Elektroenergetyczne sieci rozdzielcze SIECI 2004 V Konferencja Naukowo-Techniczna
|
|
- Błażej Brzeziński
- 8 lat temu
- Przeglądów:
Transkrypt
1 Elektroeergetycze sieci rozdzielcze SEC 2004 V Koferecj ukowo-techicz Politechik Wrocłwsk ytut Eergoelektryki Wldemr SZPYRA Lech SZPYRA Krzysztof WYBRAŃSK Akdemi Góriczo-Huticz w Krkowie Wydził Elektrotechiki Automtyki formtyki i Elektroiki e-mil: wszpyr@gh.edu.pl EKOOMCZA GĘSTOŚĆ PRĄDU W LACH ELEKTROEERGETYCZYCH PRZY UWZGLĘDEU WZROSTU OBCĄŻEA W OKRESE EKSPLOATACJ L Jedym z kryteriów doboru przekroju przewodów osowych w liich elektroeergetyczych je ekoomicz gęość prądu w przewodch roboczych. W siecich eergetyki zwodowej obserwuje się ciągły coroczy wzro obciążei tym smym zmiei się gęość prądu w przewodch roboczych. lość eergii przesyłej rówież rośie z roku rok. Przy doborze przekrojów przewodów w tych siecich leży uwzględić dymikę tych zmi. W refercie podo zleżość ekoomiczą gęość prądu z uwzględieiem wzrou obciążei. Przedwioo wyiki obliczeń ekoomiczej gęości prądu dl elektroeergetyczych liii średiego pięci przy różych wrtościch współczyików wzrou obciążei. Uzyske wyiki porówo z wrtościmi gęości prądu w szczycie obciążei rzeczywiej sieci średiego pięci.. WPROWADZEE. EKOOMCZA GĘSTOŚĆ PRĄDU Przy doborze przekroju przewodów osowych w liich elektroeergetyczych bre są pod uwgę ępujące kryteri: dopuszczlej obciążlości prądowej długotrwłej dopuszczlej obciążlości prądmi zwrciowymi dopuszczlej wrtości spdku pięci ekoomiczej gęości prądu wytrzymłości mechiczej (w liich powietrzych. Pod pojęciem ekoomiczej gęości prądu rozumie się tką gęość prądu w liii elektroeergetyczej przy której cłkowite rocze koszty przesyłu eergii elektryczej są miimle [2]. Litertur przedmiotu [ 2] podje zleżości ekoomiczy przekrój przewodów i ekoomiczą gęość prądu wyprowdzoe przy złożeiu że moc mksyml i ilość eergii przesyłej w ciągu roku są tkie sme w kolejych ltch eksplotcji liii. Tk sytucj wyępuje (i to ie zwsze tylko w siecich rozdzielczych zkłdów przemysłowych. W siecich eergetyki zwodowej obserwuje się ciągły coroczy wzro zrówo mksymlej mocy przesyłej liimi jk i ilości eergii dorczej do odbiorców. Dltego przy doborze przekrojów przewodów w siecich leży uwzględić dymikę zmi obciążei. Koszt roczy przesyłu eergii liią elektroeergetyczą je sumą kosztów roczych łych K zmieych K z orz kosztów zwodości K : K = K + K + K r z (
2 326 Koszt roczy ły prcy liii elektroeergetyczej moż wyrzić zleżością: K = K ( rrr + res (2 gdzie: K kłdy poiesioe budowę liii r es współczyik kosztów eksplotcyjych łych (wk odpisów koszty dmiircyje obsługi i remotów r rr współczyik wycofi kpitłu (rt rozszerzoej reprodukcji wyrżoy zleżością: i ( + i r rr = (3 ( + i ormtywy okres mortyzcji w ltch i op oprocetowi kpitłu (op dyskot. rocze koszty zmiee prcy liii skłdją się koszty rt mocy i eergii i moż je wyrzić zleżością: K ( z = Ps cp + τ ce (4 przy czym: P s mksymle rty mocy w [kw] c P ce rt mocy w [zł/kw] c E ce eergii w [zł/kw h] τ czs trwi rt mksymlych w [h/]. Koszty zwodości w prktyce ie zleżą od przekroju przewodów i moż je ztem pomiąć w obliczeich ekoomiczej gęości prądu. Dl wyzczei ekoomiczej gęości prądu poszczególe skłdiki kosztów roczych prcy liii trzeb wyrzić jko fukcję przekroju przewodów. kłdy iweycyje budowę liii proksymuje się fukcją liiową (rys kłdy iweycyje budowę km liii K [tys.zł/km] Kblow HAKFtA Typu PAS powietrz AFL -6 K = A+B s = s K = A+B s = s K = A+B s = s Przekrój przewodów liii s [mm 2 ] Rys.. kłdy iweycyje budowę liii elektroeergetyczej w fukcji przekroju przewodów.
