- Macierz handlu. - Modele grawitacji. Model Handlu Swiatowego LINK. - Model Link. Notatki do wykładu 1011

Wielkość: px
Rozpocząć pokaz od strony:

Download "- Macierz handlu. - Modele grawitacji. Model Handlu Swiatowego LINK. - Model Link. Notatki do wykładu 1011"

Transkrypt

1 Noai do wyładu 0 Model Handlu Swiaowego LINK - Macierz handlu - Modele grawiaci - Model Lin W.Macieewsi (98) Eonomeryczne modele wymiany międzynarodowe, PWN L.R.Klein (982) Wyłady z eonomerii, PWE

2 Macierz handlu Macierz handlu Impor do rau 2 n Xi. Espor z rau i x x2 xn X. 2 x2 x22 x2n X2.... n xn xn2 xnn Xn. X. X. X.2 X.n X..

3 Współczynnii sruury Współczynni udziału β = x x.. Dla i, =,2,..,n i, β X.. = i x = Współczynni sruury ierunowe esporu λ * = x Xi. Dla i,=,2,..n. * λ = x = Xi. Współczynni sruury ierunowe imporu x λ = X. = i X. λ x = i

4 Współczynni równomierności handlu δ x X.. x X.. Xi. X. Xi. X. X.. X.. = = Dla i, =,2,..,n. Inny zapis δ = β β i. β. Jeżeli przepływy równomierne β = n 2 n a

5 Z badań dynamii współczynniów dela wynia, że długim oresie - warości dela dążą do edności - eżeli współczynnii dela nie dążą do edności o wysępuą puny zwrone - dla ugrupowań inegracynych współczynnii dela przymuą warości blisie 2.

6 Prognozowanie macierzy handlu Dwie grupy meod - prognozowanie współczynniów udziałów- przy założeniu że znane są ogólne warość esporu bądź imporu. - prognozy niezależnych przepływów bilaeralnych głównie meody grawiacyne

7 Więszość ych meod nie gwaranue zgodności (onsysenci) macierzy handlu. - Meoda RAS nasarsza meoda sałe współczynnii sruury - Meody poszuiwania rendów poszczególnych współczynniów sruury - Meoda Thiela (załada sałość współczynniów dela w dwu olenych oresach). Załadamy pełną niezależność warości globalnych esporów i warości globalnych imporów o X = Xi.X. nasępnie rozwiązuemy zadanie opymalizacyne (dla uzysania macierzy zgodne) Częso wyorzysue się drugą część meody Theilaopymalizaci ao drugi eap prognozy innymi meodami dla zapewnienia prognozy zgodne. Meody opare o różne wariany łańcuchów Marowa.

8 Modele grawiaci Socolog H.C.Carey w 87 Prawo grawiaci moleularne es oniecznym waruniem isnienia isoy ludzie Im więsza es liczba ludzi zebranych na danym obszarze, ym obszar en ma więszą siłę przyciągania Koncepca a ma bardzo wiele zasosowań w różnych dziedzinach.

9 W ogólne posaci model grawiaci pomiędzy n ednosami przesrzennymi można przedsawić: X = f ( M, W, D, A,, X ) gdzie M weor mas poszczególnych ednose przesrzennych W weor wag ych mas D- macierz odległości (geograficzne, eonomiczne, społeczne) X- macierz oddziaływania pomiędzy wszysimi n ednosami przesrzennymi T zmienna czasowa Jeżeli wszysie argumeny funci f są różne od zera o mamy do czynienia z dynamicznym modelem o równaniach współzależnych.

