Liczby zmiennoprzecinkowe
|
|
- Gabriela Kruk
- 7 lat temu
- Przeglądów:
Transkrypt
1 Liczby zmiennoprzecinkowe 1 Liczby zmiennoprzecinkowe Najprostszym sposobem reprezentowania liczb rzeczywistych byªaby reprezentacja staªopozycyjna: zakªadamy,»e mamy n bitów na cz ± caªkowit oraz m na cz ± uªamkow. Wad takiego rozwi zania jest stosunkowo niewielki przedziaª, z którego liczby mo»emy reprezentowa : cz sto podczas oblicze«u»ywamy zarówno warto±ci bardzo du»ych jaki i bardzo maªych. Dlatego w komputerach przechowuje si liczby rzeczywiste w postaci zmiennoprzecinkowej (ang. oating point): ±m b e. Pami tamy osobno znak, mantys m oraz wykªadnik e. Podstawa b jest ustalona (zazwyczaj 2) i nie jest jawnie przechowywana. W konkretnej reprezentacji na mantys i wykªadnik przeznaczone s odpowiednie, ustalone liczby bitów. Zatem potramy reprezentowa sko«czon liczb warto±ci. Im dªu»sza mantysa, z tym wi ksz dokªadno±ci mo»emy reprezentowa liczby. Z kolei im dªu»szy wykªadnik, tym wi kszy przedziaª z jakiego liczby potramy reprezentowa. Ka»d liczb mo»na zapisa w postaci zmiennopozycyjnej na wiele sposobów. W konkretnych reprezentacjach ustala si posta jednoznaczn, tzw. znormalizowan. Zazwyczaj przyjmuje si,»e przecinek w mantysie ustawiony jest bezpo±rednio przed pierwsz cyfr znacz c lub za ni. W przypadku podstawy reprezentacji b = 2 pierwsza cyfra znacz ca 1 nie jest zazwyczaj jawnie pami tana. Mówimy wtedy o ukrytej 1. Zauwa»my,»e przy takim zaªo»eniu nie mo»na reprezentowa liczby 0. Dlatego 0 jak i kilka innych warto±ci traktowanych jest wyj tkowo i przypisywane s im specjalne ci gi bitów. 1.1 Prosta modelowa reprezentacja Rozwa»my prost modelow reprezentacj, w której liczby pami tane s jako ci gi sze±ciobitowe zeemmm, gdzie z oznacza bit znaku (0 - plus, 1 minus), ee to dwubitowy wykªadnik pami tany z przesuni ciem o 2 (reprezentacja z przesuni ciem jest standardem dla wykªadników), a mmm to trzy bity znormalizowanej mantysy. Zakªadamy,»e pierwsza jedynka w mantysie nie jest ukryta, a zero reprezentowane jest jako specjalny ci g Reprezentowalne warto±ci przedstawione s na rysunku 1. Najmniejsza reprezentowalna warto± dodatnia to 1 8 wstawiamy najmniejsz mo»liw mantys : oraz najmniejszy wykªadnik: 2. Odpowiedni ci g bitów to Podobnie, najwi ksz warto±ci jest : Zauwa»my,»e pomi dzy reprezentowalnymi liczbami pojawiaj si ró»ne odst py im wi ksze 1 warto±ci, tym wi ksze odst py. I tak najmniejszy odst p wynosi 32 (gdy wykªadnik jest równy -2 i zmieniamy mantys o 1 8, a najwi kszy 1 4, gdy wykªadnik jest równy 2. Za to mniej wi cej staªa jest wzgl dna odlegªo± : stosunek warto±ci liczby do warto±ci jej s siada. Zatem mo»emy powiedzie,»e w naszej reprezentacji mamy mniej wi cej staªy wzgl dny bª d przybli»enia. Zauwa»my teraz,»e nie wszysktkie ci gi bitów w naszej reprezentacji s poprawne: niepoprawne s te, które maj 0 jako pierwsz cyfr mantysy (z wyj tkiem ci gu ). Zatem nasza reprezentacja pozwala przechowywa 33 ró»ne warto± i. 1
2 Rysunek 1: Liczby reprezentowalne w naszym modelu Jeszcze jedn charakterystyczn cech reprezentacji zmiennopozycyjnej (znormalizowanej) jest stosunkowo du»y odst p pomi dzy zerem a pierwsz reprezentowaln warto±ci. Przedziaª pomi dzy zerem a pierwsz warto±ci reprezentowaln nazywany jest niedomiarem (odpowiednio dodatnim lub ujemnym). Mówimy tak»e o nadmiarze (równie» dodatnim lub ujemnym) jest to przedziaª powy»ej (poni»ej) najwi kszej (najmniejszej) reprezentowalnej warto±ci. O arytmetyce zmiennopozycyjnej b dziemy mówi nieco dalej, teraz spróbujmy wykona w naszej reprezentacji proste dziaªanie a + b dla a = 0.2 i b = 0.7. Przeksztaª my nasze uªamki na system binarny: a = , b = Poniewa» mo»emy pami ta tylko trzy bity mantysy, to ju» na pocz tku tracimy precyzj. Wyrównujemy wykªadniki zwi kaszaj c pierwszy do 0: a = Ponownie tracimy precyzj (w rzeczywisto±ci mo»e by ciut lepiej, bo obliczenia po±rednie wykonywane s zazwyczaj na rozszerzonej reprezentacji zawieraj cej dodatkowe bity). Dodajemy mantysy: a + b = Otrzymujemy zatem Podobne bª dy napotykamy w rzeczywisto±ci. Oto prosty przykªad ilustruj cy bª d wynikaj cy z braku dokªadnej reprezentacji dla pewnych liczb. Uruchom nast puj ce programy w j zyku C: int main{} { float suma=0; long i; for (i=0; i<100000; ++i) suma=suma+0.6; } printf{"%f", suma); int main{} { float suma=0; long i; for (i=0; i<100000; ++i) suma=suma+0.5; 2
3 } printf{"%f", suma); W pierwszym przypadku wynik odbiega od oczekiwanego, w drugim jest poprawny. Wynika to z faktu,»e 0.6, w przeciwie«stwie do 0.5 nie ma dokªadnej reprezentacji w systemie dwójkowym (z ograniczon liczb bitów po przecinku). 2 Standard IEEE 754 Norma IEEE 754 jest powszechnie obowi zuj cym standardem w jakim przechowywane s we wspóªczesnych komputerach liczby zmiennopozycyjne. Oprócz formatu danych okre±la on te» pewne zasady wykonywania oblicze«arytmetycznych, dzi ki czemu mo»na zaªo»y,»e ten sam program, napisany np. w j zyku C, uruchomiony na ró»nych maszynach da te same rezultaty. Mamy dwa formaty: 32-bitowy pojedynczej precyzji (float w C) i 64-bitowy (podwójnej precyzji) (double w C). Dodatkowo deniowane s formaty pomocnicze: rozszerzony pojedynczej precyzji i rozszerzony podwójnej precyzji. Sªu» one do wykonywania oblicze«po±rednich. Format pojedynczej precyzji Mantysa: 23 bity (znormalizowana, ukryta 1 przed przecinkiem), wykªadnik: 8 bitów (przesuni cie 127), zakres liczb dodatnich: 10 38, , liczba reprezentowalnych warto±ci: 1, Format podwójnej precyzji Mantysa: 52 bity (znormalizowana, ukryta 1 przed przecinkiem), wykªadnik: 11 bitów (przesuni cie 1023), zakres liczb dodatnich: , , liczba reprezentowalnych warto±ci: 1, Niektóre sekwencje bitów s interpretowane w specjalny sposób. S to sekwencje z wykªadnikiem skªadaj cym si z samych zer lub samych jedynek: same 0 w wykªadniku, same zera w mantysie: reprezentuj 0 (dodatnie lub ujemne...) same 0 w wykªadniku, niezerowa mantysa: liczb zdenormalizowana (bit na lewo od przecinka jest zerem, wykªadnik wynosi -126 lub -1022); pomysª na redukcj odst pu pomi dzy zerem a najmniejsz dodatni (ujemn ) liczb reprezentowaln. same 1 w wykªadniku, same 0 w mantysie: plus lub minus niesko«czono± same 1 w wykªadnkiu, niezerowa mantysa: NaN (not a number) sytuacja wyj tkowa 3 Arytmetyka zmiennoprzecinkowa Ze wzgl du na zupeªnie inn reprezentacj za operacje arytemtyczne na liczbach zmiennopozycyjnych odpowiedzialne s zupeªnie inne obwody procesora ni» za operacje caªkowitoliczbowe. 3.1 Dodawanie i odejmnowanie 1. Sprawdzanie zer. 2. Wyrównywanie wykªadników 3. Dodawanie lub odejmnowanie mantys 4. Normalizowanie wyniku. 3
4 3.2 Mno»enie i dzielenie 1. Sprawdzanie zer. 2. Dodawanie lub odejmowanie wykªadników 3. Mno»enie lub dzielenie mantys, ustawianie znaku 4. Normalizowanie wyniku 5. Zaokr glanie Rysunek 2: Mno»enie zmiennopozycyjne 4
5 Rysunek 3: Dzielenie zmiennopozycyjne 5
Liczby zmiennopozycyjne. Kody Hamminga.
Liczby zmiennopozycyjne. Kody Hamminga. 1 Liczby zmiennopozycyjne 1.1 Wprowadzenie Najprostszym sposobem reprezentowania liczb rzeczywistych byªaby reprezentacja staªopozycyjna: zakªadamy,»e mamy n bitów
Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:
Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,
1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
2 Liczby rzeczywiste - cz. 2
2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:
Podstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera
Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
Pracownia Komputerowa wykład VI
Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1
Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci
Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f
Pracownia Komputerowa wyk ad VI
Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Dokªadny jak komputer
Dokªadny jak komputer Czy aby na pewno? Piotr Fulma«ski Pa«stwowa Wy»sza Szkoªa Zawodowa w Pªocku Wydziaª Nauk Ekonomicznych i Informatyki piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/pwsz_dzien_otwarty_2017/dzien_otwarty_
Arytmetyka binarna - wykład 6
SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2
Zwykle liczby rzeczywiste przedstawia się w notacji naukowej :
Arytmetyka zmiennoprzecinkowa a procesory cyfrowe Prawa algebry stosują się wyłącznie do arytmetyki o nieograniczonej precyzji x=x+1 dla x będącego liczbą całkowitą jest zgodne z algebrą, dopóki nie przekroczymy
Dokªadny jak komputer?
Dokªadny jak komputer? Czyli dlaczego 2 + 2 = 5? Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska http://math.uni.lodz.pl/~fulmanp/zajecia/prezentacja/festiwalnauki2013/ 17
Naturalny kod binarny (NKB)
SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Architektury systemów komputerowych
zadanie: 1 2 3 4 5 6 7 Suma maks: 12 12 12 18 18 10 18 100 Imi i nazwisko: punkty: Architektury systemów komputerowych Egzamin, wersja A 6.II.2013 Do zdobycia jest 100 punktów. Przewidywana skala ocen:
Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
LICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Konwersje, bª dy przetwarzania numerycznego PWSZ Gªogów, 2009 Dlaczego modelujemy... systematyczne rozwi zywanie problemów, eksperymentalna eksploracja wielu rozwi
Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.
Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_
Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym
Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb
Kod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Architektura komputerów
Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1
Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze
Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej
Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit
Zapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Technologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Pozycyjny system liczbowy
Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w
Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI
Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30
Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bash i algorytmy. Elwira Wachowicz. 20 lutego
Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad
Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.
Lekcja 9 - LICZBY LOSOWE, ZMIENNE
Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my
Systemy zapisu liczb.
Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi
Metodydowodzenia twierdzeń
1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Dodatek do Wykładu 01: Kodowanie liczb w komputerze
Dodatek do Wykładu 01: Kodowanie liczb w komputerze [materiał ze strony: http://sigma.wsb-nlu.edu.pl/~szyszkin/] Wszelkie dane zapamiętywane przetwarzane przez komputery muszą być odpowiednio zakodowane.
Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4
Arytmetyka stało i zmiennoprzecinkowa
Arytmetyka stało i zmiennoprzecinkowa Michał Rudowicz 171047 Łukasz Sidorkiewicz 170991 Piotr Lemański 171009 Wydział Elektroniki Politechnika Wrocławska 26 października 2011 Spis Treści 1 Reprezentacja
Liczby zmiennoprzecinkowe i błędy
i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów
Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów 1 Wst p Przypomnijmy,»e komputer skªada si z procesora, pami ci, systemu wej±cia-wyj±cia oraz po- ª cze«mi dzy nimi. W procesorze mo»emy
Funkcja kwadratowa, wielomiany oraz funkcje wymierne
Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
Przetwarzanie sygnaªów
Przetwarzanie sygnaªów Laboratorium 1 - wst p do C# Dawid Poªap Przetwarzanie sygnaªów Pa¹dziernik, 2018 1 / 17 Czego mo»na oczekiwa wzgl dem programowania w C# na tych laboratoriach? Dawid Poªap Przetwarzanie
Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Arytmetyka zmiennopozycyjna
Rozdziaª 4 Arytmetyka zmiennopozycyjna Wszystkie obliczenia w octavie s wykonywane w arytmetyce zmiennopozycyjnej (inaczej - arytmetyce ) podwójnej precyzji (double) - cho w najnowszych wersjach octave'a
Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz
Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.
2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja
Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1
Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,
Podstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych
Pracownia komputerowa. Dariusz Wardecki, wyk. VI
Pracownia komputerowa Dariusz Wardecki, wyk. VI Powtórzenie Ile wynoszą poniższe liczby w systemie dwójkowym/ dziesiętnym? 1001101 =? 77! 63 =? 111111! Arytmetyka w reprezentacji bezznakowej Mnożenie liczb
PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3
PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!
1. Wprowadzenie do C/C++
Podstawy Programowania - Roman Grundkiewicz - 013Z Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub
O pewnym zadaniu olimpijskim
O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby
Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Wprowadzenie do informatyki - ć wiczenia
Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej
Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.
ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów
Pracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery
Wstęp do Informatyki Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Pozycyjne systemy liczbowe Dziesiętny system liczbowy (o podstawie 10):
Pracownia Komputerowa wykład V
Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych
Metody numeryczne II. Reprezentacja liczb
Metody numeryczne II. Reprezentacja liczb Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Reprezentacja liczb Reprezentacja stałopozycyjna
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łan Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 2 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Arytmetyka zmiennopozycyjna
Wprowadzenie do informatyki - ć wiczenia
Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:
Wprowadzenie do informatyki - ć wiczenia
Kod znak-moduł (ZM) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:
Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Teoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
1. Wprowadzenie do C/C++
Podstawy Programowania :: Roman Grundkiewicz :: 014 Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub
Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java
J zyk programowania JAVA c 2011 Vincent Van GOGH: M»czyzna pij cy li»ank kawy Zadanie 6. Napisz program, który tworzy tablic 30 liczb wstawia do tej tablicy liczby od 0 do 29 sumuje te elementy tablicy,
Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9
Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s
1 Metody iteracyjne rozwi zywania równania f(x)=0
1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0
Technologie Informacyjne Wykład 4
Technologie Informacyjne Wykład 4 Arytmetyka komputerów Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 30 października 2014 Część
Pracownia Komputerowa wyk ad IV
Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Adam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)
BŁĘDY OBLICZEŃ NUMERYCZNYCH
BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody
Operatory AND, OR, NOT, XOR Opracował: Andrzej Nowak Bibliografia:
Operatory logiczne Komputery i ich logika AND - && Podstawy programowania w C++ Operatory AND, OR, NOT, XOR Opracował: Andrzej Nowak Bibliografia: CPA: PROGRAMMING ESSENTIALS IN C++ https://www.netacad.com
Adam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
ARCHITEKTURA KOMPUTERÓW Liczby zmiennoprzecinkowe
ARCHITEKTURA KOMPUTERÓW 17.11.2010 Liczby zmiennoprzecinkowe Sprawa bardzo podobna jak w systemie dziesiętnym po przecinku mamy kolejno 10-tki do ujemnych potęg, a w systemie binarnym mamy 2-ki w ujemnych
Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc
Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,
Algebra Boole'a i logika cyfrowa
Algebra Boole'a i logika cyfrowa 4, 11, 18, 25 X, 8, 22, 29 XI 2010 Literatura do wykªadu 1. David Patterson, John Hennessy, Computer Organization and Design, 4th Edition, Morgan Kaufmann 2009. 2. David
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
Wprowadzenie do informatyki ćwiczenia
Podstawowe działania na liczbach binarnych dr inż. Izabela Szczęch WSNHiD 2010/2011 Ćwiczenia z wprowadzenia do informatyki Dodawanie Odejmowanie Mnoż enie Dzielenie Plan zajęć 2 Izabela Szczęch 1 Dodawanie
RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.
RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA