Układ regulacji ze sprzężeniem od stanu
|
|
- Maria Jóźwiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Uład reglacji ze sprzężeniem od san 1. WSĘP Jednym z celów sosowania ład reglacji owarego, zamnięego jes szałowanie dynamii obie serowania. Jeżeli obie opisany jes równaniami san, o dynamia obie jes jednoznacznie oreślona przez macierz san. Pierwiasi równania charaerysycznego, warości własne macierzy san, oreślają sabilność i dynamię obie. Na rysn 1 poazano przyłady relacji pomiędzy położeniem warości własnych macierzy san na płaszczyźnie zespolonej a właściwościami dynamicznymi. Klasyczny ład reglacji z reglaorem yp P, P, PD może zmodyfiować położenie ylo ograniczonej liczby warości własnych macierzy san. Właściwości obie serowania szałje się przez odpowiedni dobór warości własnych macierzy san ład zamnięego. Meoda serowania ze sprzężeniem od san, polegająca na ym, że sygnał serjący jes ombinacją liniową wszysich zmiennych san możliwia loowanie warości własnych macierzy san zgodnie z wymaganiami. Rys.1. Zależność między położeniem warości własnych macierzy san a dynamią ład 2. UKŁD SEROWN ZE SPRZĘŻENEM OD SNU elem zadania jes zaprojeowanie prawa serowania ze sprzężeniem od san, óre zapewni pożądane właściwości zamnięego ład serowania w sanie przejściowym i salonym. Jeżeli do obie liniowego opisanego równaniami san: gdzie: n*n, n*m, m*1, n*1, zasosowje się prawo serowania o posaci: gdzie: Km*n jes macierzą o sałych współczynniach wzmocnień sprzężenia od san, o ład zamnięy opisją równania san: gdzie: -K jes macierzą san ład zamnięego. Srra ład ze sprzężeniem od san przedsawiona jes na rysn 2.
2 Rys.2. Srra ład ze sprzężeniem od san Macierz san ład zamnięego jednoznacznie oreśla jego właściwości dynamiczne. Można osiągnąć arbiralnie wybrane warości własne ład zamnięego za pomocą sprzężenia zwronego od san, jeżeli ład owary jes serowalny. Oznacza o, że dla ażdych n liczb zespolonych { 1, 2, n }, isnieje macierz wzmocnień K aa, że: -K= { 1, 2, n }, wedy i ylo wedy, gdy para, jes serowalna gdzie M oznacza warości własne M. Projeowanie ład serowania ze sprzężeniem od san słada się więc z il roów: 1. Sprawdzenie, że ład owary jes liniowy zlinearyzowany, 2. Sprawdzenie, że ład owary jes serowalny, 3. Wybór warości własnych ład zamnięego, 4. Wyznaczenie K. Dla obie yp SSO K jes weorem o wymiarach 1*n a prawo serowania ma posać: n r... n... r n n Rys.3. Uład ze sprzężeniem od san dla obie SSO 3. ZMNEJSZNE UHYU USLONEGO Drgim poza szałowaniem dynamii obie celem ład serowania jes śledzenie warości zadanej r. Ponieważ sprzężenie od san nie zapewnia śledzenia warości zadanej, o ład należy zmodyfiować. Wierne śledzenie warości zadanej realizowane może być w ładach z SF na dwa sposoby: dodaowa macierz sprzężenia w przód G albo dodaowy człon całjący. Oba łady poazano na rysn 4.