10 Dysuse poęcia - Jednosi przesrzenne - Masy ednosi przesrzenne - Odległości

11 Pierwszy model grawiaci E.J. Ravensein (895) M = f ( p ) D Gdzie M - liczba migranów z i ego ośroda migraci do ego ośroda absorpci p - wielość ego ośroda absorpci D - odległość pomiędzy ośrodiem i ym oraz ośrodiem - ym Model G.K.Zipf a (949) wielośc przewozów pomiędzy badanymi ośrodami p p i X = lub D X pi p = D α Gdzie X - przewozów pomiędzy ośrodiem i- ym i ośrodiem - ym p i, p - liczby ludności w ośrodu i- ym i - ym D - odległość pomiędzy ośrodiem i-ym a -ym α - paramer

12 Pierwszy model z wagami mas C.Hammer, F.C.Ile (957) X = P M P M i i b D Gdzie M, i M wagi Pierwsze badanie dla opisu i prognozy handlu zagranicznego J.Tinbergen (962) Analiza handlu pomiędzy8 wysoo rozwinięymi raami (dane za 958 ro) X = α Y 0 α i Y α 2 D α 3 V α 4 Gdzie V zmienna 0-, eżeli rae graniczą ze sobą.

13 W 963 Pohonen po raz pierwszy wprowadził do modelu handlu ao miarę dysansu funce oszów ransporu: D = + hr d Gdzie h ednosowy osz ransporu r - odległość ransporowa pomiędzy i oraz d - paramer

14 Nawięsze badanie handlu przeprowadził H.Linnemann(966) dla handlu pomiędzy 80 raami. Y = α Y Gdzie 0 α i N α 2 i Y α 3 N α 4 D α 5 UUC α ( ) ( ) ( ) 6 FFC α 7 PB α P P P 8 UUC przymue 2 eżeli ra i y oraz y należą do Wspólnoy bryysie w przeciwnym razie warość FFC -.w dla Franci i e byłych olonii PB.w. dla olonii porugalsich i belgsich. W olenym badaniu wprowadził do modelu zmienna uwzględniaącą sruurę owarową handlu pomiędzy raami C = cosα Gdzie α - ą pomiędzy weorem sruury esporu imporu raów i ym oraz - ym

15 Zaineresowanie modelami grawiaci w handlu zagranicznym spadło w laach Kryya bra podsaw eoreycznych eonomicznych. Od ońca la osiemdziesiąych renesans zaineresowania ymi modelami w związu rozwoem eonomii geograficzne óra dała podsawy eoreyczne ym modelom. (prace Krugmana i Venablesa)

16 Model Lin Nawięszy proe prognosyczny nadłuże funconuący. W968 rou Ameryańsi Komie do Spraw Sabilizaci powołał a zwany LINK Proec ( Klein) Głównym celem proeu: - budowanie narzędzia pozwalaącego na prognozowanie handlu świaowego. - Badanie wpływu oreślonych poliy gospodarczych poszczególnych raów na cały uład gospodari świaowe i rozwó handlu świaowego. - endogenizaca cen esporu i cen imporu świaowego.

17 Meoda realizaci ych celów Jao meodę przyęo budowę sysemu wzaemnie powiązanych eonomerycznych modeli gospodare poszczególnych raów lub grup raów. Przyęo,że modele poszczególnych raów będą budowane przez zespoły z ych raów. Modele e są połączone, poprzez macierz handlu w eden wspólny sysem.

18 Usalono minimalny zares unifiaci modeli raowych niezbędny dla włączenia ych modeli do modelu macierzy handlu, a mianowicie: - w modelu wyliczany będzie popy imporowy danego rau, - espor oreślany będzie przez współczynni udziału, - dezagregaca owarowa będzie zgodna ze saysyą SITC. Ta uzysane warości globalnego esporu i imporu mogłyby by być nie zbilansowane. Konieczna procedura zapewnienia zgodności macierzy handlu. Zgodność a es w znaczne mierze uzysiwana poprzez olene orey cen świaowych Na począu la osiemdziesiąych modele en sładał się uż z ooło 0000 równań.

19 Ogólna zasada sysemu Lin Przymmy, dla uproszczenia, że modele poszczególnych gospodare są modelami liniowymi. Załóżmy,że model dla rau można zapisać nasępuąco: c c q c c p c U DZ X C CX B Y BY A = = = Gdzie c Y - zmienne endogeniczne rau c c X - zmienne egzogeniczne zewnęrzne rau c c Z -zmienne egzogeniczne rau c doyczące czynniów wewnęrznych Posać zreduowana modelu, przed połączeniem z gospodarą świaa c q c c p c U B DZ B X C B CX B B Y B A B Y = = + =

20 W modelu Lin nasępue powiązanie rozwiązań raowych w eden zgodny model świa. L = U + FX + G X + HY + H Y * Dla ażdego modelu zmienne egzogeniczne zewnęrzne są uzysiwane z modelu dla całego sysemu.

21 Głównym elemenem modelu - macierz handlu świaowego X - wielość esporu ego owaru z rau i do rau. wielość imporu ego owaru z rau ego M To (*) M = a i i X Oraz X = a M W en sposób orzymuemy macierz handlu w rozbiciu na n raów i q owarów Z macierzy orzymuemy zasadnicze równanie dla LINK X=AM Macierz współczynniów udziału (a)

22 Globalna warość esporu i ego rau - średnia ważona imporu pozosałych uczesniów wymiany Jeżeli PM ceny imporu a PX ceny esporu o PM=PXA Ta więc dla - ego rau (**) PM = PX a Ceny imporu średnimi ważonymi cen esporowych wszysich pozosałych uczesniów wymiany Procedura rozwiązywania sysemu Lin ( opara na Gauss- Seidla)

23 . Przymue się pewne wyściowe warości esporu ( X ) oraz cen imporu ( PM i ), np. na poziomie ubiegłego rou. 2. Przy ych założeniach rozwiązue się wszysie modele raowe 3. esymue się warości globalne imporu M i oraz cen esporu PX 4. z równań * i ** orzymuemy nowe warości esporu X oraz cen imporowych PM i 5. wylicza się warość handlu świaowego ao sumę imporów raowych 6. ponownie rozwiązue się modele raowe ( w waluach raowych) Procedurę 2-6 powarza się aż do uzysania rozwiązań nie różniących się w olenych ieracach o mnie niż założona doładność e.

24 Mechanizm funconowania sysemu LINK Prognozy i symulace na 5 7 la Od połowy la siedemdziesiąych sałe sese - esienna osaeczna dysusa wyniów ze spoania wiosennego. (dane za osani ores z poszczególnych raów) analiza w cenrali. Pierwsze założenia odnośnie rozwou poszczególnych raów w nasępnym oresie. Przygoowanie głównych scenariuszy. - wiosenna dysusa ych wyniów. omawianie wyniów scenariuszy.

25 Z doychczasowych wyniów badań wynia że - Sysem dobrze odzwierciedla główne przesunięcia w handlu świaowym. Lepie wolumeny niż ceny. - edna nieóre prognozy bilaeralne obarczone dużym błędem. - dobrze są prognozowanie zmiany w PKB poszczególnych raów, obszarów. Możliwość prognoz przyszłych recesi. - Dobrze przewidywane przyszłe niezrównoważeni w gospodarce świaowe i poszczególnych grup raów. -

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji. eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa

Bardziej szczegółowo

Układ regulacji ze sprzężeniem od stanu

Układ regulacji ze sprzężeniem od stanu Uład reglacji ze sprzężeniem od san 1. WSĘP Jednym z celów sosowania ład reglacji owarego, zamnięego jes szałowanie dynamii obie serowania. Jeżeli obie opisany jes równaniami san, o dynamia obie jes jednoznacznie

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE.   Strona 1 KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych

Bardziej szczegółowo

TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA

TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA Uniwersye Szczecińsi TWIERDZENIE FRISCHA-WAUGHA-STONE A A PYTANIE RUTKAUSKASA Zagadnienia, óre zosaną uaj poruszone, przedsawiono m.in. w pracach [], [2], [3], [4], [5], [6]. Konferencje i seminaria nauowe

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Katedra Systemów Przetwarzania Sygnałów SZEREGI FOURIERA

Katedra Systemów Przetwarzania Sygnałów SZEREGI FOURIERA Ćwiczenie Zmodyfiowano 7..5 Prawa auorsie zasrzeżone: Kaedra Sysemów Przewarzania Sygnałów PWr SZEREGI OURIERA Celem ćwiczenia jes zapoznanie się z analizą i synezą sygnałów oresowych w dziedzinie częsoliwości.

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

Ćwiczenie 13. Stanisław Lamperski WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI ORAZ ENTROPII I ENTALPII AKTYWACJI

Ćwiczenie 13. Stanisław Lamperski WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI ORAZ ENTROPII I ENTALPII AKTYWACJI Ćwiczenie 3 Sanisław Lampersi WYZNACZANIE SAŁEJ SZYBKOŚCI REAKCJI ORAZ ENROPII I ENALPII AKYWACJI Zagadnienia: Pojęcie szybości reacji, liczby posępu reacji. Równanie ineyczne, rzędowość a cząseczowość

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Szeregi Fouriera (6 rozwiązanych zadań +dodatek)

Szeregi Fouriera (6 rozwiązanych zadań +dodatek) PWR I Załad eorii Obwodów Szeregi ouriera (6 rozwiązanych zadań +dodae) Opracował Dr Czesław Michali Zad Znaleźć ores nasępujących sygnałów: a) y 3cos(ω ) + 5cos(7ω ) + cos(5ω ), b) y cos(ω ) + 5cos(ω

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 5 4 EWA DZIAWGO Uniwersye Miołaa Kopernia w Toruniu ANALIZA WRA LIWO CI CENY KOSZYKOWEJ OPCJI KUPNA WPROWADZENIE

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) E i E E i r r ν φ θ θ ρ ε ρ α 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

VII. ZAGADNIENIA DYNAMIKI

VII. ZAGADNIENIA DYNAMIKI Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak E i E E i r r 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania Reguła poliyki monearnej

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO RZETWARZANIA ENERGII 1.1. Zasada zachowania energii. unem wyjściowym dla analizy przewarzania energii i mocy w pewnym przedziale czasu jes zasada zachowania energii

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taen from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stor, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Iwona Müller - Frączek Uniwersytet Mikołaja Kopernika w Toruniu

Iwona Müller - Frączek Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolsie Seminarium Nauowe, 4 6 września 2007 w Toruniu Kaera Eonomerii i Saysyi, Uniwersye Miołaa Kopernia w Toruniu Iwona Müller - Frącze Uniwersye Miołaa Kopernia

Bardziej szczegółowo

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w

Bardziej szczegółowo

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb

Bardziej szczegółowo

1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone

1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone Wyład 6 - wersja srócona. ezonans w obwodach elerycznych. Filry częsoliwościowe. Sprzężenia magneyczne 4. Sygnały odszałcone AMD ezonans w obwodach elerycznych Zależności impedancji dwójnia C od pulsacji

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

Wpływ niedokładności w torze pomiarowym na jakość regulacji

Wpływ niedokładności w torze pomiarowym na jakość regulacji Urzędniczo H., Subis T. Insyu Merologii, Eleronii i Auomayi Poliechnia Śląsa, Gliwice, ul. Aademica Wpływ niedoładności w orze pomiarowym na jaość regulacji. Wprowadzenie Podsawowe sruury sosunowo prosych,

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

PODSTAWY AUTOMATYKI 7. Typowe obiekty i regulatory

PODSTAWY AUTOMATYKI 7. Typowe obiekty i regulatory Poliechnia Warszawsa Insy Aomayi i Roboyi Prof. dr hab. inż. Jan Maciej Kościelny PODSAWY AUOMAYKI 7. yowe obiey i reglaory Obie reglacji 2 Dwojai sens: - roces o oreślonych własnościach saycznych i dynamicznych,

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ ELEKTROTECHNIKI KATEDRA METROLOGII I SYSTEMÓW INFORMACYJNYCH ROZPRAWA DOKTORSKA METODA DIAGNOSTYKI ŁOŻYSK NA PODSTAWIE

POLITECHNIKA GDAŃSKA WYDZIAŁ ELEKTROTECHNIKI KATEDRA METROLOGII I SYSTEMÓW INFORMACYJNYCH ROZPRAWA DOKTORSKA METODA DIAGNOSTYKI ŁOŻYSK NA PODSTAWIE POLITECNIKA GDAŃSKA WYDZIAŁ ELEKTROTECNIKI I AUTOMATYKI KATEDRA METROLOGII I SYSTEMÓW INFORMACYJNYC ROZPRAWA DOKTORSKA mgr inż. Ariel Dzwonowsi METODA DIAGNOSTYKI ŁOŻYSK NA PODSTAWIE ANALIZY PRZEBIEGÓW

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Dlaczego jedne kraje są bogate a inne biedne? Model Solowa, wersja prosta.

Dlaczego jedne kraje są bogate a inne biedne? Model Solowa, wersja prosta. Maroeonomia II Dlaczego jedne raje są bogae a inne biedne? Model Solowa, wersja prosa. Maroeonomia II Joanna Siwińsa-Gorzela Plan wyładu Funcja producji. San usalony Deerminany poziomu PKB na pracownia

Bardziej szczegółowo

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999.

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999. Analiza popyu Eonomeria. Meody i analiza problemów eonomicznych (pod red. Krzyszofa Jajugi) Wydawnicwo AE Wrocław 1999. Popy P = f ( X X... X ε ) 1 2 m Zmienne onrolowane: np.: cena (C) nałady na relamę

Bardziej szczegółowo

1. Szereg niesezonowy 1.1. Opis szeregu

1. Szereg niesezonowy 1.1. Opis szeregu kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany

Bardziej szczegółowo

Teoria impulsu i jej empiryczne potwierdzenie przy użyciu metod filtracji szeregów czasowych

Teoria impulsu i jej empiryczne potwierdzenie przy użyciu metod filtracji szeregów czasowych Paweł Srzypczyńsi, Krzyszof Borowsi Szoła Główna Handlowa Teoria impulsu i jej empiryczne powierdzenie przy użyciu meod filracji szeregów czasowych 1. Wprowadzenie Współczesne narzędzia z zaresu analizy

Bardziej szczegółowo

Modele wielorownaniowe

Modele wielorownaniowe Część 1. e e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e makroekonomiczne z reguły składają się z większej

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Temat ćwiczenia: GENERATOR FUNKCYJNY i OSCYLOSKOP Układ z diodą prostowniczą, pomiary i obserwacje sygnałów elektrycznych Wprowadzenie AMD

Temat ćwiczenia: GENERATOR FUNKCYJNY i OSCYLOSKOP Układ z diodą prostowniczą, pomiary i obserwacje sygnałów elektrycznych Wprowadzenie AMD Laboraoriu Eleroechnii i eleronii ea ćwiczenia: LABORAORIUM 6 GENERAOR UNKCYJNY i OSCYLOSKOP Uład z diodą prosowniczą, poiary i obserwacje sygnałów elerycznych Wprowadzenie Ćwiczenie a za zadanie zapoznanie

Bardziej szczegółowo

= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4

= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4 Imię i nazwiso Daa Klasa Grupa A Sprawdzian 3 PracA, moc, energia mechaniczna 1. Ze sojącego działa o masie 1 wysrzelono pocis o masie 1 g. nergia ineyczna odrzuu działa w chwili, gdy pocis opuszcza lufę

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Przybliżenie elektronów prawie swobodnych; metoda pseudopotencjału

Przybliżenie elektronów prawie swobodnych; metoda pseudopotencjału Przybliżenie eleronów prawie swobodnych; meoda pseudopoencjału Sieć pusa gdzie: Weor G gra uaj role indesu pasma. Warosci własne energii wyrażają się wzorem: Przybliżenie eleronów prawie swobodnych Ażeby

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 4

Stanisław Cichocki Natalia Nehrebecka. Wykład 4 Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

SZACOWANIE WSPÓŁCZYNNIKA FILTRACJI W KOLUMNIE FILTRACYJNEJ

SZACOWANIE WSPÓŁCZYNNIKA FILTRACJI W KOLUMNIE FILTRACYJNEJ ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polsiej Aademii Nau w Kaowicac SZACOWANIE WSPÓŁCZYNNIKA FILTRACJI W KOLUMNIE FILTRACYJNEJ Jadwiga ŚWIRSKA Poliecnia Opolsa,

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Eonomeryczne modele nieliniowe Wyład Doromił Serwa Zajęcia Wyład Laoraorium ompuerowe Prezenacje Zaliczenie EGZAMI 50% a egzaminie oowiązują wszysie informacje przeazane w czasie wyładów np. slajdy. Aywność

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

OeconomiA copernicana. Katarzyna Czech Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

OeconomiA copernicana. Katarzyna Czech Szkoła Główna Gospodarstwa Wiejskiego w Warszawie OeconomiA copernicana 2012 Nr 3 IN 2083-1277 Kaarzyna Czech zoła Główna Gospodarswa Wiejsiego w Warszawie NIEZABEZPIECZONY PARYTET TÓP PROCENTOWYCH NA RYNKU JENA JAPOŃKIEGO Klasyfiacja JEL: F31 łowa luczowe:

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału. Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Wytrzymałość śruby wysokość nakrętki

Wytrzymałość śruby wysokość nakrętki Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Stanisław Cichocki Natalia Nehrebecka. Wykład 3 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje

Bardziej szczegółowo

LABORATORIUM PODSTAW AUTOMATYKI

LABORATORIUM PODSTAW AUTOMATYKI POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY KATEDRA ENERGOELEKTRYKI KIERUNEK STUDIÓW: ELEKTROTECHNIKA Sudia niesacjonarne (zaoczne) inżyniersie LABORATORIUM PODSTAW AUTOMATYKI Insrucje do ćwiczeń laboraoryjnych

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 5

Stanisław Cichocki Natalia Nehrebecka. Wykład 5 Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA

Bardziej szczegółowo

RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE

RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE PYTANIA KONTROLNE Czym charakeryzują się wskaźniki saycznej meody oceny projeku inwesycyjnego Dla kórego wskaźnika wyliczamy średnią księgową

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1 Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy

Bardziej szczegółowo

EFEKTYWNOŚĆ PROCESU ROZDZIAŁU W OSADZARCE** 1. Wstęp. Marian Brożek*, Agnieszka Surowiak* Górnictwo i Geoinżynieria Rok 30 Zeszyt 3/1 2006

EFEKTYWNOŚĆ PROCESU ROZDZIAŁU W OSADZARCE** 1. Wstęp. Marian Brożek*, Agnieszka Surowiak* Górnictwo i Geoinżynieria Rok 30 Zeszyt 3/1 2006 Górnictwo i Geoinżynieria Ro 30 Zeszyt 3/1 006 Marian Broże*, Agniesza Surowia* EFEKTYWNOŚĆ PROCESU ROZDZIAŁU W OSADZARCE** 1. Wstęp Na stopień rozluzowania ziaren w łożu osadzari ma wpływ między innymi

Bardziej szczegółowo

Ekonometria. Przepływy międzygałęziowe. Model Leontiefa. Jakub Mućk. Katedra Ekonomii Ilościowej. Przepływy międzygałęziowe Model Leontiefa

Ekonometria. Przepływy międzygałęziowe. Model Leontiefa. Jakub Mućk. Katedra Ekonomii Ilościowej. Przepływy międzygałęziowe Model Leontiefa Ekonometria Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 10 1 / 22 Outline 1 2 Jakub Mućk Ekonometria Ćwiczenia 10 2 / 22 Oznaczenia i definicje Numeracja gałęzi: i, j = 1, 2,,

Bardziej szczegółowo

Dr Łukasz Goczek. Uniwersytet Warszawski

Dr Łukasz Goczek. Uniwersytet Warszawski Dr Łukasz Goczek Uniwersytet Warszawski Wykłady do końca: Niezależność polityki pieniężnej w długim okresie 2 wykłady Wzrost długookresowy w gospodarce otwartej 2 wykłady Egzamin 12.06.2013, godz. 17 sala

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

ROZDZIAŁ 5 ROZDZIAŁ 5

ROZDZIAŁ 5 ROZDZIAŁ 5 ROZDZIAŁ 5 ROZDZIAŁ 5 75 J. German: PODSTAWY MECHAIKI KOMPOZYTÓW WŁÓKISTYCH ROZDZIAŁ 5 PODSTAWOWE TYPY LAMIATÓW WARSTWOWYCH LAMIATY SYMETRYCZE I ATYSYMETRYCZE Podane w poprzednim rozdziale posacie unormowanej

Bardziej szczegółowo

Ćwiczenie nr 35: Elektroliza

Ćwiczenie nr 35: Elektroliza Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 35: Eletroliza Cel

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzata Doman Akademia Ekonomiczna w Poznaniu

Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzata Doman Akademia Ekonomiczna w Poznaniu Oddziaływanie procesu informacji na dynamikę cen akcji. Małgorzaa Doman Akademia Ekonomiczna w Poznaniu Modele mikrosrukury rynku Bageho (97) informed raders próbują wykorzysać swoją przewagę informacyjną

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

METODA WYZNACZANIA STRATEGII UOGÓLNIONEJ OSŁONY KWANTYLOWEJ NA SKOŃCZONYM RYNKU NIEZUPEŁNYM

METODA WYZNACZANIA STRATEGII UOGÓLNIONEJ OSŁONY KWANTYLOWEJ NA SKOŃCZONYM RYNKU NIEZUPEŁNYM Szoła Główna Handlowa w Warszawie Kolegium Analiz Maemaycznych Kaedra Maemayi i Eonomii Maemaycznej juin@sgh.waw.pl MEODA WYZNACZANIA SRAEGII UOGÓLNIONEJ OSŁONY KWANYLOWEJ NA SKOŃCZONYM RYNKU NIEZUPEŁNYM

Bardziej szczegółowo

4. Weryfikacja modelu

4. Weryfikacja modelu 4. Weryfiacja modelu Wyznaczenie wetora parametrów struturalnych uładu ończy etap estymacji. Kolejnym etapem jest etap weryfiacji modelu. Przeprowadza się ją w dwóch ujęciach: merytorycznym i statystycznym.

Bardziej szczegółowo

Model Solow-Swan. Y = f(k, L) Funkcja produkcji może zakładać stałe przychody skali, a więc: zy = f(zk, zl) dla z > 0

Model Solow-Swan. Y = f(k, L) Funkcja produkcji może zakładać stałe przychody skali, a więc: zy = f(zk, zl) dla z > 0 dr Bartłomiej Roici Ćwiczenia z Maroeonomii II Model Solow-Swan W modelu lasycznym mieliśmy do czynienia ze stałą wielością czynniów producji, a zatem był to model statyczny, tóry nie poazywał nam dlaczego

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne ZADANIE D Nazwa zadania: Prędość chwilowa uli Zaproponuj metodę pomiaru prędości chwilowej stalowej uli poruszającej się po zadanym torze. Wyorzystaj

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo