WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2014/15

Wielkość: px
Rozpocząć pokaz od strony:

Download "WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2014/15"

Transkrypt

1 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkbel Wosna 204/5

2 Sps tre±c Kodowane dekodowane 4. Kodowane a szyfrowane Podstawowe poj ca Dekodowane jednoznaczne Kody blokowe natychmastowe Przykªady znanych kodów blokowych Twerdzena Krafta McMllana 0 2. Konstruowane kodów natychmastowych Twerdzena Kody Humana 3 3. ródªo nformacj Dencja kodu Humana Konstrukcja kodu Humana Kompresowane kodów entropa 8 4. Przykªad kompresowana danych Idea entrop Dencja entrop Maxmum mnmum entrop Rozszerzene ¹ródªa Entropa a przec tna dªugo± sªowa kodowego Twerdzene Shannona o kodowanu bezszumowym Pewna komunkacja poprzez nepewne ª cza Symetryczne ª cze bnarne Pr dko± przepªywu nformacj

3 5.3 Barera pojemno±c Odlegªo± Hammnga Wykrywane poprawane bª dów Kody lnowe Dencja Macerz generuj ca Równana opsuj ce kody Macerz sprawdzaj ca Waga Hammnga Syndrom Wykrywane poprawane bª dów Kody Hammnga Optymalne kody poprawaj ce pojedyncze bª dy Przykªady kodów Hammnga Dekodowane kodów Hammnga Uwag ko«cowe Kody ReedaMüllera 5 8. Funkcje Boole'a Welomany Boole'a Kody ReedaMüllera Geometra anczna nad caªem Z Dekodowane kodu Reeda-Müllera

4 Rozdzaª 4 Kompresowane kodów entropa 4. Przykªad kompresowana danych W poprzednm rozdzale zauwa»yl±my,»e kody Humana s najkrótszym mo»lwym kodowanam danego alfabetu ¹ródªowego. Zatem, aby dany kod byª krótszy, musmy kompresowa ju» sam kod, czyl,,kodowa kod. Przypu- ± my,»e zakodowal±my pewn wadomo± w kodze dwójkowym. W nast pstwe tej czynno±c okazaªo s,»e 90% kodu to zera, a tylko 0% to jedynk. Nasz zakodowan wadomo± mo»emy skompresowa koduj c blok btów. Dokªadne, zauwa»my,»e zakªadaj c nezale»no± wyst powana poszczególnych btów w zakodowanej wadomo±c, prawdopodobe«stwa wyst pena bloków 00, 0, 0, s równe, odpowedno 8, 9, 9 oraz procent. Otrzymujemy w c nast puj ce ¹ródªo nformacj ,8 0,09 0,09 0,0 Dla powy»szego ¹ródªa nformacj konstruujemy kod Humana otrzymuj c Otrzymany kod ma przec tn dªugo± równ 0, , , , 0 =, 29. 8

5 Ponewa» kodujemy blok dwubtowe, w c na ka»de dwa bty,,starego kodu potrzebujemy, 29 btów,,nowego kodu. Zyskal±my zatem ponad sedem dzes tych bta, co kompresuje nasz kod do okoªo 64% (, 29/2) jego perwotnej dªugo±c. Próbuj c kodowa w ksze blok otrzymujemy kompresj 53% przy blokach trzybtowych oraz 49% przy blokach czterobtowych. Pojawa s zatem pytane, czy dany kod mo»na skompresowa do dowolne maªej obj to±c. Odpowed¹ na to pytane daje teora entrop, któr opszemy pon»ej. 4.2 Idea entrop Zaªó»my,»e mamy dane ¹ródªo nformacj S. Chcemy wprowadz welko± H(S), która wyra»a lo± nformacj zawart w jednym symbolu ¹ródªowym. Lczb H(S) nazwemy entrop. Chcemy, aby H(S) zale»aªo jedyne od statystyk ¹ródªa S, a ne od nazw poszczególnych symbol ¹ródªowych. Dlatego H(S) mo»e by rozwa»ana jako funkcja prawdopodobe«stw symbol ¹ródªa S. Oznaczmy przez p, p 2,..., p n prawdopodobe«stwa odpowadaj ce poszczególnym symbolom alfabetu ¹ródªowego. Zatem Funkcja ta pownna by ) Dodatna; H : (p, p 2,..., p n ) H(p, p 2,..., p n ). 2) C gªa, co oznacza,»e maªym zmanom prawdopodobe«stw odpowada newelka zmana entrop; 3) Symetryczna, co oznacza,»e zmana porz dku symbol ¹ródªowych ne powoduje zmany entrop ¹rodªa; 4) Koherentna, co w tym przypadku oznacza,»e entropa ¹ródªa nelementowego mo»e by oblczona je±l znamy entrop mnejszych ¹ródeª. Wytªumaczmy dokªadnej, co oznacza termn w podpunkce 4). Zaªó»my w tym celu,»e czytamy pewen tekst ne rozró»naj c lter a a 2. Aby w peªn zrozume tekst ne musmy go ju» czyta po raz drug w caªo±c, tylko koncentrujemy s na symbolach a a 2. Zatem znaj c entrop ¹ródeª zredukowanego (ze zredukowanym symbolam a oraz a 2 ) oraz entrop 9

