiały Informatyki Stosowanej, Tom 6, Nr 17, 2014 str OCENA JAKOŚCIOWA KODÓW LINIOWYCH O SKOŃCZONYCH CHARAKTERYSTYKACH Mariusz Frydrych, Wojciech Horzelski, Dariusz Doliwa Uniwersytet Łódzki Wydział Matematyki i Informatyki ulbanacha 22, Łódź frydrych@mathunilodzpl horzel@mathunilodzpl doliwa@mathunilodzpl Streszczenie: Praca opisuje właściwości jakościowe kodów liniowych w wymiarze połówkowym, tzn gdy wymiar kodu jest równy jego kowymiarowi Przedstawiona została analiza odległości Hamminga dla kodów reprezentowanych w przestrzeni wektorowej nad ciałem skończonym charakterystyki większej niż dwa Konstrukcja kodów została oparta o automorfizm Frobeniusa Rozpatrywano kody o wymiarze trzy zanurzone w sześcioelementowej przestrzeni nad ciałem siedmioelementowym Słowa kluczowe: kody liniowe, kodowanie, odległość Hamminga Quality characteristics of finite linear codes Abstarct: Paper describes the qualitative properties of linear codes in the dimension of "half-width", ie when the code dimension is equal to its co-dimension The codes are constructed with use of Frobenius automorphism in a vector space over a finite field of the characteristic more than two We considered three dimensions codes embedded in six dimensional space over the field with seven elements An analysis of the Hamming distance for such a codes is also represented in the paper Keywords: 1 WSTĘP 10 Linear codes, coding, Hamming distance Kody liniowe stosowane są powszechnie w przesyłaniu danych w zaszumionym medium transmisyjnym Przez wymiar kodu rozumie się tu wielkość pojedynczego słowa kodowego, z kolei kowymiar kodu, mierzy tak zwaną nadmiarowość czyli ilość informacji niezbędnej do wykrywania i ewentualnej korekcji błędów przesyłanych danych, co łącznie daje przepustowość łącza Liniowość kodu znakomicie upraszcza procesy kodowania i dekodowania, co skutkuje duża wydajnością implementowanych algorytmów Z oczywistych powodów, najczęściej stosuje się kody binarne, co znacznie zawęża spektrum możliwej do uzyskania jakości kodu Zastosowanie większej liczby stanów (ciał skończonych charakterystyki większej niż dwa), daje elastyczną strukturę kolekcji kodów liniowych Wykorzystywana tutaj metoda szybkiego generowania takich kodów została przedstawiona w pracy [2] 2 KOD LINIOWY Niech q = p w,, p liczba pierwsza, Definicja Każdą k-wymiarową podprzestrzeń wektorową C przestrzeni n-wymiarowej nazywamy kodem liniowym o długości n, wymiaru k, nad ciałem [1][4] Wybór bazy indukuje monomorfizm przestrzeni liniowych
2 Mariusz Frydrych, Wojciech Horzelski, Dariusz Doliwa,Ocena jakościowa kodów liniowych o skończonych charakterystykach zwany kodem liniowym Dostajemy tzw krótki ciąg dokładny przestrzeni wektorowych Składając π z dowolnym izomorfizmem dostajemy ponownie krótki ciąg dokładny Operator (macierz) H nazywamy anihilatorem, macierzą kontrolną (check matrix) kodu C anihilator (macierz kontrolna) H ma następującą postać: gdzie, są macierzami jednostkowymi odpowiednich wymiarów 3 METRYKA HAMMINGA Definicja Rozszerzając metrykę dyskretną (jedyną) w ciele do normy L 1 w przestrzeni wzorem Kowymiar podprzestrzeni codimc = n - k to ilość stopni kontrolnych kodu (inaczej nadmiarowość), a wymiar dimc = k odpowiada zawartości informacji Wektory bazowe otrzymujemy tzw metrykę Hamminga są liniowo