3 Koszt roczy ły prcy liii moż wyrzić zleżością: 327 ( es rr w której: A B łe zleżą od rodzju liii w [zł/km] [zł/(km mm 2 ] s przekrój przewodów w [mm 2 ] l długość liii w [m]. K = ( A + B s l r + r (5 Strty mocy w liii oblicz się z zleżości: 2 2 l P = 3 R = 3 (6 γ s przy czym: mksymly prąd płyący w liii w [A] R rezycj przewodów w liii w [Ω] γ koduktywość mteriłu przewodów liii w [m/ω mm 2 ]. Po podwieiu wyrżei (6 do wzoru (4 zleżość koszt roczy zmiey przyjmie poć: l K 3 2 z = ( cp + τ ce (7 γ s Uwzględieie wzrou obciążei orz wzrou ilości eergii przesyłej liią w ciągu roku wymg zjomości fukcji opisujących te wzro. Potrzeb je też zjomość fukcji opisujących zmię czsu trwi rt mksymlych orz współczyik mocy. Wobec brku zjomości tych fukcji przyjmuje się ępujące złożei: ( Obciążeie liii mocą czyą wzr o pewie ły procet w kżdym roku; (2 lość eergii przesłej liią wzr o pewie ły procet w kżdym roku; (3 Współczyik mocy cosϕ je ły w cłym rozwżym okresie (4 Stosuek czsu użytkowi mocy szczytowej do czsu trwi rt mksymlych je ły w cłym rozwżym okresie. (5 Łącz rocz op iflcji i esklcji ce i ie je ł w cłym rozwżym okresie. Z powyższych złożeń wyikją ępujące zleżości prąd mksymly i czs trwi rt mksymlych w kolejych ltch eksplotcji liii: ( = ( + q P (8 ( + q E τ ( = τ (9 ( + qp przy czym: mksymly prąd płyący w liii w pierwszym roku eksplotcji w [A] q P względy roczy przyro przesyłej mocy szczytowej q E względy roczy przyro ilości przesyłej eergii t rok dl którego wykoywe są obliczei. czs trwi rt mksymlych w pierwszym roku eksplotcji w [h/]. τ Po wwieiu zleżości (8 i (9 do wzoru (7 i uwzględieiu iflcji koszt roczy zmiey prcy liii w -tym roku będzie rówy:
4 328 K l ( + q 2 2 E z ( = 3 ( + qp cp c E ( + iie s + τ ( qp γ + (0 Wprowdzjąc ozczei: ( = A r A rr = A res ( r + r es > ( b( = B r B = B r ( r + r es rr es > (2 gdzie: i ie łącz op iflcji i esklcji ce. c ( + q ( + q 2 P E ( = 3 cp + τ c E ( + iie ( qp γ + (3 Przy powyższych ozczeich zleżość koszt roczy w -tym roku eksplotcji liii przyjmie poć: 2 l K r ( = [ ( + b( s] l + c( (4 s Sum zdyskotowych kosztów roczych z okres lt eksplotcji liii je rów: K d l c( ( + i 2 = l ( ( + i + l s b( ( + i + = = s = (5 W celu zleziei przekroju przy którym sum zdyskotowych kosztów roczych w rozwżym okresie eksplotcji będzie jmiejsz różiczkuje się powyższe wyrżeie względem s i przyrówuje się pochodą do zer. Oteczie otrzymuje się: s ek = = b( c( ( + i = ( + i (6 Gęość prądu je ilorzem prądu płyącego w przewodzie przez przekrój tego przewodu. Po podzieleiu prądu mksymlego przez ekoomiczy przekrój przewodu otrzymujemy: j ek = = = sek = b( ( + i c( ( + i (7 Powyższy wzór pozwl obliczyć ekoomiczą gęość prądu w pierwszym roku eksplotcji liii.