6 ¹ródªa dwuelementowego {a, a 2 }, mo»emy oblczy entrop caªego ¹ródªa. Dokªadne, ( ) p p 2 H(p, p 2,..., p n ) = H(p + p 2, p 3..., p n ) + (p + p 2 )H,. p + p 2 p + p 2 4. Twerdzene. Istneje dokªadne jedna, z dokªadno±c do staªej k, dodatna, symetryczna koherentna funkcja H nzmennych. Jest ona okre- ±lona wzorem H(p, p 2,..., p n ) = k p log. (4.) p Skomplkowany ne bardzo zw zany z tematem dowód tego twerdzena pomjamy. 4.3 Dencja entrop Operaj c s na twerdzenu 4., wprowadzmy nast puj c dencj. Przedtem jednak ustalmy pewne oznaczena. Staªa k, która pojawa s w (4.) stanow wybór jednostk entrop. Zapszmy k =. Je»el r = 2, jednostk log r nazywamy btem. Zatem H(p, p 2,..., p n ) = p p. (4.2) Je±l ¹ródªo S ma dokªadne dwe jednakowo prawdopodobne ltery, to = = H(S) = = bt. Entrop ¹ródªa nformacj S, którego symbole a, a 2,..., a n wyst puj z prawdopodobe«stwam p, p 2,..., p n nazywamy lczb okre±lon przez równane (4.2). Przykªady W naszym pocz tkowym przykªadze kompresowana danych mamy p = 0, 9 oraz p 2 = 0,. Zatem entropa tego ¹ródªa jest równa H(S) = 0, 0, 0, 9 0, 9 0, 469bta. Oznacza to,»e po przeczytanu jednego symbolu tekstu ¹ródªowego otrzymujemy okoªo 0,469 btów nformacj lub,»e ka»de tys c lter tekstu mo»na zast p przez 469 cyfr dwójkowych. 20

7 U»ywaj c kodu blokowego, 26 lter alfabetu angelskego mo»na zakodowa w blok dwójkowe dªugo±c 5. Z drugej strony, je±l polczymy entrop ¹ródªa nformacj, którym jest alfabet angelsk, otrzymamy lczb,5. Oznacza to,» ka»dy tekst angelsk zakodowany kodem blokowym dªugo±c 5 mo»na skompresowa nawet do 30% jego perwotnej dªugo±c! Oblczmy entrop ¹ródªa nformacj M jakm jest rzut monet. Mamy tu dwa symbole ¹ródªowe orªa reszk, którym odpowadaj równe prawdopodobe«stwa. Zatem H(M) =. Tak w c tekstu pochodz - cego z tego ¹ródªa ne mo»na skompresowa, ponewa» ka»dy symbol ¹ródªowy to dokªadne bt nformacj. Ogólnej, je±l ¹ródªo nformacj ma dokªadne dwa symbole, to ch prawdopodobe«stwa mo»na wyraz jako p oraz p, a jego entrop przez H(p, p) = p p + (p ) ( p). Funkcja p H(p, p) os ga maxmum w punkce. Natomast jej nmum wynos 0 jest os gane granczne, gdy p lub p Maxmum mnmum entrop Gdyby jeden symbol ¹ródªowy maª prawdopodobe«stwo blske, pozostaªe musaªyby me prawdopodobe«stwa blske 0. Dla tego rodzaju ¹ródeª entropa byªaby najbl»sza swojego nmum. Fakt ten udowodnmy pon»ej. 4.2 Twerdzene. Je±l jeden z symbol ¹ródªowych ma prawdopodobe«stwo blske, to entropa tego ¹ródªa jest blska 0. Dowód. Zaªó»my,»e p. Zatem p 0 dla 2 n. St d p p 0 ponewa» ( p ) = o(p ) dla 2 n oraz p p 0 gdy» p 0, a p jest welko±c ogranczon. Zatem H(S) 0. Przykªad entrop rzutu monet oraz rozwa»ana poprzedzaj ce nnejszy rozdzaª sugeruj,»e najw ksz entrop maj ¹ródªa, w których prawdopodobe«stwa poszczególnych symbol s równe. Nast puj ce twerdzene uzasadn to rozumowane. 4.3 Twerdzene. Maxmum entrop jest os gane dla takch ¹ródeª nformacj, gdze p = p 2 = = p n = n. Jest ono równe n. 2

8 Dowód. Zauwa»my najperw,»e faktyczne, je±l p = p 2 = = p n =, n to H(p, p 2,..., p n ) = n. Aby pokaza,»e jest to maxmum u»yjemy nerówno±c log x x, w której równo± zachodz wtedy tylko wtedy, gdy x =. Mamy H(S) n = = = = = = p p log p 2 n ( ) p log p 2 n p (log ) log n p p log np ( ) p np ( ) n p ( n p ) = 0. Zatem H(S) n, przy czym równo± zachodz wtedy tylko wtedy, gdy np =, czyl gdy p = n. 4.5 Rozszerzene ¹ródªa 4.4 Przykªad. Je»el ¹ródªem nformacj M 2 jest rzut dwema symetrycznym monetam, to H(M 2 ) = 2. Czyl ka»dy rzut nese dwa bty nformacj. Jest to zgodne z naszym wcze±nejszym rozwa»anem rzutu jedn monet, kedy to entropa wynosªa. Powró my do naszego perwotnego przykªadu ¹ródªa nformacj, w którym 0 wyst powaªo z prawdopodobe«stwem 0, 9, a z prawdopodobe«stwem 0,. Aby skompresowa wadomo± dzell±my j na blok po dwe ltery. Czynno± t b dzemy nazywal rozszerzanem ¹ródªa. Dokªadne, 22

9 ktym rozszerzenem ¹ródªa S w którym symbolom a, a 2,..., a n odpowadaj, odpowedno, prawdopodobe«stwa p, p 2,..., p n nazywamy ¹ródªo nformacj S k, którego alfabet skªada s z bloków klterowych a a 2... a k lter alfabetu ¹ródªa S, którym to blokom odpowadaj prawdopodobe«stwa P (a a 2... a k ) = P (a )P (a 2 )... P (a k ). ródªo rzutu dwema monetam M 2 jest rozszerzenem ¹ródªa rzutu jedn monet. Jak ju» zauwa»yl±my, H(M 2 ) = 2H(M). Istotne, jest to reguªa, o czym mów nast puj ce twerdzene. 4.5 Twerdzene. Dla dowolnego ¹ródªa nformacj, H(S k ) = kh(s). Dowód. Wynka z nast puj cych oblcze«: H(S k ) = p p 2... p k (p p 2... p k ), 2,..., k = p p 2... p k ( p + p p k ) 2 k = p p p 2 p k 2 k p 2 p 2 p p 3 p k 2 3 k p k p k p k p k k = p p 2 p 2 p 2 k p k p k = kh(s). 4.6 Entropa a przec tna dªugo± sªowa kodowego Skoro entropa, to lczba btów zawartych w jednym symbolu tekstu ¹ródªowego, w c ne pownna ona by w ksza n» przec tna dªugo± sªowa kodowego. To ntucyjne spostrze»ene potwerdza nast puj ce twerdzene. 23

10 4.6 Twerdzene. Ka»dy dwójkowy kod natychmastowy dla ¹ródªa S ma dªugo± przec tn w ksz lub równ entrop tego ¹ródªa. Dowód. Oznaczaj c przez d dªugo± tego sªowa kodowego, a przez L przec tn dªugo± sªowa kodowego, otrzymujemy H(S) L = = p p d p ( ) p log p 2 2 d = p p 2 d = p log p 2 d ( ) p p 2 d = ( ) 2 p d = ( 2 d ( ) = 0, gdze ostatna nerówno± jest konsekwencj nerówno±c Krafta, a perwsza wynka ze wzoru log x x. Zatem H(S) L. 4.7 Twerdzene Shannona o kodowanu bezszumowym W naszym pocz tkowym przykªadze mel±my H(S) = 0, 469, 2 L mn(s 2 ) = 0, 645, p ) 3 L mn(s 3 ) = 0, 533. Zw kszaj c blok, a nast pne koduj c je, ngdy ne zejdzemy pon»ej pozomu entrop dla danego ¹ródªa. Nast puj ce twerdzene mów o tym,»e 24

11 entropa stanow granczny pozom kompresowana tekstów zapsanych za pomoc alfabetu danego ¹ródªa nformacj. Grancy tej ne mo»na przekroczy, ale mo»na s do nej zbl»y na dowoln odlegªo±. 4.7 Twerdzene. (Shannona o kodowanu bezszumowym) Dla dowolnego ¹ródªa nformacj S zachodz nast puj cy zw zek m dzy entrop tego ¹ródªa a przec tn dªugo±c kodu Humana dla tego ¹ródªa H(S) L mn (S) H(S) +. (4.3) W szczególno±c, dla ktego rozszerzena»ródªa S mamy lm k k L mn(s k ) = H(S). (4.4) Dowód. Udowodnmy najperw wzór (4.4) zakªadaj c (4.3). Mamy kh(s) = H(S k ) L mn (S k ) H(S k ) + = kh(s) +. St d bezpo±redno wynka H(S) k L mn(s k ) H(S) + k stosuj c twerdzene o trzech grancach otrzymujemy (4.4). Aby udowodn (4.3), zauwa»my, ze wobec twerdzena 4.6, wystarczy pokaza,»e L mn (S) H(S) +. W tym celu elementom»ródªowym a, a 2,..., a n, których prawdopodobe«- stwa wynosz, odpowedno, p, p 2,..., p n przyporz dkujmy sªowa kodowe dªugo±c d, d 2,..., d n, gdze d = p. Ponewa» nerówno± Krafta dla tych dªugo±c zachodz (dokªadne, 2 d 2 p = p = ), = = w c odpowedn kod natychmastowy stneje. Kod ten ma przec tn dlugo± L równ ( ) p d p + = + H(S). p = = Zatem L mn (S) L H(S) +, sk d (4.3). 25 =

12 Nasze rozwa»ana na temat entrop zako«czymy uwag,»e caªe powy»sze rozumowane bez trudu przenos s na przypadek dowolnego r. Wówczas entrop ¹ródªa S oznaczamy H r (S) welko± ta jest równa p log r p. 26

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Semestr letni 2014/15

Semestr letni 2014/15 . Przyjmijmy,»e chcemy u»y alfabetu Morse'a {,, _} by zakodowa alfabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z () kodem blokowym. Jaka jest najmniejsza dªugo± takiego kodu? 2. Zakoduj alfabet

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

1 Kodowanie i dekodowanie

1 Kodowanie i dekodowanie 1 Kodowanie i dekodowanie Teoria informacji zajmuje si sposobami gromadzenia, przechowywania oraz przesyªania informacji. W tym celu, a tak»e dla ochrony danych informacje kodujemy. Rozmowa telefoniczna,

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aalza Matematycza I. Sera, Potr Nayar Zadae. Nech a k >, k =,..., b d lczbam rzeczywstym o tym samym zaku. Udowodj,»e prawdzwa jest erówo± + a + a... + a + a + a +... + a. Czy zaªo»ee,»e lczby a k maj

Bardziej szczegółowo

Kodowanie informacji. Instytut Informatyki UWr Studia wieczorowe. Wykład nr 2: rozszerzone i dynamiczne Huffmana

Kodowanie informacji. Instytut Informatyki UWr Studia wieczorowe. Wykład nr 2: rozszerzone i dynamiczne Huffmana Kodowane nformacj Instytut Informatyk UWr Studa weczorowe Wykład nr 2: rozszerzone dynamczne Huffmana Kod Huffmana - nemłe przypadk... Nech alfabet składa sę z 2 lter: P(a)=1/16 P(b)=15/16 Mamy H(1/16,

Bardziej szczegółowo

STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW

STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW Źródło Kompresja Kanał transmsj sek wdeo 60 Mbt 2 mn muzyk (44 00 próbek/sek, 6 btów/próbkę) 84 Mbt Dekompresja Odborca. Metody bezstratne 2. Metody stratne 2 Kodowane

Bardziej szczegółowo

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne

Bardziej szczegółowo

O pewnym zadaniu olimpijskim

O pewnym zadaniu olimpijskim O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Teoria Informacji - wykład. Kodowanie wiadomości

Teoria Informacji - wykład. Kodowanie wiadomości Teoria Informacji - wykład Kodowanie wiadomości Definicja kodu Niech S={s 1, s 2,..., s q } oznacza dany zbiór elementów. Kodem nazywamy wówczas odwzorowanie zbioru wszystkich możliwych ciągów utworzonych

Bardziej szczegółowo

Logika dla matematyków i informatyków Wykªad 1

Logika dla matematyków i informatyków Wykªad 1 Logika dla matematyków i informatyków Wykªad 1 Stanisªaw Goldstein Wydziaª Matematyki i Informatyki UŠ 16 lutego 2016 Wszech±wiat matematyczny skªada si wyª cznie ze zbiorów. Liczby naturalne s zdeniowane

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Informacja - pojęcie abstrakcyjne Dane: konkretna reprezentacja informacji. 3 "Podstawy informatyki", Tadeusz Wilusz 2004

Informacja - pojęcie abstrakcyjne Dane: konkretna reprezentacja informacji. 3 Podstawy informatyki, Tadeusz Wilusz 2004 Współczesna technologa systemu nformacyjnego wedza wedza Podstawy nformatyk nformacja nformacja nformacja Temat 02 Maszynowa reprezentacja nformacj wykłady 2 3 źródło nformacj (nadawca nformacj) IBM Compatble

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

aij - wygrana gracza I bij - wygrana gracza II

aij - wygrana gracza I bij - wygrana gracza II M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW ZASTOSOWANIE PROGRAOWANIA DYNAICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EISJI GAZÓW ANDRZEJ KAŁUSZKO Instytut Bada Systemowych Streszczene W pracy opsano zadane efektywnego przydzału ogranczonych rodków

Bardziej szczegółowo

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Ćwczene nr 1 Statystyczne metody wspomagana decyzj Teora decyzj statystycznych WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Problem decyzyjny decyzja pocągająca za sobą korzyść lub stratę. Proces decyzyjny

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Rozliczanie kosztów Proces rozliczania kosztów

Rozliczanie kosztów Proces rozliczania kosztów Rozlczane kosztów Proces rozlczana kosztów Koszty dzałalnośc jednostek gospodarczych są złoŝoną kategorą ekonomczną, ujmowaną weloprzekrojowo. W systeme rachunku kosztów odbywa sę transformacja jednych

Bardziej szczegółowo

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

Ÿ1 Oznaczenia, poj cia wst pne

Ÿ1 Oznaczenia, poj cia wst pne Ÿ1 Oznaczenia, poj cia wst pne Symbol sumy, j, k Z, j k: k x i = x j + x j+1 + + x k. i=j Przykªad 1.1. Oblicz 5 i=1 2i. Odpowied¹ 1.1. 5 i=1 2i = 2 1 + 2 2 + 2 3 + 2 4 + 2 5 = 2 + 4 + 8 + 16 + 32 = 62.

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio: 5.9. lim x x +4 f(x) = x +4 Funkcja f(x) jest funkcj wymiern, która jest ci gªa dla wszystkich x, dla których mianownik jest ró»ny od zera, czyli dla: x + 0 x Zatem w punkcie x = funkcja ta jest okre±lona

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K)

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K) STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Mchał Kolupa Poltechnka Radomska w Radomu Joanna Plebanak Szkoła Główna Handlowa w Warszawe KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska 21 pa¹dziernika 2010 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych

Bardziej szczegółowo

Granica kompresji Kodowanie Shannona Kodowanie Huffmana Kodowanie ciągów Kodowanie arytmetyczne. Kody. Marek Śmieja. Teoria informacji 1 / 35

Granica kompresji Kodowanie Shannona Kodowanie Huffmana Kodowanie ciągów Kodowanie arytmetyczne. Kody. Marek Śmieja. Teoria informacji 1 / 35 Kody Marek Śmieja Teoria informacji 1 / 35 Entropia Entropia określa minimalną statystyczną długość kodowania (przyjmijmy dla prostoty że alfabet kodowy A = {0, 1}). Definicja Niech X = {x 1,..., x n }

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów

Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów 1 Wst p Przypomnijmy,»e komputer skªada si z procesora, pami ci, systemu wej±cia-wyj±cia oraz po- ª cze«mi dzy nimi. W procesorze mo»emy

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 126 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 +

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 + Różnczkowalność pocodne Ćwczene. Znaleźć pocodne cz astkowe funkcj f(x, y) = arctg x y. Rozw azane: Wdać, że funkcj f można napsać jako f(u(x, y)) gdze f(u) = arctg(u), u(x, y) = x y. Korzystaj ac z reg

Bardziej szczegółowo

Rachunek zda«. Relacje. 2018/2019

Rachunek zda«. Relacje. 2018/2019 Rachunek zda«. Relacje. 2018/2019 Zdanie logiczne. Zdaniem logicznym nazywamy ka»de wyra»enie, któremu mo»na przyporz dkowa jedn z dwóch warto±ci logicznych: 0 czyli faªsz b d¹ 1 czyli prawda. Zdanie logiczne.

Bardziej szczegółowo

Aplikacje bazodanowe. Laboratorium 1. Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, / 37

Aplikacje bazodanowe. Laboratorium 1. Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, / 37 Aplikacje bazodanowe Laboratorium 1 Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, 2017 1 / 37 Plan 1 Informacje wst pne 2 Przygotowanie ±rodowiska do pracy 3 Poj cie bazy danych 4 Relacyjne

Bardziej szczegółowo

Lekcja 5 Programowanie - Nowicjusz

Lekcja 5 Programowanie - Nowicjusz Lekcja 5 Programowanie - Nowicjusz Akademia im. Jana Dªugosza w Cz stochowie Programowanie i program wedªug Baltiego Programowanie Programowanie jest najwy»szym trybem Baltiego. Z pomoc Baltiego mo»esz

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

Modele wielorównaniowe. Problem identykacji

Modele wielorównaniowe. Problem identykacji Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

Podstawy Informatyki: Kody. Korekcja błędów.

Podstawy Informatyki: Kody. Korekcja błędów. Podstawy Informatyki: Kody. Korekcja błędów. Adam Kolany Instytut Techniczny adamkolany@pm.katowice.pl Adam Kolany (PWSZ Nowy Sącz, IT) Podstawy Informatyki: Kody. Korekcja błędów. 11 stycznia 2012 1 /

Bardziej szczegółowo

Podstawy Ekonomii Matematycznej. Aktualizacja: 9 czerwca 2011

Podstawy Ekonomii Matematycznej. Aktualizacja: 9 czerwca 2011 Podstawy Ekonomii Matematycznej Aktualizacja: 9 czerwca 2011 Spis tre±ci I Elementy matematyki nansowej. 5 1 Procent, stopa procentowa, kapitalizacja. 6 2 Procent prosty. 8 2.1 Zasada oprocentowania prostego,

Bardziej szczegółowo

Liczenie podziaªów liczby: algorytm Eulera

Liczenie podziaªów liczby: algorytm Eulera Liczenie podziaªów liczby: algorytm Eulera Wojciech Rytter Podziaªy liczb s bardzo skomplikowanymi obiektami kombinatorycznymi, przedstawimy dwa algorytmy liczenia takich oblektów. Pierwszy prosty algorytm

Bardziej szczegółowo

Temat: Algorytm kompresji plików metodą Huffmana

Temat: Algorytm kompresji plików metodą Huffmana Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik

Bardziej szczegółowo

Szeregowanie zada« Przedmiot fakultatywny 15h wykªadu + 15h wicze« dr Hanna Furma«czyk. 7 pa¹dziernika 2013

Szeregowanie zada« Przedmiot fakultatywny 15h wykªadu + 15h wicze« dr Hanna Furma«czyk. 7 pa¹dziernika 2013 Przedmiot fakultatywny 15h wykªadu + 15h wicze«7 pa¹dziernika 2013 Zasady zaliczenia 1 wiczenia (ocena): kolokwium, zadania dodatkowe (implementacje algorytmów), praca na wiczeniach. 2 Wykªad (zal): zaliczone

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

Semestr letni 2014/15

Semestr letni 2014/15 Wst p do arytmetyki modularnej zadania 1. Jaki dzie«tygodnia byª 17 stycznia 2003 roku, a jaki b dzie 23 sierpnia 2178 roku? 2. Jaki dzie«tygodnia byª 21 kwietnia 1952 roku? 3. W jaki dzie«odbyªa si bitwa

Bardziej szczegółowo

Kodowanie i entropia

Kodowanie i entropia Kodowanie i entropia Marek Śmieja Teoria informacji 1 / 34 Kod S - alfabet źródłowy mocy m (np. litery, cyfry, znaki interpunkcyjne), A = {a 1,..., a n } - alfabet kodowy (symbole), Chcemy przesłać tekst

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Liczby zmiennoprzecinkowe

Liczby zmiennoprzecinkowe Liczby zmiennoprzecinkowe 1 Liczby zmiennoprzecinkowe Najprostszym sposobem reprezentowania liczb rzeczywistych byªaby reprezentacja staªopozycyjna: zakªadamy,»e mamy n bitów na cz ± caªkowit oraz m na

Bardziej szczegółowo

Liczby zmiennopozycyjne. Kody Hamminga.

Liczby zmiennopozycyjne. Kody Hamminga. Liczby zmiennopozycyjne. Kody Hamminga. 1 Liczby zmiennopozycyjne 1.1 Wprowadzenie Najprostszym sposobem reprezentowania liczb rzeczywistych byªaby reprezentacja staªopozycyjna: zakªadamy,»e mamy n bitów

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

1 Elektrostatyka. 1.1 Wst p teoretyczny

1 Elektrostatyka. 1.1 Wst p teoretyczny Elektrostatyka. Wst p teoretyczny Dwa ªadunki elektryczne q i q 2 wytwarzaj pole elektryczne i za po±rednictwem tego pola odziaªuj na siebie wzajemnie z pewn siª. Je»eli pole elektryczne wytworzone jest

Bardziej szczegółowo

Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004

Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004 4 marca 2004 Podstawowe oznaczenia i definicje Wymagania wobec kodu Podstawowa idea Podsumowanie Podstawowe oznaczenia i definicje Podstawowe oznaczenia i definicje: alfabet wejściowy: A = {a 1, a 2,...,

Bardziej szczegółowo

Wyra»enia logicznie równowa»ne

Wyra»enia logicznie równowa»ne Wyra»enia logicznie równowa»ne Denicja. Wyra»enia rachunku zda«nazywamy logicznie równowa»nymi, gdy maj równe warto±ci logiczne dla dowolnych warto±ci logicznych zmiennych zdaniowych. 1 Przykªady: Wyra»enia

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12.

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12. Zadae p (X p (X ( ( π 6 6 e 6 X m ( π 6 6 e 6 ( X C e m 6 X, gdze staªa C e zale»y od statystyk X (X,, X 6, a m jest w ksze od zera Zatem p (X/p (X jest emalej c fukcj statystyk T (X 6 X ªatwo pokaza,»e

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru

Bardziej szczegółowo

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMYSŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi: Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci

Bardziej szczegółowo

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz System M/M// System ten w odrónenu do wczenej omawanych systemów osada kolejk. Jednak jest ona ogranczona, jej maksymalna ojemno jest wartoc skoczon

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Wykªad 1. Wprowadzenie do teorii grafów

Wykªad 1. Wprowadzenie do teorii grafów Wykªad 1. Wprowadzenie do teorii grafów 1 / 112 Literatura 1 W. Lipski; Kombinatoryka dla programistów. 2 T. Cormen, Ch. E. Leiserson, R. L. Rivest; Wprowadzenie do algorytmów. 3 K. A. Ross, Ch. R. B.

Bardziej szczegółowo