REGRESJA LINIOWA. gdzie

Wielkość: px
Rozpocząć pokaz od strony:

Download "REGRESJA LINIOWA. gdzie"

Transkrypt

1 REGREJA LINIOWA Jeżel zmerzoo obarczoe tlko błędam przpadkowm wartośc (, ),,,..., dwóch różch welkośc fzczch X Y, o którch wadomo, że są zwązae ze sobą zależoścą lową f(), to ajlepszm przblżeem współczków A B w rówau A + B jest A Γ, B Γ, gdze Γ Welkośc charakterzujące zależość lową został oblczoe w oparcu o pukt dośwadczale, a te obarczoe są epewoścam zwązam z wkowam pomaram. Dlatego współczk A B też są wzaczae z pewą dokładoścą. Nepewośc welkośc A B oblczam astępująco: δa σ Γ, δb σ Γ, gdze σ ( A B) ε UWAGA:. Ab arsować prostą regresj lowej a paperze mlmetrowm wberam dowole ( względe odległe od sebe) współrzęde p k ( e współrzęde puktów pomarowch! ), oblczm odpowadające m współrzęde p k według rówaa A + B ( A B już są zae ), aosm pukt o współrzędch ( p, p ) oraz ( k, k ) przez te pukt przeprowadzam prostą. Pukt odpowadające wkom aszch pomarów wraz z ch epewoścam pow rozkładać sę rówomere w poblżu tej prostej może sę okazać, że żade z aszch puktów pomarowch e leż a ej! Zacze odstępstwa ( poad 0 % ) puktów pomarowch od l teoretczej pozwalają przpuszczać, że merzoe welkośc e są lowo zależe. Wted też współczk korelacj zacze róż sę od jedośc. Jeśl te odstępstwa dotczą małej lośc puktów pomarowch ustuowach w różch częścach wkresu to przjmujem, że pukt te obarczoe są tzw. błędem grubm. Take pukt odrzucam, a dla pozostałch poowe oblczm wszstke parametr prostej ajlepszego dopasowaa tz. A, δa, B, δb oraz współczk korelacj R.

2 . Wszstke kalkulator tpu CIENTIFIC, które wkoują oblczea statstcze jedej zmeej, automatcze oblczają sum tpu,, gdze,,,.... Kalkulator pozwalające wkować oblczea statstcze a dwóch zmech, oblczają także sum tpu,,. Możlwe węc jest wzaczee wszstkch parametrów prostej ajlepszego dopasowaa metodą regresj lowej zwaej róweż metodą ajmejszch kwadratów. Przed oblczeam sprawdzć w strukcj dołączoej do kalkulatora, cz regresja jest lczoa dla rówaa A + B cz dla A + B. Ab wzaczć epewośc współczków A B prz pomoc kalkulatora wgodej jest zastosować astępujące przblżee zamast ε A B ( A B) ε Procedura ta może wpłąć a zmaę wartośc σ, która zależa jest od ε to spowodować zmaę wartośc δa δb choć wrażea pozostają take same. W kosekwecj może δa ε Γ δb ε Γ W rozważam przkładze f() z wzorów wgodch mam ε 469, ,064 4,6749,4047 ε 4047, 0, δa 0,9966 δb 0,66865 Na podstawe wzorów dokładch otrzmao ( A B) 40499, 0, δa 0,9960 δb 0,6686 Wdać, że zgodość otrzmach welkośc lczbowch jest bardzo dobra. Celowo zaechao zaokrągleń. Rówae prostej ajlepszego dopasowaa będze (,54 ± 0,99) + (,707 ± 0,66 ) Te sposób oblczaa epewośc δa δb jest o wele prostsz szbsz lecz mej dokład. Może a przkład zawżać wartośc poszukwach welkośc δa δb ezależe od zaokrągleń różch welkośc a poszczególch etapach oblczeń. Poza tm, schematcze stosowae przblżoej zależośc

3 ε A B może prowadzć do bezsesowch wartośc lczbowch welkośc ε ( p. wartośc ujeme!!! ) awet prz dużej dokładośc pomarów oblczeń. W przpadku, gd prz oblczau wrażea przblżoego ε wstępuje różca dwóch dużch, prawe jedakowch lczb, ależ koecze posłużć sę zależoścą defcją ε ( A B). WPÓŁCZYNNIK KORELACJI Współczk korelacj R jest marą lczbową korelacj (zwązku, współzależośc) zmech (,,,...) tworzącch sere pomarów welkośc X Y. Z jedej stro służ do upewea sę, cz mam wstarczającą lość pomarów welkośc b twerdzć, że zachodz mędz m korelacja czl zależość p. lowa, wkładcza, logartmcza. Z drugej stro R jest marą prawdopodobeństwa stea przjętej (postulowaej) współzależośc zmech. Jeżel zwązek mędz zmem jest low, f(), to R azwam współczkem korelacj lowej, a współzależość mędz dwema seram pomarów - korelacją lową. Korelacja jest tm slejsza, m wększą wartość z przedzału [-, + ] osąga R. Duża wartość współczka R śwadcz o dużm prawdopodobeństwe postulowaego zwązku zmech. W szczególośc R ±0,95 ozacza prawdopodobeństwo rówe 95% dla badaej współzależośc. Tak węc, może zachodzć korelacja lowa pomędz puktam dośwadczalm (, ), lecz obarczoa jest epewoścą względą woszącą 5%. Jeżel R ± mówm o korelacj zupełej, jeżel R 0 to mówm o braku korelacj. Mała wartość współczka korelacj R może wskazwać a zbt krótką serę pomarów lub a ą, ż przjęto, współzależość mędz welkoścam. W perwszm przpadku przeprowadzam pomar uzupełające, a w drugm, o le e przecz to prawom rządzącm badam zwązkem mędz seram pomarów, sprawdzam ą korelację, p. krzwolową zamast lowej. Iformacje dotczące regresj elowej zawarte są w 4.. skrptu Ćwczea laboratorje z fzk, cz.i. Podstaw opracowaa wków pomarów OWPWr., Wrocław POPRAWKI R., ALEJDA W. Jeżel atomast wadomo, że zwązek mędz welkoścam ma charakter wkładcz, to warto ajperw dokoać tzw. learzacj badaej zależośc a astępe skorzstać z metod regresj lowej. Węcej a te temat moża zaleźć w.. wspomaego skrptu. Gracze wartośc R w zależośc od lczb pomarów, od którch wzwż moża woskować o steu współzależośc, przedstawa poższa tabela R 0,99 0,84 0,64 0,5 0,47 0,4 0,5 0,0 0,4 0,0 0,0 Rozumem ją astępująco: jeżel p. dla 0 otrzmao wartość współczka korelacj R e mej ż 0,84, to przjęt zwązek mędz welkoścam jest popraw, ale tlko w 84%. W zwązku z tm, e moża spodzewać sę ułożea wszstkch puktów pomarowch a l ajlepszego dopasowaa.

4 Wartośc średe zmech, stadardowe odchlea pojedczego pomaru, współczk korelacj R parametr prostej A + B spełają astępujące relacje: A R B A ( ) Δ ( ) Δ gdze: odchlea stadardowe pojedczej wartośc z ser pomarów, Δ -, Δ -, wartośc średe ser, lość pomarów w serach. W programe użtkowm Ecel prz wkowau wkresów moża określć współczk korelacj, jedak epewośc współczków A B lczm korzstając ze wzorów regresj lowej, lub korzstając z programów regresja. Należ pamętać, że w przpadku maowach welkośc zmech róweż współczk A, δa, B δb są welkoścam maowam ależ podawać wartośc tch współczków wraz z jedostkam!!!. Wskazae jest także podae faktczej zależośc, dla której zastosowaa będze metoda regresj lowej. Przkładowo rozważm odkształcea jedoosowe (p. rozcągae drutu), które w wąskm zakrese aprężeń podlegają prawu Hooke a: ΔL E L 0 F, gdze: L O - welkośc stałe dla daego drutu ( długość początkowa pole przekroju poprzeczego) F sła powodująca aprężee ( F mg ), ΔL wdłużee drutu pod wpłwem sł F, E moduł Youga, poszukwa parametr drutu. Δ L Jeśl ta zależość zostae przblżoa fukcją lową A + B to L 0, F, A E oraz δa ΔE. E Jeśl atomast fukcją lową przblż sę wrażee E Δ L m to ΔL, m oraz A. L0 g L0 g W tm przpadku moduł Youga, E, ależ oblczć a podstawe wartośc lczbowch A,, L 0 g, a jego epewość ΔE - a podstawe epewośc δa, Δ, ΔL 0 Δg. Obe metod są poprawe, jedak perwsza pozwala bezpośredo wzaczć szuka parametr E epewość ΔE. Wmar współczków prostej regresj ( A, B ) w każdm z prezetowach przkładów będą oczwśce róże. 4

5 Przkład: Dokoao pomarów o różej preczj. Wk pomarów welkośc zebrao w tabel. a) tabela wkres wkoae za pomocą programu Ecel Lp. f ( ) f ( ), 5,5, 5,5,0 6,80,0 6,40,95 8,99,95 9,49 4,98,0,98,8 5 5,0,09 5,0,09 Jak wdać, dla fukcj f () czl,54 +,707 współczk korelacj R 0,987 jest za mał (dla 5, współczk R 0,99) czl e moża powedzeć,że wstępuje lowa zależość ( ). Należ węc wkoać dodatkowe pomar w ch, lub w tch samch puktach (zagęścć pomar, powtórzć wątplwe lub/ rozszerzć zakres pomarow). b) oblczea wkoae a podstawe pomarów f() ujętch w tabel powżej za pomocą programu regresja.zp zajdującego sę w sec teretowej pod adresem: Współczk: A,06 E + 0 B,884 E + 0 Nepewość współczków: δa 4,54 E δb,506 E c) oblczea wkoae a podstawe pomarów ujętch w tabel w pukce a) za pomocą programu regresja.ee zajdującego sę w komputerze w LPF pod adresem: C:\UŻYTKI\regresja.ee Rówae prostej:,06 +,884 Nepewość współczków: δa δa 0,045 δb δb 0,5 Take rówae ależ przepsać, stosując prawdła zaokrąglea, w astępując sposób: (,06 ± 0,045 ) + (,88 ± 0,6 ) 5

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

Regresja linowa metoda najmniejszych kwadratów. Tadeusz M. Molenda Instytut Fizyki US

Regresja linowa metoda najmniejszych kwadratów. Tadeusz M. Molenda Instytut Fizyki US Regresja lowa metoda ajmejszch kwadratów Tadeusz M. Moleda Isttut Fzk US Regresja lowa (też: metoda ajmejszch kwadratów, metoda wrówawcza, metoda Gaussa) Zagadea stota metod postulat Gaussa współczk prostej

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,

Bardziej szczegółowo

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów

Bardziej szczegółowo

Linie regresji II-go rodzaju

Linie regresji II-go rodzaju Lam regresj II-go rodzaju zmeej () względem () azwam zadae krzwe g(;,, ) oraz h(;,, ) gd spełają oe odpowedo waruk: E E Le regresj II-go rodzaju ( ( )) ( ) ( ) ( ) ( ) g ;,,... g ;,,... f, dd m,,... (

Bardziej szczegółowo

Niepewności pomiarów. DR Andrzej Bąk

Niepewności pomiarów. DR Andrzej Bąk Nepewośc pomarów DR Adrzej Bąk Defcje Błąd pomar - różca mędz wkem pomar a wartoścą merzoej welkośc fzczej. Bwa też azwa błędem bezwzględm pomar. Poeważ wartość welkośc merzoej wartość prawdzwa jest w

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

ANALIZA ZALEŻNOŚCI DWÓCH ZMIENNYCH ILOŚCIOWYCH

ANALIZA ZALEŻNOŚCI DWÓCH ZMIENNYCH ILOŚCIOWYCH ANALIZA ZALEŻNOŚCI DWÓCH ZMIENNYCH ILOŚCIOWYCH Na ogół oprócz obserwacj jedej zmeej zberam róweż formacje towarzszące, które mogą meć zaczee w aalze teresującej as welkośc. Iformacje te mogą bć p. wkorzstae

Bardziej szczegółowo

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.

Bardziej szczegółowo

Laboratorium fizyczne

Laboratorium fizyczne Laboratorum fzcze L a portalu WIKMP CMF PŁ cmf.edu.p.lodz.pl Klkam odośk Laboratorum fzk Właścwą strukcję ależ pobrać ze stro Pracow zazajomć sę z jej treścą przed zajęcam!!! grupa I grupa II edzela

Bardziej szczegółowo

Statystyka. Katarzyna Chudy Laskowska

Statystyka. Katarzyna Chudy Laskowska Statstka Katarza Chud Laskowska http://kc.sd.prz.edu.pl/ Aalza korelacj umożlwa stwerdzee wstępowaa zależośc oraz oceę jej atężea ZALEŻNOŚCI pomędz CECHAMI: CECHY: ILOŚCIOWA ILOŚCIOWA CECHY: JAKOŚCIOWA

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Opracowanie wyników pomiarów

Opracowanie wyników pomiarów Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Mędzarodowa Norma Oce Nepewośc Pomaru (Gude to Epresso of Ucertat Measuremets - Mędzarodowa Orgazacja Normalzacja ISO RACHUNEK NIEPEWNOŚCI http://phscs.st./gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewodk.

Bardziej szczegółowo

KORELACJA KORELACJA I REGRESJA. X, Y - cechy badane równocześnie. Dane statystyczne zapisujemy w szeregu statystycznym dwóch cech

KORELACJA KORELACJA I REGRESJA. X, Y - cechy badane równocześnie. Dane statystyczne zapisujemy w szeregu statystycznym dwóch cech KORELACJA I REGRESJA. KORELACJA X, Y - cech badae rówocześe. Dae statstcze zapsujem w szeregu statstczm dwóch cech...... lub w tablc korelacjej. X Y... l.... l.... l................... k k k... kl k..j......l

Bardziej szczegółowo

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE

OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Projekt 2 2. Wielomiany interpolujące

Projekt 2 2. Wielomiany interpolujące Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył.

Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył. Wkład. Całka podwója. Zamaa a całkę terowaą. Oblczae pól obszarów objętośc brł.. Całka podwója w prostokące. Jak pamętam, całka ozaczoa z cągłej fukcj jedej zmeej wprowadzoa bła w celu oblczaa pola powerzch

Bardziej szczegółowo

MODEL SHARP A - MIARY WRAŻLIWOŚCI

MODEL SHARP A - MIARY WRAŻLIWOŚCI MODEL SHARP A - MIARY WRAŻLIWOŚCI Współzależość cech Rozważam jedostk zborowośc badae ze względu a dwe, lub węcej zmech W przpadku obserwacj opartch a dwóch zmech możem wkreślć dagram korelacj. Każda obserwacja

Bardziej szczegółowo

Wymiarowanie przekrojów stalowych

Wymiarowanie przekrojów stalowych Wmarowae przekrojów stalowch Program służ o prostch, poręczch oblczeń ośośc przekrojów stalowch. Pozwala o a oblczea przekrojów obcążoch: mometem zgającm [km], mometem zgającm [km], słą połużą [k]. Przekroje

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

Strona: 1 1. CEL ĆWICZENIA

Strona: 1 1. CEL ĆWICZENIA Katedra Podstaw Sstemów Techczch - Podstaw metrolog - Ćwczee 4. Wzaczae charakterstk regulacjej slka prądu stałego Stroa:. CEL ĆWICZENIA Celem ćwczea jest pozae zasad dzałaa udow slka prądu stałego, zadae

Bardziej szczegółowo

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa) Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZA 1. Wkład wstęp. Teora prawdopodobeństwa elemet kombatork. Zmee losowe ch rozkład 3. Populacje prób dach, estmacja parametrów 4. Testowae hpotez statstczch 5. Test parametrcze (a

Bardziej szczegółowo

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym. Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Męzaroowa Norma Oce Nepewośc Pomaru (Gue to Epresso of Ucertat Measuremets Męzaroowa Orgazacja Normalzacja ISO RACHUNEK NIEPEWNOŚCI http://phscs.st.gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewok.

Bardziej szczegółowo

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wkład 4 Matematcze opracowwae wków ekspermetalch Cz. I. Metoda ajmejszch kwadratów Cz. II. Metod statstcze UWAGI OGÓLNE Ekspermet wkowae w auce moża podzelć

Bardziej szczegółowo

Projekt 3 3. APROKSYMACJA FUNKCJI

Projekt 3 3. APROKSYMACJA FUNKCJI Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego). TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Mędznarodowa Norma Ocen Nepewnośc Pomaru(Gude to Epresson of Uncertant n Measurements - Mędznarodowa Organzacja Normalzacjna ISO) RACHUNEK NIEPEWNOŚCI http://phscs.nst./gov/uncertant POMIARU Wrażane Nepewnośc

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

KALIBRACJA NIE ZAWSZE PROSTA

KALIBRACJA NIE ZAWSZE PROSTA KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i statystyka W 10: Analizy zależności pomiędzy zmiennymi losowymi (danymi empirycznymi)

Rachunek Prawdopodobieństwa i statystyka W 10: Analizy zależności pomiędzy zmiennymi losowymi (danymi empirycznymi) Rachuek Prawdopodoeństwa statstka W 0: Aalz zależośc pomędz zmem losowm dam emprczm) Dr Aa ADRIAN Paw B5, pok 407 adra@tempus.metal.agh.edu.pl Odkrwae aalza zależośc pomędz zmem loścowmlczowm) Przedmotem

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

Statystyka. Teoria błędów. Wykład IV ( )

Statystyka. Teoria błędów. Wykład IV ( ) Stattka Teora błędów Wkład IV (.0.06) Wtęp Teora błędów Nedokoałość przrządów pomarowch oraz edokoałość orgaów zmłów powodują, że wztke pomar ą dokowae z określom topem dokładośc. Ne otrzmujem dokładej

Bardziej szczegółowo

VI. TWIERDZENIA GRANICZNE

VI. TWIERDZENIA GRANICZNE VI. TWIERDZENIA GRANICZNE 6.. Wprowadzee Twerdzea gracze dotyczą własośc graczych cągów zmeych losowych dzelą sę a:! twerdzea lokale opsują zbeżośc cągu fukcj prawdopodobeństwa w przypadku cągu {X } zmeych

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański atala ehreecka Darusz Szmańsk Wkład . MK przpadek welu zmech. Własośc hperpłaszczz regresj 3. Doroć ć dopasowaa rówaa regresj. Współczk determacj R Dekompozcjawaracj zmeejzależejzależej Współczk determacj

Bardziej szczegółowo

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

Statystyka powtórzenie (II semestr) Rafał M. Frąk

Statystyka powtórzenie (II semestr) Rafał M. Frąk Statstka powtórzee (II semestr) Rafał M. Frąk TEORIA, OZNACZENIA, WZORY Rodzaje mar statstczch mar położea - wzaczają przecęta wartość cech statstczej mar zróżcowaa (lub zmeośc, rozproszea, dspersj) -

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Zaawasowae metod umercze Programowae lowe (problem dual, program low w lczbach całkowtch) Dualość est kluczowm poęcem programowaa lowego. Pozwala a udowodee że otrzmwae rozwązaa są optmale. Zagadee duale

Bardziej szczegółowo

ZMIENNE LOSOWE WIELOWYMIAROWE

ZMIENNE LOSOWE WIELOWYMIAROWE L.Kowals Zmee losowe welowmarowe ( ΩS P ZMIENNE LOSOWE WIELOWMIAROWE - ustaloa przestrzeń probablstcza. (... - zmea losowa - wmarowa (wetor losow cąg losow. : Ω R (fuca borelowsa P : Β R [0 - rozład zmee

Bardziej szczegółowo

11. Aproksymacja metodą najmniejszych kwadratów

11. Aproksymacja metodą najmniejszych kwadratów . Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc

Bardziej szczegółowo

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna. terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Męzaroowa Norma Oce Nepewośc Pomaru (Gue to Epresso of Ucertat Measuremets Męzaroowa Orgazacja Normalzacja ISO) RACHUNEK NIEPEWNOŚCI http://phscs.st.gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewok.

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wykład Układy rówań metody aaltycze Metody umerycze rozwązywaa rówań lczbowych Prof. Ato Kozoł, Wydzał Chemczy Poltechk Wrocławskej ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ VI WYBRANE TWIERDZENIA WRAZ Z DOWODAMI Na prawach rękopsu Warszawa, paźdzerk 0 Data ostatej aktualzacj:

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

II. ĆWICZENIA LABORATORYJNE

II. ĆWICZENIA LABORATORYJNE II. ĆWICZENIA LABORATORYJNE ZADANIE Nr STATYSTYCZNA OCENA WYNIKÓW DOŚWIADCZALNYCH. Wartość średa, odchlee stadardowe, mar dspersj. ZADANIE Nr STATYSTYCZNA OCENA WYNIKÓW DOŚWIADCZALNYCH. Zależość wartośc

Bardziej szczegółowo

Wiek statku a prawdopodobieństwo wystąpienia wypadku na morzu analiza współzależności

Wiek statku a prawdopodobieństwo wystąpienia wypadku na morzu analiza współzależności BOGALECKA Magda 1 Wek statku a prawdopodobeństwo wstąpea wpadku a morzu aalza współzależośc WSTĘP Obserwowa od blsko weku tesw rozwój trasportu morskego, oprócz lądowego powetrzego, jest kosekwecją wzmożoej

Bardziej szczegółowo

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INSTYTUT FIZYKI UJ BIOLOGIA 2016

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INSTYTUT FIZYKI UJ BIOLOGIA 2016 PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INTYTUT FIZYKI UJ BIOLOGIA 06 CEL ĆWICZEŃ. Obserwacja zjawsk efektów fzyczych. Doskoalee umejętośc

Bardziej szczegółowo

ALGORYTM OBLICZANIA JEDNORODNEGO PODŁOŻA GRUNTOWEGO O KSZTAŁCIE WYPUKŁYM

ALGORYTM OBLICZANIA JEDNORODNEGO PODŁOŻA GRUNTOWEGO O KSZTAŁCIE WYPUKŁYM Bdowctwo 7 Rszard Hlbo LGORYTM OBLICZNI JDNORODNGO PODŁOŻ GRUNTOWGO O KSZTŁCI WYPUKŁYM Wprowadzee W cel zmeszea przekroowch wartośc sł wewętrzch ław fdametowe ależ zapewć take rozwązae, ab acsk a grt pod

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jacka wykład II, 3.05.016 PORÓWNANIE WIĘCEJ NIŻ DWÓCH POPULACJI TESTY NIEPARAMETRYCZNE Pla a dzsaj 1. Porówywae węcej ż dwóch populacj test jedoczykowej aalzy waracj (ANOVA).

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017 PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Marzec 07 PODRĘCZNIKI Wstęp do aalzy błędu pomarowego Joh R. Taylor Wydawctwo Naukowe PWN Warszawa 999

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza

Bardziej szczegółowo

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY Państwowa Wższa Szkoła Zawodowa w Koe Materał ddaktcze 17 ARTUR ZIMNY STATYSTYKA OPISOWA Materał pomoccze do ćwczeń wdae druge zmeoe Ko 010 Ttuł Statstka opsowa Materał pomoccze do ćwczeń wdae druge zmeoe

Bardziej szczegółowo

Sprawozdanie powinno zawierać:

Sprawozdanie powinno zawierać: Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,

Bardziej szczegółowo

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki) Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU

WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU Fzyka cała stałeo WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU 1. Ops teoretyczy do ćwczea zameszczoy jest a stroe www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomaroweo

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Analiza błędów pomiarowych Pomiar pomiarów bezpośrednich pośrednich

Analiza błędów pomiarowych Pomiar pomiarów bezpośrednich pośrednich Aalza łędów pomarowch W aukach przrodczch kluczową rolę w werfkacj wszelkch hpotez teor aukowch odgrwa ekspermet jego wk. Częstokroć pojedcz wk ekspermetal leż u podstaw owch teor odrzucea dotchczasowch

Bardziej szczegółowo