5 2. WYK OBLCZEŃ EKOOMCZEJ GĘSTOŚC PRĄDU 329 Korzyjąc z podej wyżej zleżości wykoo obliczei ekoomiczej gęości prądu dl elektroeergetyczych liii średiego pięci (powietrzych z przewodmi AFL i kblowych z żyłmi lumiiowymi. Do obliczeń przyjęto ępujące wrtości łych: ł: B = 30 [zł/km mm 2 ] dl liii powietrzych B = 500 [zł/km mm 2 ] dl liii kblowych ce eergii: c E = 028 [zł/kw h] ce mocy: c p = 3948 [zł/kw] op procetow: i = 008 (8% łącz op iflcji i esklcji ce: i ie = (5% ormtywy okres eksplotcji: = 22 lt. Obliczei wykoo dl różych wrtości roczych przyroów mocy i eergii. Wybre wyiki obliczeń przedwioo rys. 2 i 3. Ekoomicz gęość prądu dl liii powietrzych j ek [A/mm2] q E = q P = 00; i ie = 0 q E = q P = 00; i ie = 005 q E = q P = 002; i ie = 005 q E = q P = 003; i ie = 005 q E = q P = 004; i ie = Czrwi rt mksymlych τ [h/] Rys. 2. Ekoomicz gęość prądu dl liii powietrzych w fukcji czsu trwi rt mksymlych przy różych wrtościch wzrou obciążei. Ekoomicz gęość prądu dl liii kblowej j ek [A/mm 2 ] qe = qp = 00; = 22 lt qe = qp = 002; = 22 lt qe = qp = 003; = 22 lt qe = qp = 004; = 22 lt qe = qp = 004; = 40 lt Czrwi rt mksymlych τ [h/] Rys. 3. Ekoomicz gęość prądu dl liii kblowych w fukcji czsu trwi rt mksymlych przy różych wrtościch wzrou obciążei.
6 330 Wykresy zoły oprcowe przy złożeiu jedkowych roczych przyroów mocy i eergii przesyłej liią. Dodtkowo rys. 2 pokzo krzywą ilurującą zleżość ekoomiczej gęości prądu przy pomiięciu iflcji (i ie = 0 rys. 3 krzywą ilurującą zleżość ekoomiczej gęości prądu przy wydłużoym do = 40 lt okresie eksplotcji liii. 3. GĘSTOŚĆ PRĄDU W LACH S REJOU EERGETYCZEGO Poiżej pokzo wykresy przedwijące rozkłd gęości prądu w szczycie obciążei w mgirlch i głęzich liii powietrzych orz w liich kblowych sieci średiego pięci jedego z rejoów eergetyczych. Sieć zsil je z 6 cji 0 kv/s. Łącz długość liii lizowej sieci wyosi 875 km (w tym 200 km liii kblowych. Sieć zsil = 800 cji S/ przy przeciętym opiu obciążei w szczycie około 275 % S. Moc szczytow pobier z sieci wyosi P s = 67 MW ilość przesyłej w ciągu roku eergii E r = 360 GWh. Oszcowy tej podwie czs trwi rt mksymlych wyosi τ = h/. Progozowy wzro obciążei wyosi około q E =q P = % rok % sumy długości % liczby odcików Udził [%] > 20 Gęość prądu j [A/mm 2 ] Rys. 4. Gęość prądu w mgirlch liii powietrzych S rejou eergetyczego % sumy długości % liczby odcików 40 Udził [% > 06 Gęość prądu j [A/mm2] Rys. 5. Gęość prądu w odgłęzieich liii powietrzych S rejou eergetyczego
7 % sumy długości % liczby odcików 35 Udził [%] > 0 Gęość prądu j [A/mm2] Rys. 6. Gęość prądu w liich kblowych S rejou eergetyczego W tblicy zewioo średie (wżoe długością i mksymle wrtości gęości prądu w mgirlch głęzich i odczepch lizowej sieci. Tblic. Średie i mksymle wrtości gęości prądu w mgirlch głęzich i odczepch sieci S rejou eergetyczego Rodzj liii powietrz kblow Gęość prądu mgirl głąź odczep mgirl głąź odczep [A/mm 2 ] [A/mm 2 ] [A/mm 2 ] [A/mm 2 ] [A/mm 2 ] [A/mm 2 ] średi mksyml Ekoomicz gęość prądu w sieci omwiego rejou określo przy złożeiu że okres eksplotcji liii będzie rówy ormtywemu ( = 22 lt iflcj będzie poziomie 5 % wyosi dl liii powietrzych j ek = A/mm 2 dl liii kblowych j ek = A/mm 2. Gęości większe od podych wyżej wyępują tylko w około 8 % długości mgirl liii powietrzych i około 22 % długości liii kblowych. 4. WOSK podwie wykoych obliczeń orz lizy gęości prądu w sieci S rejou eergetyczego suwją się ępując wioski: W obliczeich ekoomiczej gęości prądu decydujące zczeie m ce eergii progozowy wzro ilości przesyłej eergii orz zkłdy okres eksplotcji liii. m wyższ ce eergii większy zkłdy przyro ilości eergii przesyłej w ciągu roku i dłuższy plowy okres eksplotcji liii tym gęość prądu w pierwszym roku eksplotcji powi być miejsz. Wzro obciążei w miejszym opiu wpływ ekoomiczą gęość prądu.
8 332 2 Uwzględieie iflcji rówież powoduje obiżeie ekoomiczej gęości prądu. 3 Przecięte gęości prądu wyępujące w lizowej sieci są wyrźie iższe od gęości ekoomiczej. Gęości większe od podych wyżej wyępują tylko w około 8 % długości mgirl 33 % długości głęzi w liii powietrzych orz w około 22 % długości liii kblowych. Wyik to ąd że o doborze przekroju przewodów decydują ie czyiki. W przypdku mgirl liii powietrzych decydujące zczeie m spdek pięci. W przypdku głęzi i odczepów położoych w pobliżu GPZ o przekroju decyduje wytrzymłość zwrciow tomi położoych w głębi sieci uifikcj. W liich kblowych decydujące zczeie m wytrzymłość zwrciow. LTERATURA [] Ludy D.: Rchuek ekoomiczy w elektroeergetyce. Oficy Wyd. Politechiki Wrszwskiej Wrszw 999. [2] Pordik żyier Elektryk tom Wydwictw ukowo-techicze Wrszw 997.
MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory
MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,
i interpretowanie reprezentacji wykorzystanie i tworzenie reprezentacji wykorzystanie wykorzystanie i tworzenie reprezentacji
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zdi Odpowiedzi Pukty Bde umiejętości Obszr stdrdu. B 0 pluje i wykouje obliczei liczbch rzeczywistych,
CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.
CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.
ELEMENTÓW PRĘTOWYCH. Rys.D3.1
DODATEK N. SZTYWNOŚĆ PZY SKĘANIU ELEMENTÓW PĘTOWYH Zgdieie skręci prętów m duże zczeie prktycze. Wyzczeie sztywości pręt przy skręciu jest iezęde do określei skłdowych mcierzy sztywości prętów rmy przestrzeej
Collegium Novum Akademia Maturalna
Collegium Novum Akdemi Mturl wwwcollegium-ovumpl 0- -89-66 Mtemtyk (GP dt: 00008 sobot Collegium Novum Akdemi Mturl Temt 5: CIĄGI Prowdzący: Grzegorz Płg Termi: 0007 godzi 9:00-:0 8 Zdie Które wyrzy ciągu
MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic
MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,
Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP
Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +
Scenariusz lekcji matematyki w klasie II LO
Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi
MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań
MATEMATYKA Przed próbą mturą Sprwdzi (poziom rozszerzoy) Rozwiązi zdń Zdie ( pkt) P Uczeń oblicz potęgi o wykłdikc wymieryc i stosuje prw dziłń potęgc o wykłdikc wymieryc 5 ( ) 7 5 Odpowiedź: C Zdie (
Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa
Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1
CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).
MATEMATYKA I - Lucj Kowlski {,,,... } CIĄGI LICZBOWE N zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej. Nieskończoy ciąg liczbowy to przyporządkowie liczbom
WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera
/9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń
R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10
Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA
4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.
4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj
RELACJE WARTOŚCI DŁUGOŚCI DROGI HAMOWANIA I DROGI ZATRZYMANIA DLA RÓŻNYCH WARUNKÓW RUCHU SAMOCHODU
Zbigiew LOZIA, Pio WOLIŃSI RELACJE WARTOŚCI DŁUGOŚCI DROGI HAMOWANIA I DROGI ZATRZYMANIA DLA RÓŻNYCH WARUNÓW RUCHU SAMOCHODU Seszczeie Pc pzedswi oceę długości dogi mowi i dogi zzymi smocodu (zwej kże
SYSTEM WIELKOŚCI CHARAKTERYZUJĄCY POTENCJALNĄ I ODDZIELONĄ CZĄSTKĘ ZUŻYCIA TRIBOLOGICZNEGO
6-0 T B O L O G 8 Piotr SDOWSK * SYSTEM WELKOŚC CKTEYZUĄCY POTECLĄ ODDZELOĄ CZĄSTKĘ ZUŻYC TBOLOGCZEGO SYSTEM OF VLUES CCTEZED POTETL D SEPTED WE PTCLE Słow kluczowe: prc trci, zużywie ściere, cząstk zużyci,
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
Matematyka finansowa 25.01.2003 r.
Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r.
KONKURS MTEMTYCZNY dl ucziów gimzjów w roku szkolym 0/ III etp zwodów (wojewódzki) styczi 0 r. Propozycj puktowi rozwiązń zdń Uwg Łączie uczeń może zdobyć 0 puktów. Luretmi zostją uczesticy etpu wojewódzkiego,
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa
Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut
5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.
5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż
Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I
Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk
Modele linii elektroenergetycznych
Pls p. z o.o. emil:pls@pls.com.pl tel. 6 59 76 eri: Wykłdy ystemy elektroeergetycze Wykłd Autor: dr iż. igiew du dr iż. Krzysztof Księżyk mgr iż. Tomsz du Wrszw, 9 pis treści....4.. mpedcje wzdłuże liii...
Zasada indukcji matematycznej. Dowody indukcyjne.
Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń
POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych M O D E L O W A N I E I S Y M U L A C J A
POLTECHNKA GDAŃSKA Wydził Elektrotechniki i Automtyki Ktedr Energoelektroniki i Mszyn Elektrycznych M O D E L O W A N E S Y M U L A C J A S Y S T E M Ó W M E C H A T O N K Kierunek Automtyk i obotyk Studi
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
Wyznaczanie parametrów wytrzymałościowych gruntu w aparacie bezpośredniego ścinania (ABS).
Wyzczie prmetrów wytrzymłościowych grutu w prcie bezpośrediego ścii (ABS). Wytrzymłością grutu ściie τf zywmy mksymly opór, jki stwi grut prężeiom ścijącym, po pokoiu którego stępuje ziszczeie struktury
Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE
Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem
I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.
I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń
Niepewność złożona jest sumą geometryczną udziałów niepewności składowych:
PROEKO Ryszrd Soć www.proekors.pl Obliczie w progrie Eisj iepewości poir stężei pył wg. PN-EN 384 Eisj ze źródeł stcjorych Ozczie stężei sowego pył w zkie iskich wrtości. Część I. Ml etod grwietrycz Stężeie
CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy
CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy ZADANIE.. W linii prądu przemiennego o napięciu znamionowym 00/0 V, przedstawionej na poniższym rysunku obliczyć:
2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a
Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy
Szeregi o wyrazach dowolnych znaków, dwumian Newtona
Poprwi lem 9 czerwc 206 r, godz 20:0 Twierdzeie 5 kryterium Abel Dirichlet Niech be dzie ieros cym ci giem liczb dodtich D Jeśli 0 i ci g sum cze ściowych szeregu b jest ogriczoy, to szereg b jest zbieży
Wykład 8: Całka oznanczona
Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy
Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.
Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:
Powtórka dotychczasowego materiału.
Powtórk dotychczsowego mteriłu. Zdi do smodzielego rozwiązi. N ćwiczeich w środę 7.6.7 grupy 4 leży wskzć zdi, które sprwiły jwięcej problemów. 43. W kżdym z zdń 43.-43.5 podj wzór fukcję różiczkowlą f
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod rozwiązi ( PITAGORAS ): Sporządzeie rysuku w ukłdzie współrzędych: p C A y 0
- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są
Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)
Analiza Matematyczna
Aliz Mtemtycz Przykłdy: Cłki ozczoe. Oprcowie: dr hb. iż. Agieszk Jurlewicz, prof. PWr Przykłd 9. : Korzystjąc z defiicji cłki ozczoej orz fktu, że fukcj ciągł jest cłkowl, oblicz e x dx przyjmując podził
Struktura czasowa stóp procentowych (term structure of interest rates)
Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
Wykład 12: Sumowanie niezależnych zmiennych losowych i jego związek ze splotem gęstości i transformatami Laplace a i Fouriera. Prawo wielkich liczb.
Rchuek prwdopodobieństw MA064 Wydził Elektroiki, rok kd. 2008/09, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 2: Sumowie iezleżych zmieych losowych i jego związek ze splotem gęstości i trsformtmi Lplce
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY
Przykłdowy zestw zdń r z mtemtyki Odpowiedzi i schemt puktowi poziom rozszerzoy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod
Rys. 1. Schemat połączenia. = (grubość sklejki) = (grubość drewna) Szymon Skibicki, Katedra Budownictwa Ogólnego
Szymo Sibici, Ktedr Budowictw Ogólego Przyłd obliczei połączei w rtowicy drewiej wyoego z pomocą łde z sleji iglstej gr. 8mm, łączoej gwoździe zgodie z Rys.. Sróty: EK5 P-E 995--:00AC:006A:008 W prmetrch
BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ
ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie
POMIAR WSPÓŁCZYNNIKÓW CHARAKTERYZUJĄCYCH KSZTAŁT SYGNAŁÓW ELEKTRYCZNYCH
ĆWICZENIE NR POMIAR WSPÓŁCZYNNIKÓW CHARAKTERYZUJĄCYCH KSZTAŁT SYGNAŁÓW ELEKTRYCZNYCH.. Cel ćwiczeia Celem ćwiczeia jest pozaie metod pomiaru współczyików charakteryzujących kształt sygałów apięciowych
Macierze w MS Excel 2007
Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Ciągi liczbowe podstawowe definicje i własności
Ciągi liczbowe podstwowe defiicje i włsości DEF *. Ciągiem liczbowym (ieskończoym) zywmy odwzorowie zbioru liczb turlych w zbiór liczb rzeczywistych, tj. :. Przyjęto zpis:,,...,,... Przy czym zywmy -tym
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz
ń Ę Ę Ę Ę ń ń Ś ź Ę ś ś Ę Ś Ą Ę Ę Ę Ę Ż Ę Ę ść Ą Ł Ę Ć ć Ś Ę Ę ś Ę Ż Ś Ę Ę ń Ż Ę Ć ź ć Ł ś Ę ś Ż ś Ś ś Ę ć Ł ś Ż ŚĆ Ę ń ŚĆ ść ś ś ń ś Ś ś ś Ęś Ę ć ś ść ń ń Ć ś Ą ń ć Ą Ś ń ś ś ć ć ś źć ć ź ś ń Ę ś Ę ć
ć ź Ą Ł ć
Ł Ł Ł Ł ć ź Ą Ł ć Ę ć Ń ź Ń Ń ź Ń Ś Ń ź ć ć ć ć ć ć ć ć ć ć Ę ć ć ć ć ć ć ć Ł ć ć ć ć Ę ć ć Ę Ń Ą ć Ą ć Ę ć ć ć Ę Ę ć Ń ć Ą ć ć ć ć Ę ć Ę ć Ę ź ć ć Ę ć Ę Ę ć ć ć ć ć ć ć Ę Ś ć ć ć ć ć ć Ę ć Ą ć Ę ć Ę Ę
PROJEKT BUDOWLANY. Obiekt: Budynek istniejący C Na terenie kompleksu szpitalnego Przy ul. Staszica 16 73-110 Stargard Szczeciński
PROJEKT BUDOWLANY Relizcj etpu przebudowy i modernizcji 3 piętr Oddziłu Rehbilitcyjnego polegjącego n budowie szybu windowego, montżu windy szpitlnej orz niezbędnej rozbudowie obiektu budynku C znjdującego
Algebra WYKŁAD 5 ALGEBRA 1
lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do
1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY
. Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest
WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH
Ochron przeciwwybuchow Michł Świerżewski WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH 1. Widomości ogólne Zgodnie z postnowienimi rozporządzeni Ministr Sprw Wewnętrznych
Układy liniowosprężyste Clapeyrona
Układy liiowosprężyste Clapeyroa Liiowosprężysty układ Clapeyroa zbiór połączoych ze sobą ciał odkształcalych, w których przemieszczeia są liiowymi fukcjami sił Układ rzeczywisty może być traktoway jako
Podstawy praktycznych decyzji ekonomiczno- finansowych w przedsiębiorstwie
odswy pryczych decyzji eooiczo- fisowych w przedsiębiorswie l wyłdu - Wrość pieiądz w czsie 4 h - Efeywość projeów w iwesycyjych 3-4 h -Wżoy osz piłu u WACC h odswy pryczych decyzji eooiczo- fisowych w
Zasilanie budynków użyteczności publicznej oraz budynków mieszkalnych w energię elektryczną
i e z b ę d i k e l e k t r y k a Julia Wiatr Mirosław Miegoń Zasilaie budyków użyteczości publiczej oraz budyków mieszkalych w eergię elektryczą Zasilacze UPS oraz sposoby ich doboru, układy pomiarowe
Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja
Mteriły pomocnicze do ćwiczeń z przedmiotu: Orzewnictwo, wentylcj i klimtyzcj II. Klimtyzcj Rozdził 1 Podstwowe włsności powietrz jko nośnik ciepł mr inż. Anieszk Sdłowsk-Słę Mteriły pomocnicze do klimtyzcji.
Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania
Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x
ć ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ę Ź ź ń ć ź ń ć ź ń ź ć ń ć ć ć ć Ł Ł ń Ę ć ć ć ń ć ć ć ć Ź ć Ł ć ć Ę ć Ą Ą ć Ę Ą ć ń ź ź ń ć Ę ć ć ć Ś ć ć Ż ć ć Ą ć ć ć ć Ś ć ź Ę ć ć ń ć ć ć ć ć ć Ś ć ć ć ć ń ć ń ź
Prosta metoda sprawdzania fundamentów ze względu na przebicie
Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie
Sprawozdanie z laboratorium proekologicznych źródeł energii
P O L I T E C H N I K A G D A Ń S K A Sprawozdaie z laboratorium proekologiczych źródeł eergii Temat: Wyzaczaie współczyika efektywości i sprawości pompy ciepła. Michał Stobiecki, Michał Ryms Grupa 5;
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz
Rchuek prwdopodobieństw MA5 Wydził Elektroiki, rok kd. 20/2, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 7: Zmiee losowe dwuwymirowe. Rozkłdy łącze, brzegowe. Niezleżość zmieych losowych. Momety. Współczyik
Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury.
Główk prcuje - zdi wymgjące myślei czyli TOP TRENDY owej mtury W tej pordzie 0 trudiejszych zdń Wiele z ich to zdi, których temt zczy się od wykż, udowodij, czyli iezbyt lubiych przez mturzystów Zdie Widomo,
SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN
ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI
Rozwiązywanie układów równań liniowych (1)
etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody dokłde rozwiązywi ukłdów rówń liiowych etody dokłde pozwlą uzyskie rozwiązi w skończoe liczbie kroków obliczeiowych.
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
Problem eliminowania fa szywych alarmów w komputerowych systemach ochrony peryferyjnej
BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 5 37-46 (1) Problem elimiowi fszywych lrmów w komputerowych systemch ochroy peryferyjej G. KONOPACKI, K. WORWA e-mil: gkoopcki@wt.edu.pl Istytut Systemów Iformtyczych
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI
Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn
METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1
METODY NUMERYCZNE Wykłd 5. Cłkowie umeryze dr. iż. Ktrzy Zkrzewsk, pro. AGH Met.Numer. wykłd 5 Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rirdso Metod Romerg Metod Simpso wzór prol Metod Guss
Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.
Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...
Temat 1. Afiniczne odwzorowanie płaszczyzny na płaszczyznę. Karol Bator. GGiIŚ, II rok, niestac. grupa 1
Temt Afiniczne odwzorownie płszczyzny n płszczyznę Krol Btor GGiIŚ, II rok, niestc. grp SPRAWOZDANIE DANE FORMALNO-PRAWNE:. Zleceniodwc: Akdemi Górniczo-Htnicz Wydził Geozdezji Górniczej i Inżynierii Środowisk.
GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa
/ WYKŁD. Wyzzik mierzy: defiij idukyj i permutyj. Włsośi wyzzików, rozwiięie Lple', wzór Srrus. Mierz odwrot i sposoy jej wyzzi. GENEZ WYZNCZNIK Ukłd rówń liiowyh z dwiem iewidomymi, y x y x Rozwiązi ukłdu
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski
Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU
WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr.........
WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI prowdząc(y)... grup... podgrup... zespół... seestr... roku kdeckego... studet(k)... SPRAWOZDANIE Z PRACY LABORATORYJNEJ r......... pory wykoo
MODEL MATEMATYCZNY BILANSU MATERIAŁÓW WSADOWYCH O NIEPEWNYM SKŁADZIE CHEMICZNYM
8/8 ARCHIWUM ODLEWNICTWA Ro 6 Roczi 6 Nr 8 (/ ARCHIVES OF FOUNDRY Yer 6 Volume 6 N o 8 (/ PAN Ktowice PL ISSN 6-58 MODEL MATEMATYCZNY BILANSU MATERIAŁÓW WSADOWYCH O NIEPEWNYM SKŁADZIE CHEMICZNYM E. ZIÓŁKOWSKI
ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW
1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj
3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.
WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,
SKUTKI ZAWODNOŚCI TRANSFORMATORÓW ROZDZIELCZYCH W SPÓŁCE DYSTRYBUCYJNEJ
Prace Naukowe Istytutu Maszy, Napędów i Pomiarów Elektryczych Nr 60 Politechiki Wrocławskiej Nr 60 Studia i Materiały Nr 27 2007 Adrzej STOBIECKI *, Ja C. STĘPIEŃ trasformator, zawodość, koszty, eergia
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Układy równań liniowych Macierze rzadkie
5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Ukłdy rówń liiowych Mcierze rzdkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Pl zjęć. Zdie rozwiązi ukłdu rówń liiowych.. Ćwiczeie -
Model matematyczny strat objętościowych ściskania oleju hydraulicznego w pompie wyporowej o zmiennej wydajności
Model mtemtyczy strt objętościowych ściski oleju hydruliczego w omie wyorowej o zmieej wydjości Zygmut szot 1. Wrowdzeie W rcch [1 4] utor dokoł róby ocey wływu ściśliwości cieczy roboczej obrz strt objętościowych
Optymalny dobór transformatora do obciążenia
udia odyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projeku Śląsko-Małopolskie Cerum Kompeecji Zarządzaia Eergią Opymaly dobór rasformaora do obciążeia Dr iż. Waldemar zpyra Opymaly dobór
a a = 2 S n = 2 = r - constans > 0 - ciąg jest malejący q = b1, dla q 1 S n 1 CIĄGI jest rosnący (niemalejący), jeżeli dla każdego n a n
CIĄGI ciąg jest rosący (iemlejący), jeżeli dl kżdego < ( ) ciąg jest mlejący (ierosący), jeżeli dl kżdego > ( ) ciąg zywmy rytmetyczym, jeżeli dl kżdego r - costs - r > 0 - ciąg rosący - r 0 - ciąg stły
System finansowy gospodarki
System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym
Przetworniki Elektromaszynowe st. n. st. sem. V (zima) 2018/2019
Kolokwium główne Wrint A Przetworniki lektromszynowe st. n. st. sem. V (zim 018/019 Trnsormtor Trnsormtor trójzowy m nstępujące dne znmionowe: S 00 kva 50 Hz HV / LV 15 ±x5% / 0,4 kv poł. Dyn Pondto widomo,
Integralność konstrukcji
1 Integrlność konstrukcji Wykłd Nr 5 PROJEKTOWANIE W CELU UNIKNIĘCIA ZMĘCZENIOWEGO Wydził Inżynierii Mechnicznej i Robotyki Ktedr Wytrzymłości, Zmęczeni Mteriłów i Konstrukcji http://zwmik.imir.gh.edu.pl/dydktyk/imir/index.htm