Kryptografia na procesorach wielordzeniowych
|
|
- Witold Kajetan Markiewicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 Kryptografia na procesorach wielordzeniowych Andrzej Chmielowiec Centrum Modelowania Matematycznego Sigma Kryptografia na procesorach wielordzeniowych p. 1
2 Plan prezentacji Wprowadzenie Algorytmy asymetryczne Algorytmy symetryczne i tryby szyfrowania Narzędzia wspierajace implementację algorytmów równoległych Podsumowanie Kryptografia na procesorach wielordzeniowych p. 2
3 Czy równoległość jest potrzebna? Światowe zapotrzebowanie szacuję na około pięć komputerów Thomas Watson (1943) 640 kilobajtów powinno każdemu wystarczyć. Bill Gates (1981) Kryptografia na procesorach wielordzeniowych p. 3
4 Gdzie można stosować równoległość? Procesory wielordzeniowe. Procesory i mikrokontrolery obsługujace instrukcje typu SIMD (Single Instruction Multiple Data). Układy programowalne FPGA. Klastry. Kryptografia na procesorach wielordzeniowych p. 4
5 Co nam to daje? Zasadniczym celem implementacji algorytmów równoległych jest zwiększenie szybkości przetwarzania danych. Lepsze wykorzystanie sprzętu: większa szybkość przetwarzania, mniejsze koszty infrastruktury. Utrzymanie dotychczasowej wydajności przy mniejszym poborze mocy: mniejsze rachunki za prad. Kryptografia na procesorach wielordzeniowych p. 5
6 Generowanie kluczy RSA Aby wygenerować klucz RSA wykonujemy następujace kroki: 1. znajdujemy dwie liczby pierwsze p i q, 2. wyznaczamy n = pq oraz liczby e i d takie, że ed 1 mod (p 1)(q 1). Po wygenerowaniu liczb możemy przyjać, że pary (e,n) i (d,n) stanowia odpowiednio klucz publiczny i prywatny. Kryptografia na procesorach wielordzeniowych p. 6
7 Szyfrowanie RSA Zaszyfrowanie wiadomości x polega wtedy na wykorzystaniu klucza publicznego (e, n) i wyznaczeniu liczby c x e mod n. Do zdeszyfrowania wiadomości potrzebujemy klucza prywatnego (d, n), który pozwala na odtworzenie przesłanej wiadomości c d (x e ) d x ed x mod n. Kryptografia na procesorach wielordzeniowych p. 7
8 Zrównoleglone szyfrowanie RSA (1) Zrównoleglenie potęgowania przy użyciu wykładnika d jest możliwe jeżeli tylko zastosujemy inna postać klucza prywatnego. Jeśli zapiszemy go w postaci (p,q,d p 1,d q 1 ), gdzie d p 1 d mod p 1, d q 1 d mod q 1, to zasadnicza część obliczeń będziemy mogli wykonać w dwóch oddzielnych watkach. Kryptografia na procesorach wielordzeniowych p. 8
9 Zrównoleglone szyfrowanie RSA (2) Algorytm: P1 wyznaczamy x p c d p 1 mod p, P2 wyznaczamy x q c d q 1 mod q, P1 wykorzystujac twierdzenie chińskie o resztach znajdujemy takie x, że { x x p c d p 1 modp, x x q c d q 1 modq. Kryptografia na procesorach wielordzeniowych p. 9
10 Podwajanie punktu krzywej eliptycznej (1) Załóżmy, że mamy dany punkt P 1 = (X 1,Y 1,Z 1,X 2 1,Z 2 1,Z 4 1) i chcemy znaleźć jego podwojenie w postaci P 3 = (X 3,Y 3,Z 3,X 2 3,Z 2 3,Z 4 3) jeżeli kolejnym działaniem będzie również podwojenie, P 3 = (X 3,Y 3,Z 3,X 2 3,Z 2 3,Z 3 3) jeżeli kolejnym działaniem będzie dodawanie. Kryptografia na procesorach wielordzeniowych p. 10
11 Podwajanie punktu krzywej eliptycznej (2) Kolejne współrzędne punktu P 3 sa postaci gdzie X 3 = α 2 2β, Y 3 = α(β X 3 ) 8Y1 4, Z 3 = (Y 1 + Z 1 ) 2 Y1 2 Z1, 2 α = 3(X1 2 Z1), 4 β = 2 ( ) (X 1 + Y1 2 ) 2 X1 2 Y1 4. Kryptografia na procesorach wielordzeniowych p. 11
12 Podwajanie punktu krzywej eliptycznej (3) Kolejne etapy obliczeń rozdzielone pomiędzy 3 procesory Procesor P1 Procesor P2 Procesor P3 α 2 (Y 1 + Z 1 ) 2 Y1 2 Y1 4 Z3 2 (X 1 + Y1 2 ) 2 X3 2 α (β X 3 ) Z3 3 lub Z3 4 Kryptografia na procesorach wielordzeniowych p. 12
13 Dodawanie punktu w postaci afinicznej (1) Załóżmy, że mamy dane punkty P 1 = (X 1,Y 1,Z 1,X1,Z 2 1,Z 2 1), 3 P 2 = (X 2,Y 2 ) i chcemy znaleźć ich sumę postaci P 3 = (X 3,Y 3,Z 3,X3 2,Z2 3,Z4 3 ). Kryptografia na procesorach wielordzeniowych p. 13
14 Dodawanie punktu w postaci afinicznej (2) Kolejne współrzędne punktu P 3 sa postaci gdzie X 3 = α 2 4β 3 8X 1 β 2, Y 3 = α(4x 1 β 2 X 3 ) 8Y 1 β 3, Z 3 = (Z 1 + β) 2 Z 2 1 β 2, α = 2(Z 3 1Y 2 Y 1 ), β = Z 2 1X 2 X 1. Kryptografia na procesorach wielordzeniowych p. 14
15 Dodawanie punktu w postaci afinicznej (3) Kolejne etapy obliczeń rozdzielone pomiędzy 3 procesory Procesor P1 Procesor P2 Procesor P3 Z1 3 Y 2 Z1 2 X 2 α 2 (Z 1 + β) 2 β 2 4X 1 β 2 4β β 2β Y 1 X3 2 Z3 2 4Y 1 β 2β 2 α (4X 1 β 2 X 3 ) Z3 4 Kryptografia na procesorach wielordzeniowych p. 15
16 Krotność punktu i potęgowanie (1) Załóżmy, że interesuje nas podniesienie pewnej losowej liczby do potęgi k, która ma n bitów k = n 1 i=0 k i 2 i. Aby rozdzielić skorzystamy z następujacego prostego faktu. Jeżeli k = r + s, to x k = x r x s. Kryptografia na procesorach wielordzeniowych p. 16
17 Krotność punktu i potęgowanie (2) Algorytm: P1 wyznaczamy x r = x r, P2 wyznaczamy x s = x s, P1 wyznaczamy y = x r x s. Kryptografia na procesorach wielordzeniowych p. 17
18 Krotność punktu i potęgowanie (3) Okazuje się, że jeśli odpowiednio dobierzemy indeks m, to liczby r = s = m 1 i=0 n 1 i=m k i 2 i, k i 2 i, pozwola nam na szybsze wykonanie potęgowania. Kryptografia na procesorach wielordzeniowych p. 18
19 Krotność punktu i potęgowanie (4) Załóżmy, że mnożenie modularne jest β razy wolniejsze od kwadratowania, a niezerowy bit w reprezentacji liczby k pojawia się z prawdopodobieństwem α. T r = αβm + m = αβ(n m) + n = T s m(1 + 2αβ) = n(1 + αβ) m = n 1 + αβ 1 + 2αβ. Kryptografia na procesorach wielordzeniowych p. 19
20 Algorytmy symetryczne i tryby szyfrowania Możliwość zrównoleglenia algorytmu symetrycznego jest ściśle uzależniona od trybu pracy tego szyfru. ECB (Electronic Code Book), CBC (Cipher Block Chaining), OFB (Output Feedback), CFB (Cipher Feedback), CTR (Counter), GCM (Galois Counter Mode). Kryptografia na procesorach wielordzeniowych p. 20
21 Schemat trybu GCM Kryptografia na procesorach wielordzeniowych p. 21
22 Narzędzia wspierajace implementację Biblioteka POSIX threads standardowy interfejs obsługujacy przetwarzanie wielowatkowe. Przemysłowy standard OpenMP zestaw dyrektyw preprocesora, których głównym zadaniem jest zrównoleglanie pętli. Biblioteki Intel Ct zestaw bibliotek, których zadaniem jest udostępnianie mechanizmów wspierajacych programowanie równoległe. Kryptografia na procesorach wielordzeniowych p. 22
23 Podsumowanie Idea programowania równoległego wraca znowu do łask po kilkunastu latach nieobecności. Zmiany, które nadchodza, z cała pewnościa nie omina również implemetnacji mechanizmów kryptograficznych. Kryptografia na procesorach wielordzeniowych p. 23
Kryptografia na procesorach wielordzeniowych
Kryptografia na procesorach wielordzeniowych Andrzej Chmielowiec 26maja2008 Streszczenie Artykuł opisuje możliwości implementowania zrównoleglonych algorytmów kryptograficznych na procesorach wielordzeniowych.
Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1
Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie
Parametry systemów klucza publicznego
Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego
Laboratorium nr 1 Szyfrowanie i kontrola integralności
Laboratorium nr 1 Szyfrowanie i kontrola integralności Wprowadzenie Jedną z podstawowych metod bezpieczeństwa stosowaną we współczesnych systemach teleinformatycznych jest poufność danych. Poufność danych
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................
Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (1) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Algorytmy kryptograficzne Przestawieniowe zmieniają porządek znaków
2 Kryptografia: algorytmy symetryczne
1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;
Szyfry Strumieniowe. Zastosowanie wybranych rozwiąza. zań ECRYPT do zabezpieczenia komunikacji w sieci Ethernet. Opiekun: prof.
Szyfry Strumieniowe Zastosowanie wybranych rozwiąza zań ECRYPT do zabezpieczenia komunikacji w sieci Ethernet Arkadiusz PłoskiP Opiekun: prof. Zbigniew Kotulski Plan prezentacji Inspiracje Krótkie wprowadzenie
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby
Szyfrowanie informacji
Szyfrowanie informacji Szyfrowanie jest sposobem ochrony informacji przed zinterpretowaniem ich przez osoby niepowołane, lecz nie chroni przed ich odczytaniem lub skasowaniem. Informacje niezaszyfrowane
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla
Estymacja kosztów łamania systemu kryptograficznego
Estymacja kosztów łamania systemu kryptograficznego p. 1/?? Estymacja kosztów łamania systemu kryptograficznego Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma
Wprowadzenie do zagadnień bezpieczeńśtwa i kryptografii
Wprowadzenie do zagadnień bezpieczeńśtwa i kryptografii Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Zagadnienia bezpieczeństwa Identyfikacja i uwierzytelnienie Kontrola dostępu Poufność:
Zarys algorytmów kryptograficznych
Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................
Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA
Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972
Ataki na algorytm RSA
Ataki na algorytm RSA Andrzej Chmielowiec 29 lipca 2009 Streszczenie Przedmiotem referatu są ataki na mechanizm klucza publicznego RSA. Wieloletnia historia wykorzystywania tego algorytmu naznaczona jest
Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi.
Spis treści: Czym jest szyfrowanie Po co nam szyfrowanie Szyfrowanie symetryczne Szyfrowanie asymetryczne Szyfrowanie DES Szyfrowanie 3DES Szyfrowanie IDEA Szyfrowanie RSA Podpis cyfrowy Szyfrowanie MD5
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
Marcin Szeliga Dane
Marcin Szeliga marcin@wss.pl Dane Agenda Kryptologia Szyfrowanie symetryczne Tryby szyfrów blokowych Szyfrowanie asymetryczne Systemy hybrydowe Podpis cyfrowy Kontrola dostępu do danych Kryptologia Model
Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Szyfry przestawieniowe
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne Algorytmy kryptograficzne (1) Przestawieniowe zmieniają porządek znaków według pewnego schematu, tzw. figury Podstawieniowe monoalfabetyczne
RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA
RSA Symetryczny system szyfrowania to taki, w którym klucz szyfrujący pozwala zarówno szyfrować dane, jak również odszyfrowywać je. Opisane w poprzednich rozdziałach systemy były systemami symetrycznymi.
Praktyczne aspekty wykorzystania nowoczesnej kryptografii. Wojciech A. Koszek <dunstan@freebsd.czest.pl>
Praktyczne aspekty wykorzystania nowoczesnej kryptografii Wojciech A. Koszek Wprowadzenie Kryptologia Nauka dotycząca przekazywania danych w poufny sposób. W jej skład wchodzi
Wprowadzenie do zagadnień bezpieczeńśtwa i kryptografii
Wprowadzenie do zagadnień bezpieczeńśtwa i kryptografii Patryk Czarnik Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Bezpieczeństwo sieci komputerowych MSUI 2009/10 Patryk Czarnik
Authenticated Encryption
Authenticated Inż. Kamil Zarychta Opiekun: dr Ryszard Kossowski 1 Plan prezentacji Wprowadzenie Wymagania Opis wybranych algorytmów Porównanie mechanizmów Implementacja systemu Plany na przyszłość 2 Plan
Bezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Szyfry asymetryczne Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 10 listopada 2015 Na podstawie wykładu Anny Kosieradzkiej z
Spis treści. Przedmowa... 9
Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.