niezależne, więc znajdziemy podciąg Definicja Dla kodu liniowego liczbę taki że macierz, nazywamy minimalną odległością Hamminga lub krócej odległością Hamminga[4] Odległość Hamminga kodu jest nieosobliwa jest równa minimalnej liczbie liniowo zależnych kolumn anihilatora kodu C Dla takiego kodowania możliwe jest wykrycie d błędów kodu C oraz korekcja tych błędów[4] 4 GENERATOR KODÓW P jest odpowiednią macierzą permutacji osi współrzędnych przestrzeni Jest to tzw standardowa postać bazowa kodu liniowego C Dla postaci standardowej kodu C Generator kodów został zaimplementowany w języku C, przy wykorzystaniu biblioteki algebraicznej Computer Algebra System z Uniwersytetu w Bordeaux Wybrano ciało skończone rzędu 7 6 = przyjmując następujące wartości parametrów: 11
3 Studia i Materiały Informatyki Stosowanej, Tom 6, Nr 15, 2014 str p = 7, k = 3, n = 2k = 6, wielomian nieprzywiedlny stopnia n=6: Macierze automorfizmu Frobeniusa oraz inwolucja : generator (pierwiastek pierwotny) g ciała rzędu 7 6-1= : Do obliczeń wykorzystano funkcje biblioteki Computer Algebra System (w szczególności wykorzystywane były funkcje ffinit(),ffgen(), ffprimroot(), fforder()) : void init_kody(long prec) GEN p1; p = pol_x(fetch_user_var("p")); k = pol_x(fetch_user_var("k")); n = pol_x(fetch_user_var("n")); f = pol_x(fetch_user_var("f")); t = pol_x(fetch_user_var("t")); g = pol_x(fetch_user_var("g")); p = stoi(7); k = stoi(5); n = gmulsg(2, k); f = ffinit(p, gtos(n), -1); t = ffgen(f, -1); g = ffprimroot(t, NULL); p1 = fforder(g, NULL); GEN j; for (j = gen_0; gcmp(j, p1) <= 0; j = gaddgs(j, 1)) pari_printf("%ps; %Ps\n", j, gpow(g, j, prec)); return; operatory rzutu (idempotenty) π + i π - : bazy podprzestrzeni V + i V - (jako odpowiednie kolumny macierzy): oraz elementy : Dla ujednolicenia oznaczeń bazę przestrzeni oraz bazę podprzestrzeni V + :, oznaczmy: Realizacją ciała jest ucięta algebra wielomianów: Obliczenia prowadzone były w uporządkowanej bazie sześciowymiarowej przestrzeni wektorowej nad ciałem : Mnożenie w ciele można przedstawić jako tensor 12
4 Mariusz Frydrych, Wojciech Horzelski, Dariusz Doliwa,Ocena jakościowa kodów liniowych o skończonych charakterystykach else f( a, k, b ); gdzie współczynniki są stałymi struktury (mnożenia) Gdy mnożenie przez lewy czynnik ograniczymy do podprzestrzeni to otrzymamy częściowy tensor w postaci trzech macierzy: int act( int u[_k]) int v[_n], w[_n], r[_n][_k]; static unsigned long l= 1UL; mulv3( v, Vplus, u ); addv( w, v, xi0 ); mul3u( r, w ); print3u( r ); W wyniku tych działań otrzymujemy poszukiwane kody: 1 [ ] Włożenie generujące =344 kodów liniowych: Realizowane jest następująco: 2 [ ] 3 [ ] Ogólnie, każda podprzestrzeń jednowymiarowa nad odwzorowywana na podprzestrzeń wymiaru trzy nad pomocą operacji: jest za 344[ ] Poniżej przedstawiono niektóre z funkcji realizujące obliczanie kodów Funkcja tuple() generuje potrzebne krotki, natomiast wywoływana przez nią funkcja act() wykonuje odpowiednie operacja macierzowe: void tuple( int n, int k, int d, int (*f)( int*, int, int[_n][_k] ), int *a, int b[_n][_k]) if( d > 0 ) int j; for( j=0; j<n; ++j ) a[d-1]= j; tuple( n, k, d-1, f, a, b ); 13 5 ANALIZA JAKOŚCIOWA KODÓW Dla rozważanego przykładu możliwe odległości Hamminga wynoszą 1,2,3 oraz 4: Ponieważ wyznaczanie odległości Hamminga dla kodów liniowych jest problemem NP-trudnym [5], do obliczenia wag Hamminga wykorzystany został podstawowy algorytm (brute force): int check( int *a, int k, int b[_n][_k] ) int u[_n], j, non0= 0; mulv3( u, b, a ); for( j=0; j < _n; ++j ) if( u[j] ) ++non0;