3 Rys.4. Uład serowania ze sprzężeniem od san z: a dodaowym sprzężeniem w przód G, b dodaowym członem całjącym Prawo serowania dla ład ze sprzężeniem w przód G rys.4a ma posać: Gr K gdzie G wyznaczana z warn równości warości zadanej r i wyjścia obie y w sanie salonym jes równa: Prawo serowania dla ład z rysn 4b, z dodaowym członem całjącym ma posać: K K gdzie: K* = [K ] jes nową macierzą sprzężenia od san a jes nową zmienną san obie, obie rozszerzonego: y r Nowa zmienna san jes całą z błęd śledzenia a jes wzmocnieniem sprzężenia od san ej nowej zmiennej. Równania san obie ze sprzężeniem od san i dodaowym członem całjącym, z rozszerzonym weorem san są: 1 y r K Macierz san obie rozszerzonego ze sprzężeniem od san ma posać: Z posaci równania wynia, że można arbiralnie salić biegny obie rozszerzonego, jeżeli para *, * jes serowalna, gdzie: Procedra wyznaczania wzmocnień jes aa sama ja poprzednio, czyli po sprawdzeni serowalności pary *, *, rozszerzony weor wzmocnień: K* = [K ] wyznaczany jes dowolną meodą. 1 1 K G K K * *,,
4 4. WZNZNE MERZY WZMONEŃ SPRZĘŻEN OD SNU Jes ila meod wyznaczania macierzy wzmocnień K. 1. Najprossza meoda doyczy obie opisanego równaniami san w posaci anonicznej, z macierzą san o posaci: z równaniem charaerysycznym: Macierz san dla ład SSO ład zamnięego jes równa: a jego równanie charaerysyczne ma posać: Jeżeli dla salonych, wybranych warości pierwiasów równania charaerysycznego { 1, 2, n } ład ze sprzężeniem od san równanie o ma posać: o z porównania orzymje się bezpośrednio warości wzmocnień K: K a, 1 a1,... n1 an 1 2. Drga meoda nosi nazwę regły cermana. Dla serowalnego sysem oreślonego przez macierze, oraz, D i dla warości własnych ład zamnięego { 1, 2, n }, z równaniem charaerysycznym ład zamnięego s ja wyżej, macierz K wzmocnień sprzężenia od san oreślona jes wyrażeniem: Macierz P jes macierzą serowalności pary, a ma posać:
5 3. rzecia meoda o wyznaczenie reglaora opymalnego dla ład liniowego K, óry minimalizje wadraowy wsaźni jaości o posaci: J 1 min 2 Q Rd gdzie Q, R dodanio oreślone macierze wag dla san i serowania. Dla prawa serowania o posaci: K rozwiązaniem zadania opymalnego jes macierz K: K R 1 P gdzie P jes rozwiązaniem równania Ricaiego: P P Q PR 1 P Rozwiązanie a posawionego zadania sje ompromisem pomiędzy jaością a oszem serowania. W meodzie ej nie oreśla się z góry położenia biegnów zamnięego ład reglacji. Macierze Q, R wybierane są przez projeana arbiralnie, ieracyjnie. Są w lierarze [1] wsazówi pozwalające na wsępne oreślenie warości elemenów macierzy Q, R oraz opisane są procedry ieracyjne. 5. EL ZKRES ĆWZEN elem ćwiczenia jes zaprojeowanie dla zadanego obie ład serowania ze sprzężeniem od san. Zares ćwiczenia: 1. Zamodelować obie zadany w posaci równań san albo równania różniczowego wyższego rzęd. Zbadać jego właściwości dynamiczne, sabilność, położenie biegnów i serowalność. 2. Zaprojeować ład serowania ze sprzężeniem od san. W ym cel oreślić położenie biegnów ład zamnięego i zgodnie z meodą 1 lb 2 z p.4 insrcji oreślić warość K. 3. Zaprojeować reglaor opymalny przez sprzężenie od san, zgodnie z meodą 3 p.4 insrcji. Sprawdzić wpływ macierzy Q i R na jaość serowania. 4. Sprawdzić chyb salony w odpowiedzi na so jednosowy. 5. Zaprojeować ład zapewniający zerowy chyb salony w odpowiedzi na so jednosowy zgodnie z rysniem 4a lb 4b. Sprawdzić doładność i odporność na błędy modelowania. 6. LOGRF [1]. Rasic., Kolonic F., Poljgan.:Sae Feedbac Opimal onroller Design for he Roaional Elecromechanical Sysem, roaia, 26 [2]. Franlin G., Powell J. D., Emami-Naeini.: Feedbac onrol of Dynamic Sysems, Prenice Hall, 4 ediion, 22
PODSTAWY AUTOMATYKI 7. Typowe obiekty i regulatory
Poliechnia Warszawsa Insy Aomayi i Roboyi Prof. dr hab. inż. Jan Maciej Kościelny PODSAWY AUOMAYKI 7. yowe obiey i reglaory Obie reglacji 2 Dwojai sens: - roces o oreślonych własnościach saycznych i dynamicznych,
Bardziej szczegółowoTeoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.
eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Bardziej szczegółowoVII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
Bardziej szczegółowoModelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych
Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir
Bardziej szczegółowoDRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Bardziej szczegółowoC d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Bardziej szczegółowo( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego
Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu
Bardziej szczegółowoWYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII
WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO RZETWARZANIA ENERGII 1.1. Zasada zachowania energii. unem wyjściowym dla analizy przewarzania energii i mocy w pewnym przedziale czasu jes zasada zachowania energii
Bardziej szczegółowoy 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
Bardziej szczegółowo3. EKSPERYMENTALNE METODY WYZNACZANIA MODELI MATEMATYCZNYCH Sposób wyznaczania charakterystyki czasowej
3. Esperymenalne meody wyznaczania modeli maemaycznych 3. EKSPERYMENALNE MEODY WYZNACZANIA MODELI MAEMAYCZNYCH 3.. Sposób wyznaczania charaerysyi czasowej Charaerysyę czasową orzymuje się na wyjściu obieu,
Bardziej szczegółowo18. Wprowadzenie do metod analizy i syntezy układów
18. Wprowadzenie do metod analizy i syntezy kładów Metody analizy kładów nieliniowych dzielimy na dwie grpy: przybliżone i ścisłe. 1. Metody przybliżone a) linearyzacja przez rozwinięcie w szereg Taylora,
Bardziej szczegółowoProjektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Sterowania Procesami Ciągłych Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów. Obliczanie
Bardziej szczegółowoRównania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Bardziej szczegółowoPolitechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Bardziej szczegółowoWpływ niedokładności w torze pomiarowym na jakość regulacji
Urzędniczo H., Subis T. Insyu Merologii, Eleronii i Auomayi Poliechnia Śląsa, Gliwice, ul. Aademica Wpływ niedoładności w orze pomiarowym na jaość regulacji. Wprowadzenie Podsawowe sruury sosunowo prosych,
Bardziej szczegółowoPodstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
Bardziej szczegółowoprzy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
Bardziej szczegółowoRegulatory. Zadania regulatorów. Regulator
Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej
Bardziej szczegółowoDYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Bardziej szczegółowo1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone
Wyład 6 - wersja srócona. ezonans w obwodach elerycznych. Filry częsoliwościowe. Sprzężenia magneyczne 4. Sygnały odszałcone AMD ezonans w obwodach elerycznych Zależności impedancji dwójnia C od pulsacji
Bardziej szczegółowoLABORATORIUM PODSTAW AUTOMATYKI
POLITECHIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZY KATEDRA EERGOELEKTRYKI KIERUEK STUDIÓW: MECHATROIKA Sudia sacjonarne inżyniersie LABORATORIUM PODSTAW AUTOMATYKI Insrucje do ćwiczeń laboraoryjnych Opracował:
Bardziej szczegółowoINSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII STEROWANIA INSTRUKCJA LABORATORYJNA
Na prawach ręopi do żyt łżbowego INSYU ENERGOELEKRYKI POLIECHNIKI WROCŁAWSKIEJ Raport erii SPRAWOZDANIA Nr LABORAORIUM EORII SEROWANIA INSRUKCJA LABORAORYJNA ĆWICZENIE Nr 4 Minimalnoczaowe terowanie optymalne
Bardziej szczegółowoTemat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór
ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli
Bardziej szczegółowoOpis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk
Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o
Bardziej szczegółowoUkłady zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny
kłady zasilania ranzysorów Wrocław 28 Punk pracy ranzysora Punk pracy ranzysora Tranzysor unipolarny SS GS p GS S S opuszczalny oszar pracy (safe operaing condiions SOA) P max Zniekszałcenia nieliniowe
Bardziej szczegółowoRegulacja ciągła i dyskretna
Regulacja ciągła i dysrena Andrzej URBANIAK Regulacja ciągła i dysrena () W olejnym wyładzie z zaresu serowania i regulacji zajmiemy się sroną funcjonalno-sprzęową. Analizę odniesiemy do uładów regulacji
Bardziej szczegółowo( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Bardziej szczegółowoWygładzanie metodą średnich ruchomych w procesach stałych
Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja
Bardziej szczegółowoA. Cel ćwiczenia. B. Część teoretyczna
A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów
Bardziej szczegółowoPODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Bardziej szczegółowoPodstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący
Bardziej szczegółowoROZDZIAŁ 5 ROZDZIAŁ 5
ROZDZIAŁ 5 ROZDZIAŁ 5 75 J. German: PODSTAWY MECHAIKI KOMPOZYTÓW WŁÓKISTYCH ROZDZIAŁ 5 PODSTAWOWE TYPY LAMIATÓW WARSTWOWYCH LAMIATY SYMETRYCZE I ATYSYMETRYCZE Podane w poprzednim rozdziale posacie unormowanej
Bardziej szczegółowoĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
Bardziej szczegółowoNr 2. Laboratorium Maszyny CNC. Politechnika Poznańska Instytut Technologii Mechanicznej
Politechnia Poznańsa Instytut Technologii Mechanicznej Laboratorium Maszyny CNC Nr 2 Badania symulacyjne napędów obrabiare sterowanych numerycznie Opracował: Dr inż. Wojciech Ptaszyńsi Poznań, 3 stycznia
Bardziej szczegółowoDyskretny proces Markowa
Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o
Bardziej szczegółowoPolitechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 3,4, str. 1
Poliechnia Poznańsa, Kaedra Serowania i Inżynierii Sysemów Wyłady 3,4, sr. 5. Charaerysyi logarymiczne (wyresy Bodego) Lm(ω) = 20 lg G(jω) [db = decybel] (20) (Lm(ω) = [db] 20 lg G(jω) = G(jω) = 0 /20,22
Bardziej szczegółowoWAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
Bardziej szczegółowoA-4. Filtry aktywne rzędu II i IV
A-4. Filtry atywne rzędu II i IV Filtry atywne to ułady liniowe i stacjonarne realizowane za pomocą elementu atywnego, na tóry założono sprzężenie zwrotne zbudowane z elementów biernych i. Elementem atywnym
Bardziej szczegółowoPrognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Bardziej szczegółowoTydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L
Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com
Bardziej szczegółowoZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU
Mirosław Tomera Aademia Morsa w Gdyni Wydział Eletryczny Katedra Automatyi Orętowej ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU W pracy przedstawiona została implementacja sieci neuronowej
Bardziej szczegółowoUkład regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
Bardziej szczegółowoZestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
Bardziej szczegółowoLABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR
LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje
Bardziej szczegółowo4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH
4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH Wybór wymiarów i kszału rezysancyjnych przewodów czy elemenów grzejnych mających wchodzić w skład urządzenia elekroermicznego zależny jes,
Bardziej szczegółowoLABORATORIUM PODSTAW AUTOMATYKI
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY KATEDRA ENERGOELEKTRYKI KIERUNEK STUDIÓW: ELEKTROTECHNIKA Sudia niesacjonarne (zaoczne) inżyniersie LABORATORIUM PODSTAW AUTOMATYKI Insrucje do ćwiczeń laboraoryjnych
Bardziej szczegółowoPrognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1
Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy
Bardziej szczegółowolicencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
Bardziej szczegółowoModelowanie układów prętowych
Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie
Bardziej szczegółowoMateriały dydaktyczne. Matematyka. Semestr III. Wykłady
Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe
Bardziej szczegółowoPolitechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
Bardziej szczegółowo- Macierz handlu. - Modele grawitacji. Model Handlu Swiatowego LINK. - Model Link. Notatki do wykładu 1011
Noai do wyładu 0 Model Handlu Swiaowego LINK - Macierz handlu - Modele grawiaci - Model Lin W.Macieewsi (98) Eonomeryczne modele wymiany międzynarodowe, PWN L.R.Klein (982) Wyłady z eonomerii, PWE Macierz
Bardziej szczegółowoSzeregi Fouriera (6 rozwiązanych zadań +dodatek)
PWR I Załad eorii Obwodów Szeregi ouriera (6 rozwiązanych zadań +dodae) Opracował Dr Czesław Michali Zad Znaleźć ores nasępujących sygnałów: a) y 3cos(ω ) + 5cos(7ω ) + cos(5ω ), b) y cos(ω ) + 5cos(ω
Bardziej szczegółowo1. Regulatory ciągłe liniowe.
Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie: Regulacja ciągła PID 1. Regulatory ciągłe liniowe. Zadaniem regulatora w układzie regulacji automatycznej jest wytworzenie sygnału sterującego u(t),
Bardziej szczegółowoBadanie kaskadowego układu regulacji na przykładzie serwomechanizmu
Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu 1. WSTĘP Serwomechanizmy są to przeważnie układy regulacji położenia. Są trzy główne typy zadań serwomechanizmów: - ruch point-to-point,
Bardziej szczegółowoSposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Bardziej szczegółowoSterowanie napędów maszyn i robotów
Wykład 7b - Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Instytut Automatyki i Robotyki Warszawa, 2014 Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Zadanie przestawiania Postać modalna
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Bardziej szczegółowoPobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Bardziej szczegółowoKURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Bardziej szczegółowo1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Bardziej szczegółowoAutomatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
Bardziej szczegółowoSYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE
SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne
Bardziej szczegółowoWykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
Bardziej szczegółowoO MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Bardziej szczegółowo1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Bardziej szczegółowoń ń ń ń Ą Ź Ń ń ń Ą Ą Ą Ś Ą ń ń Ą ń Ą Ą ń ń Ą ń ń ń Ą Ą Ź ń ń Ż Ą ń Ż ń Ń ń ń ń ń ń ń ń ń ń ń Ą Ą Ą ń Ć ń ń Ą ń ń Ć ń Ź Ą ń Ź ń Ą Ą Ą Ą ń Ą Ą Ą Ó Ą Ą Ą Ą Ż ń ń Ś ń ń Ą ń Ą ń Ś Ć Ą Ą ń ń ń Ś Ą Ą ń Ą ń
Bardziej szczegółowoELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),
ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j
Bardziej szczegółowoMatematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia
Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych
Bardziej szczegółowoSformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato
Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.
Bardziej szczegółowoZajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
Bardziej szczegółowoPodstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele
Bardziej szczegółowo2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Bardziej szczegółowoLABORATORIUM PODSTAW AUTOMATYKI
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ENERGOELEKTRYKI LABORATORIUM PODSTAW AUTOMATYKI Srócone insrucje do ćwiczeń laboraoryjnych Opracował: Janusz Saszewsi METODY ANALIZY CIĄGŁYCH LINIOWYCH
Bardziej szczegółowoDlaczego jedne kraje są bogate a inne biedne? Model Solowa, wersja prosta.
Maroeonomia II Dlaczego jedne raje są bogae a inne biedne? Model Solowa, wersja prosa. Maroeonomia II Joanna Siwińsa-Gorzela Plan wyładu Funcja producji. San usalony Deerminany poziomu PKB na pracownia
Bardziej szczegółowoWitold Orzeszko * ZASTOSOWANIE LOKALNEJ APROKSYMACJI WIELOMIANOWEJ DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH. Streszczenie
Wiold Orzeszo * ZASTOSOWANIE LOKALNEJ APROKSYMACJI WIELOMIANOWEJ DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH Sreszczenie Teoria chaosu deerminisycznego sanowi alernaywne podejście do analizy procesów
Bardziej szczegółowoWykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Bardziej szczegółowoUkłady równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Bardziej szczegółowoSylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek
Bardziej szczegółowoModelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne
Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez
Bardziej szczegółowoIX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Bardziej szczegółowoCHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Bardziej szczegółowoElementy elektroniczne Wykłady 5,6: Tranzystory bipolarne
lementy elektroniczne Wykłady 5,6: Tranzystory bipolarne Wprowadzenie Złacze PN spolaryzowane zaporowo: P N U - + S S U SAT =0.1...0.2V U S q D p L p p n D n n L n p gdzie: D p,n współczynniki dyfuzji
Bardziej szczegółowoBADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH
BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. CEL ĆWICZENIA Celem ćwiczenia jes: przybliżenie zagadnień doyczących pomiarów wielości zmiennych w czasie (pomiarów dynamicznych, poznanie sposobów
Bardziej szczegółowoZestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami ZałóŜmy, Ŝe macierz jest macierzą kwadratową stopnia n. Mówimy, Ŝe macierz tego samego wymiaru jest macierzą odwrotną
Bardziej szczegółowoĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
Bardziej szczegółowoEFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ
Sdia Podyplomowe EFEKTYWNE ŻYTKOWANIE ENERGII ELEKTRYZNEJ w ramach projek Śląsko-Małopolskie enrm Kompeencji Zarządzania Energią Falowniki dla silników wysokoobroowych Prof. dr hab. inż. Sanisław Piróg
Bardziej szczegółowo1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI
Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji
Bardziej szczegółowoUwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:
Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Bardziej szczegółowoSystemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Bardziej szczegółowoA4: Filtry aktywne rzędu II i IV
A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową
Bardziej szczegółowoLaboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Dobór parametrów układu regulacji, Identyfikacja parametrów obiektów dynamicznych Kierunek studiów: Transport, Stacjonarne
Bardziej szczegółowo, h(x) = sin(2x) w przedziale [ 2π, 2π].
Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję
Bardziej szczegółowoPodstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
Bardziej szczegółowo