1.1. Standard szyfrowania DES
1.1. Standard szyrowania DES Powstał w latach siedemdziesiątych i został przyjęty jako standard szyrowania przez Amerykański Narodowy Instytut Standaryzacji (ang. American National Standards Institute
Zastosowania informatyki w gospodarce Wykład 5
Instytut Informatyki, Automatyki i Robotyki Zastosowania informatyki w gospodarce Wykład 5 Podstawowe mechanizmy bezpieczeństwa transakcji dr inż. Dariusz Caban dr inż. Jacek Jarnicki dr inż. Tomasz Walkowiak
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 9 Spis treści 14 Podpis cyfrowy 3 14.1 Przypomnienie................... 3 14.2 Cechy podpisu...................
LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.
Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb
Szybka transformata Fouriera w kryptografii klucza publicznego
Szybka transformata Fouriera w kryptografii klucza publicznego Andrzej Chmielowiec 3 września 2008 Streszczenie Artykuł poświęcony jest wykorzystaniu szybkiej transformaty Fouriera(FFT) do realizacji operacji
Wprowadzenie ciag dalszy
Wprowadzenie ciag dalszy Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Szyfry asymetryczne Wymyślone w latach 70-tych Używaja dwóch różnych (ale pasujacych do siebie ) kluczy do szyfrowania
Podstawy systemów kryptograficznych z kluczem jawnym RSA
Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych
Kryptologia przykład metody RSA
Kryptologia przykład metody RSA przygotowanie: - niech p=11, q=23 n= p*q = 253 - funkcja Eulera phi(n)=(p-1)*(q-1)=220 - teraz potrzebne jest e które nie jest podzielnikiem phi; na przykład liczba pierwsza
Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie
Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy
Elementy kryptografii
Elementy kryptografii Marek Zachara http://marek.zachara.name 1/24 Kodowanie a szyfrowanie Kodowanie na poziomie semantycznym dotyczy zwykle liter lub bajtów ma za zadanie zamianę komunikatu z postaci
Automatyzacja procesu tworzenia sprzętowego narzędzia służącego do rozwiązywania zagadnienia logarytmu dyskretnego na krzywych eliptycznych
Automatyzacja procesu tworzenia sprzętowego narzędzia służącego do rozwiązywania zagadnienia logarytmu dyskretnego na krzywych eliptycznych Autor: Piotr Majkowski Pod opieką: prof. Zbigniew Kotulski Politechnika
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................
Wybrane zagadnienia teorii liczb
Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie
Przewodnik użytkownika
STOWARZYSZENIE PEMI Przewodnik użytkownika wstęp do podpisu elektronicznego kryptografia asymetryczna Stowarzyszenie PEMI Podpis elektroniczny Mobile Internet 2005 1. Dlaczego podpis elektroniczny? Podpis
Algorytmy asymetryczne
Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Szyfrowanie RSA (Podróż do krainy kryptografii)
Szyfrowanie RSA (Podróż do krainy kryptografii) Nie bójmy się programować z wykorzystaniem filmów Academy Khana i innych dostępnych źródeł oprac. Piotr Maciej Jóźwik Wprowadzenie metodyczne Realizacja
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm)
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
Bezpieczeństwo w Internecie
Elektroniczne Przetwarzanie Informacji Konsultacje: czw. 14.00-15.30, pokój 3.211 Plan prezentacji Szyfrowanie Cechy bezpiecznej komunikacji Infrastruktura klucza publicznego Plan prezentacji Szyfrowanie
Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna
1. Wstęp Wprowadzenie do PKI Infrastruktura klucza publicznego (ang. PKI - Public Key Infrastructure) to termin dzisiaj powszechnie spotykany. Pod tym pojęciem kryje się standard X.509 opracowany przez
Praktyczne aspekty stosowania kryptografii w systemach komputerowych
Kod szkolenia: Tytuł szkolenia: KRYPT/F Praktyczne aspekty stosowania kryptografii w systemach komputerowych Dni: 5 Opis: Adresaci szkolenia Szkolenie adresowane jest do osób pragnących poznać zagadnienia
Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system.
Wstęp Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Przedstawienie architektur sprzętu wykorzystywanych do
Generowanie ciągów bitów losowych z wykorzystaniem sygnałów pochodzących z komputera
Generowanie ciągów bitów losowych z wykorzystaniem sygnałów pochodzących z komputera Praca dyplomowa magisterska Opiekun: prof. nzw. Zbigniew Kotulski Andrzej Piasecki apiaseck@mion.elka.pw.edu.pl Plan
BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie
Bezpieczeństwo systemów komputerowych Podpis cyfrowy Podpisy cyfrowe i inne protokoły pośrednie Polski Komitet Normalizacyjny w grudniu 1997 ustanowił pierwszą polską normę określającą schemat podpisu
Programowanie równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz
Programowanie równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 23 października 2009 Spis treści Przedmowa...................................................
Estymacja kosztów łamania systemu kryptograficznego
Estymacja kosztów łamania systemu kryptograficznego Andrzej Chmielowiec 17maja2007 Streszczenie Przedmiotem artykułu jest prezentacja modelu matematycznego dla zagadnienia opłacalności łamania systemu
Bezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Wprowadzenie do kryptologii Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 16 listopada 2016 Jak ta dziedzina powinna się nazywać?
Piotr Majkowski. Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Telekomunikacji
Hybrydowy system służący do kryptoanalizy szyfrów opartych na krzywych eliptycznych Piotr Majkowski Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Telekomunikacji System
Haszowanie. dr inż. Urszula Gałązka
Haszowanie dr inż. Urszula Gałązka Problem Potrzebujemy struktury do Wstawiania usuwania wyszukiwania Liczb, napisów, rekordów w Bazach danych, sieciach komputerowych, innych Rozwiązanie Tablice z haszowaniem
PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna
PuTTY Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje
Laboratorium Programowania Kart Elektronicznych
Laboratorium Programowania Kart Elektronicznych Marek Gosławski Przygotowanie do zajęć aktywne ekonto wygenerowany certyfikat sprawna legitymacja studencka (lub inna karta) Potrzebne wiadomości mechanizm
Nowości w kryptografii
Nowości w kryptografii Andrzej Chmielowiec 30maja2012 Funkcje skrótu Konkurs na SHA-3 FIPS 180-4 Atak BEAST Kradzież w RSA Zakończenie Konkurs na SHA-3 FIPS 180-4 Implementacja finalistów konkursu SHA-3
Informatyka na WPPT. prof. dr hab. Jacek Cichoń dr inż. Marek Klonowski
prof. dr hab. Jacek Cichoń jacek.cichon@pwr.wroc.pl dr inż. Marek Klonowski marek.klonowski@pwr.wroc.pl Instytut Matematyki i Informatyki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.
Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany
bity kwantowe zastosowania stanów splątanych
bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit kwantowy zawiera więcej informacji niż bit klasyczny
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5.
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Schemat Hornera. Wyjaśnienie: Zadanie 1. Pozycyjne reprezentacje
Laboratorium nr 3 Podpis elektroniczny i certyfikaty
Laboratorium nr 3 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi
Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki
Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Laboratorium nr 5 Podpis elektroniczny i certyfikaty
Laboratorium nr 5 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi
Bezpieczeństwo danych, zabezpieczanie safety, security
Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός
Szyfry kaskadowe. Szyfry kaskadowe
Szyfry kaskadowe Szyfrem kaskadowym nazywamy szyfr, który jest złożeniem funkcji szyfrujących. W stosowanych w praktyce szyfrach kaskadowych jako funkcje składowe najczęściej stosowane są podstawienia
Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej
Obliczenia w systemach resztowych [Song Y. Yan] Przykład: obliczanie z = x + y = 123684 + 413456 na komputerze przyjmującym słowa o długości 100 Obliczamy kongruencje: x 33 (mod 99), y 32 (mod 99), x 8
urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania
Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja
Bezpieczna poczta i PGP
Bezpieczna poczta i PGP Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2010/11 Poczta elektroniczna zagrożenia Niechciana poczta (spam) Niebezpieczna zawartość poczty Nieuprawniony dostęp (podsłuch)
P O L I T E C H N I K A S Z C Z E C IŃSKA W Y D Z I A Ł I N F O R M A T Y K I
P O L I T E C H N I K A S Z C Z E C IŃSKA W Y D Z I A Ł I N F O R M A T Y K I K A T E D R A T E C H N I K P R O G R A M O W A N I A mgr inŝ. Dariusz Burak Metoda automatycznego zrównoleglenia wy branych
Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1
Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1 Metodologia programowania równoległego Przykłady podziałów zadania na podzadania: Podział ze względu na funkcje (functional
Bezpieczeństwo sieci bezprzewodowych
Bezpieczeństwo sieci bezprzewodowych CONFidence 2005 // Kraków // Październik 2005 Agenda Sieci bezprzewodowe LAN 802.11b/g 802.11a Sieci bezprzewodowe PAN Bluetooth UWB Sieci bezprzewodowe PLMN GSM/GPRS/EDGE
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas)
Hosting WWW Bezpieczeństwo hostingu WWW Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Szyfrowana wersja protokołu HTTP Kiedyś używany do specjalnych zastosowań (np. banki internetowe), obecnie zaczyna
Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm
Wykład 3 Bezpieczeństwo przesyłu informacji; Szyfrowanie
Wykład 3 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy
Zadanie domowe nr Odczytać zaszyfrowaną wiadomość (liczbę) jeżeli:
Zadanie domowe nr 122127 pq = 14691650382719198277390958526325257, KJ = 263111515232459, T XT = 1550184024239249105328038418749504. 2. Obliczyć wielokrotność punktu krzywej eliptycznej 11P jeżeli, y 2
Szyfry kaskadowe. permutacyjnej (SPP).
Szyfry kaskadowe Szyfrem kaskadowym nazywamy szyfr, który jest złożeniem funkcji szyfrujących. W stosowanych w praktyce szyfrach kaskadowych jako funkcje składowe najczęściej stosowane są podstawienia
Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.
Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą
Architektura mikroprocesorów TEO 2009/2010
Architektura mikroprocesorów TEO 2009/2010 Plan wykładów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit: 8051, ST7 Wykład
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy
Matematyka dyskretna
Matematyka dyskretna Wykład 12: Krzywe eliptyczne Gniewomir Sarbicki Rozważać będziemy przestrzeń K n Definicja: x y λ K x = λy. Relację nazywamy różnieniem się o skalar Przykład: [4, 10, 6, 14] [6, 15,
0 --> 5, 1 --> 7, 2 --> 9, 3 -->1, 4 --> 3, 5 --> 5, 6 --> 7, 7 --> 9, 8 --> 1, 9 --> 3.
(Aktualizacja z dnia 3 kwietnia 2013) MATEMATYKA DYSKRETNA - informatyka semestr 2 (lato 2012/2013) Zadania do omówienia na zajęciach w dniach 21 i 28 kwietnia 2013 ZESTAW NR 3/7 (przykłady zadań z rozwiązaniami)
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1
Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Organizacja przedmiotu Dr inż. Robert Banasiak Dr inż. Paweł Kapusta 1 2 Nasze kompetencje R n D Tomografia 3D To nie tylko statyczny obraz!
Współczesna kryptografia schematy bazujące na parowaniu punktów krzywej eliptycznej
Współczesna kryptografia schematy bazujące na parowaniu punktów krzywej eliptycznej Andrzej Chmielowiec Centrum Modelowania Matematycznego Sigma, andrzej.chmielowiec@cmmsigma.eu 26maja2010 Podstawy matematyczne
Architektury akceleratorów kryptograficznych opartych o układy programowalne. Marcin Rogawski
Architektury akceleratorów kryptograficznych opartych o układy programowalne. Marcin Rogawski rogawskim@prokom.pl Plan referatu: Budowa akceleratora kryptograficznego; Struktura programowalna element fizyczny;
Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić?
Bezpieczeństwo Danych Technologia Informacyjna Uwaga na oszustów! Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe czy hasła mogą być wykorzystane do kradzieŝy! Jak się przed nią
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy
LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.
Architektura Bezpieczeństwa dla Systemu ROVERS. Artur Skrajnowski Opiekun: dr inż. Jarosław Domaszewicz Współpraca: prof. dr hab.
Architektura Bezpieczeństwa dla Systemu ROVERS Artur Skrajnowski Opiekun: dr inż. Jarosław Domaszewicz Współpraca: prof. dr hab. Zbigniew Kotulski Plan prezentacji Sieci sensorowe System ROVERS Bezpieczeństwo