5 Studia i Materiały Informatyki Stosowanej, Tom 6, Nr 15, 2014 str if( non0> 0 && disthamming > non0 ) disthamming= non0; return non0; Rysunek 1 przedstawia odległości Hamminga dla wcześniej wygenerowanych kodów Nieznaczna ilość otrzymanych kodów (sześć kodów) jest całkowicie bezużyteczna Odległość Hamminga wynosi dla nich 1, co nie pozwala nawet na wykrycie błędów Kolejne osiemdziesiąt sześć kodów również ma niewielkie zastosowanie - odległość Hamminga wynosi dla nich 2, co umożliwia wykrywanie błędów, ale nie pozwala na ich korekcję Dla większości otrzymanych kodów, dokładnie dla 252, możliwe jest zarówno wykrywanie, jak i korekcja błędów, tj odległość Hamminga jest większa od 2 Wśród nich uzyskano siedem optymalnych kodów o maksymalnej dla tego przykładu odległości Hamminga wynoszącej ] 135[ ] 164[ ] 179[ ] 205[ ] 222[ ] Szczegółowy rozkład wyników został zaprezentowany na rysunku 2: Rysunek 1 Dystrybucja odległości Hamminga kodów Optymalne kody: 5[ ] Rysunek 2 Rozkład minimalnych odległości Hamminga Jak widać na omówionym przykładzie opisywana metoda pozwala na generowanie kodów liniowych umożliwiających efektywne korygowanie błędów transmisji W przyszłości autorzy zamierzają przeprowadzić kompleksowe badania kodów generowanych przy pomocy takiej metody 112[
6 Mariusz Frydrych, Wojciech Horzelski, Dariusz Doliwa,Ocena jakościowa kodów liniowych o skończonych charakterystykach Literatura 1 Biswas S, Introduction to Codding Theory: Basic codes and Shannon s theorem ~may/vigre/vigre2008/reupapers/biswaspdf, Frydrych M, Horzelski W, Generator kodów liniowych o skończonych charakterystykach, arxiv 11/2014, CoRR abs/1411, MacWilliams FJ, Sloane NJA, The Theory of Error- Correcting Codes North-Holland Publishing Company, Pless V, Introduction to the Theory of Error-Correcting Codes John Wiley and Sons, Inc, Xiao-Yu Hu,Fossorier, MPC, Eleftheriou, E, On the computation of the minimum distance of low-density paritycheck codess Communications, IEEE International Conference,
PEWNE RODZINY CHARAKTERYSTYCZNE KODÓW LINIOWYCH
Zeszyty Naukowe WSInf Vol 12, Nr 1, 2013 Mariusz Frydrych 1,2, Maciej Kacperski 1,3, Grzegorz Zwoliński 1,3 1 Wyższa Szkoła Informatyki i Umiejętności 2 Uniwersytet Łódzki, Wydział Matematyki i Informatyki
arxiv: v1 [cs.it] 9 Nov 2014
arxiv:1411.2885v1 [cs.it] 9 Nov 2014 GENERATOR KODÓW LINIOWYCH O SKOŃCZONYCH CHARAKTERYSTYKACH Mariusz Frydrych, Wojciech Horzelski Uniwersytet Łódzki, Wydział Matematyki i Informatyki frydrych@math.uni.lodz.pl,
Kody blokowe Wykład 1, 3 III 2011
Kody blokowe Wykład 1, 3 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding Theory
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa
Kody blokowe Wykład 2, 10 III 2011
Kody blokowe Wykład 2, 10 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry
Matematyka dyskretna
Matematyka dyskretna Wykład 7: Kody korygujące błędy Gniewomir Sarbicki Błędy transmisji i kodowanie nadmiarowe Zakładamy, że przy pewnym małym prawdopodobieństwie ɛ przy transmisji bit zmienia wartość.
Laboratorium ochrony danych
Laboratorium ochrony danych Ćwiczenie nr 3 Temat ćwiczenia: Kod BCH Cel dydaktyczny: Zapoznanie się z metodami detekcji i korekcji błędów transmisyjnych za pomocą binarnych kodów cyklicznych, na przykładzie
Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017
Algebra liniowa Zadanie 1 Czy jeśli wektory x, y i z, należące do binarnej przestrzeni wektorowej nad ciałem Galois GF (2), są liniowo niezależne, to można to samo orzec o następujących trzech wektorach:
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
W11 Kody nadmiarowe, zastosowania w transmisji danych
W11 Kody nadmiarowe, zastosowania w transmisji danych Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Plan wykładu 1. Kody nadmiarowe w systemach transmisji cyfrowej 2. Typy kodów,
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Instytut Informatyki Politechnika Poznańska Proces transmisji może w prowadzać błędy do przesyłanych wiadomości błędy pojedyncze lub grupowe Detekcja: Wymaga uznania, że niektóre wiadomości są nieważne
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algebra z Geometria Analityczna Nazwa w języku angielskim : Algebra and Analytic Geometry Kierunek studiów
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję
Podstawy Informatyki: Kody. Korekcja błędów.
Podstawy Informatyki: Kody. Korekcja błędów. Adam Kolany Instytut Techniczny adamkolany@pm.katowice.pl Adam Kolany (PWSZ Nowy Sącz, IT) Podstawy Informatyki: Kody. Korekcja błędów. 11 stycznia 2012 1 /
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Nazwa Algebra liniowa z geometrią Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot Kod Studia Kierunek
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
1 WPROWADZENIE 1. Agata Pilitowska. parzysta. 3. Znaleźć odległość kodu kontroli parzystości nad ciałem GF (q).
1 WPROWADZENIE 1 Kody korekcyjne - zadania Agata Pilitowska 1 Wprowadzenie 1 Pokazać, że dla dowolnych wektorów c, f Z n 2, d(c, f ) = n (c i f i ) 2, i=1 wt(c + f ) = wt(c) + wt(f ) 2wt(cf ), wt(c + f
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 1. Sprawdzić, czy następujące podzbiory są podprzestrzeniami liniowymi przestrzeni R n (dla odpowiednich n) (a) {[u, v, 2u, 4v] ; u, v R} R 4, (b) {[u, v,
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
spis treści 1 Zbiory i zdania... 5
wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Przekształcenia liniowe
Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).
B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
4 Przekształcenia liniowe
MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.
Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechniki Łódzkiej MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Praca zawiera opis kształtowania przestrzeni n-wymiarowej, definiowania orientacji
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
1 WPROWADZENIE 1. Agata Pilitowska. parzysta. 3. Znaleźć odległość kodu kontroli parzystości nad ciałem GF (q).
1 WPROWADZENIE 1 Kody korekcyjne - zadania Agata Pilitowska 1 Wprowadzenie 1. Pokazać, że dla dowolnych wektorów c, f Z n 2, d(c, f ) = n (c i f i ) 2, i=1 wt(c + f ) = wt(c) + wt(f ) 2wt(cf ), wt(c +
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Przekształcenia liniowe
ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przekształcenia liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
Endomorfizmy liniowe
Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy
Wykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
Algebra z Geometrią Analityczną. { x + 2y = 5 x y = 9. 4x + 5y 3z = 9, 2x + 4y 3z = 1. { 2x + 3y + z = 5 4x + 5y 3z = 9 7 1,
Lista Algebra z Geometrią Analityczną Układy równań. Zadanie 1 Wyjaśnij na czym polega metoda elininacji Gaussa rozwiązując układ równań: { x + 2y = 5 x y = 9 Zadanie 2 Rozwiąż układ równań metodą eliminacji
MODEL RACHUNKU OPERATORÓW DLA RÓŻ NICY WSTECZNEJ PRZY PODSTAWACH
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 1 (192) 2013 Hubert Wysocki Akademia Marynarki Wojennej Wydział Mechaniczno-Elektryczny, Katedra Matematyki i Fizyki 81-103 Gdynia, ul. J. Śmidowicza
Detekcja i korekcja błędów w transmisji cyfrowej
Detekcja i korekcja błędów w transmisji cyfrowej Błędy w transmisji cyfrowej pojedyncze wielokrotne. całkowita niepewność względem miejsca zakłóconych bitów oraz czy w ogóle występują paczkowe (grupowe)
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA Z GEOMETRIĄ ANALITYCZNĄ Linear algebra and analytical geometry Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka,
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując
Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
Zał. nr do ZW WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim PODSTAWY TEORII INFORMACJI Nazwa w języku angielskim Introduction to Information Theory Kierunek studiów (jeśli dotyczy): Matematyka
Modulacja i Kodowanie. Labolatorium. Kodowanie Kanałowe Kody Hamminga
Modulacja i Kodowanie Labolatorium Kodowanie Kanałowe Kody Hamminga Kody Hamminga należą do grupy kodów korekcyjnych, ich celem jest detekcja I ewentualnie poprawianie błędów. Nazwa tego kody pochodzi
Ciała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Reprezentacje sygnału Jak reprezentujemy sygnał: wybieramy sygnały wzorcowe (bazę) rozwijamy sygnał w wybranej
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Układy liniowo niezależne
Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie
Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1
Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak
DB Algebra liniowa 1 semestr letni 2018
DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,
Automatyzacja procesu tworzenia sprzętowego narzędzia służącego do rozwiązywania zagadnienia logarytmu dyskretnego na krzywych eliptycznych
Automatyzacja procesu tworzenia sprzętowego narzędzia służącego do rozwiązywania zagadnienia logarytmu dyskretnego na krzywych eliptycznych Autor: Piotr Majkowski Pod opieką: prof. Zbigniew Kotulski Politechnika
Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.
Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,
wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów
KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją
Symulacja obliczeń kwantowych
Model kwantowych bramek logicznych w NumPy Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 10 października 2007 Plan prezentacji 1 Python
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,
1 Motywacje. 2 Zastosowania kodów. 3 Podstawowe definicje i oznaczenia. Sieci komputerowe II. Uniwersytet Warszawski Podanie notatek
Sieci komputerowe II Notatki Uniwersytet Warszawski Podanie notatek 17-01-2005 Wykład nr 3: 17-01-2005 Temat: Kody korygujące błędy 1 Motywacje 1. Ograniczenia nośnika powodują, że czasami ilość błędów
Przekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
1 Rząd macierzy. 2 Liniowa niezależność. Algebra liniowa. V. Rząd macierzy. Baza podprzestrzeni wektorowej
1 Rząd macierzy Rozpatrzmy równanie jednorodne Ax = 0, gdzie A M(n, k). Wiemy, że posiada ono rozwiązanie. Jednakże wymiar macierzy A, a tym samym liczba równań w odpowiadającym jej układzie równań liniowych
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4
Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez