Modelowanie i Analiza Danych Przestrzennych
|
|
- Anna Szydłowska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Moelowanie i Analiza anych Przestrzennych Wykła Anrzej Leśniak Katera Geoinformatyki i Informatyki Stosowanej Akaemia Górniczo-utnicza w Krakowie Prawopoobieństwo i błą pomiarowy Jak zastosować rachunek prawopoobieństwa i statystykę matematyczną o analizy anych śroowiskowych a w szczególności o ilościowego opisu błęów Błęy pomiarowe najłatwiej analizować (i zrozumieć) używając aparatu matematycznego. =? =.4 =? =.98 nieokreślone nieokreślone
2 Zmienne losowe mogą cechować się pewną systematycznością (tenencją) mogą przyjmować pewne wartości częściej niż inne. Przykła = liczba atomów euteru w cząsteczce metanu. jest zmienną losową. C C C C C = = = =3 =4 Systematyczność zmiennej losowej może być scharakteryzowana rozkłaem prawopoobieństwa P(). Wartości w % (% -%) lub w ułamkach (.-. ) Cztery różne sposoby wizualizacji prawopoobieństwa P P %. 3%.3 4%.4 3 5% % 4.5 Prawopoobieństwa sumują się o % lub o P P
3 Jeśli zmienna losowa jest ciągła może przyjmować wartości z zaanego przeziału (skończonego lub nieskończonego) w sposób ciągły. głębokość, 5 =.37 p() area, A Szare pole powierzchni określa prawopoobieństwo, ze rybka znajuje się mięzy głębokościami i. Prawopoobieństwo, że znajuje się pomięzy i Oczywiście
4 Jak scharakteryzować rozkła prawopoobieństwa? p() 5 p() 5 Wartość centralna (maksymalna), szerokość rozkłau??? Istnieje kilka propozycji sposobów charakteryzowania kształtu. Zacznijmy o sposobów określania wartości typowej rozkłau (wartości oczekiwanej). p() p() p() moe 5 moe meian area= 5% 5 mean meian mean area=5% 5 Wartość maksymalna 5 meiana 5 Wartość śrenia
5 step : sposób obliczania wartości śreniej step : jeśli zamiast anych posługujemy się histogramem ane s histogram step 3: jeśli zastąpimy histogram rozkłaem prawopoobieństwa la zmiennej ciągłej s N s N s N p s P( s ) s s Rozkła prawopoobieństwa Obliczenie szerokości rozkłau q() = (- typical ) użyj wartości śreniej la typical Pierwiastek z wariancji jest e facto miarą szerokości rozkłau tj. Więc funkcja q()p() ma: małą wartość jeśli większość jest skupiona blisko typical, czyli rozkłap()skupiony (wąski) użą wartość jeśli większość jest zlokalizowana aleko o typical, czyli rozkłap()jest szeroki Wielkość pola powierzchni q()p() ilościowo charakteryzuje szerokość rozkłau prawopoobieństwa
6 wa typowe rozkłay prawopoobieństwa p() Jenorony: impuls prostokątny /( max- min ) min max Normalny: funkcja zwonowa (gaussowska) Wariancja równa Przykłay zróżnicowania la normalnego rozkłau prawopoobieństwa Ta sama wariancja różne wartości śrenie Ta sama wartość śrenia różne wariancje 4 = =.5 5 4
7 Funkcje zmiennej losowej ane zawierające błą pomiarowy przetworzenie anych wnioskowanie w warunkach losowych wartość pomierzona jenorony p..f. << m = jeen wynik, wartość moelu, m Funkcje zmiennej losowej ane:p() regułam= p(m)? metoa: = wartość bezwzglęną oano by zabezpieczyć się prze przypakiem gy m <m gym= wówczas=m / przeział:= correspons to m= = correspons to m= p..f.: p() = więc p[(m)]= pochona: / m = (/)m -/ w rezultacie: p(m) = (/) m -/ w przeziale <m<
8 p() p(m) Jeśli p() jest stałe to p(m) jest skoncentrowane wokół m= Śrenia, i wariancja Jaka bęzie m oraz m la liniowej zmiany m=c? la śreniej m=c, la wariancji m = c m Wyniki niezbyt realistyczne jeen pomiar, jena wartość. Prawopoobieństwo warunkowe Przykła: populacja ptaków na wyspie 3 brązowych gołębi tan piegons białych gołębi white piegons brązowych mew tan gulls 4 białych mew white gulls Potraktujmy gatunek i kolor ptaka jako zmienne losowe wuwymiarowy rozkła prawopoobieństwa P(s,c): P(s,c) kolor, c brązowy, t biały, w gołąb, p 3% % mewa, g % 4%
9 Prawopoobieństwa brzegowe mogą być policzone poprzez sumowanie wierszy lub kolumn P(s,c) Prawopoobieństwo gatunku niezależnie P(s,c) kolor, c P(s) o koloru brązowy, t biały, w gołąb, p 3% % mewa, g % 4% suma wierszy gołąb, p 5% mewa, g 5% P(c) kolor, c suma kolumn brązowy, t biały, w Prawopoo -bieństwo koloru niezależnie o gatunku 4% 6% Prawopoobieństwo warunkowe: jakie jest prawopoobieństwo jenej sytuacji, gy zachozi inna sytuacja P(s,c) kolor, c P(s) P(c s) kolor, c brązowy, t biały, w brązowy, t biały, w gołąb, p 3% % mewa, g % 4% Poziel przez gołąb, p 5% mewa, g 5% gołąb, p 6% 4% mewa, g % 8% Poziel przez P(c) brązowy, t biały, w 4% 6% kolor, c brązowy, t biały, w P(s c) gołąb, p 75% 33% mewa, g 5% 67% kolor, c Prawopoo -bieństwo gatunku la anego koloru Prawopoobieństwo koloru la anego gatunku
10 Twierzenie Bayesa To samo więc czyli PAMIĘTAJ!!! Wnioskowanie Bayesa sprowaza się o aktualizacji wiezy Obserwator wizi ptaka. Chce wiezieć jakie jest prawopoobieństwo, że jest to gołąb. Jeśli powie wizę jakiegoś ptaka, prawopoobieństwo że wizi gołębia wynosi: P(s=p) = 5% ponieważ połowa ptaków na wyspie to gołębie. Jeśli powie wizę brązowego ptaka, prawopoobieństwo się zmieni: P Liczymy : P(s=gołąb c=brązowy) ( ) ( c s) P( s) P s c = P( c s ) P( ) i i s i Prawopoobieństwo rośnie gy uwzglęniona jest oatkowa informacja
11 Statystyki wuwymiarowe la wuwymiarowej, ciągłej zmiennej losowej o gęstości prawopoobieństwa p(, ) prawopoobieństwo osiągnięcia stanu że leży pomięzy L i R zaś leży pomięzy L i R wynosi: p(, ) L L L Rozkła gęstości prawopoobieństwa może być utożsamiany z rozkłaem gęstości R Prawopoobieństwo ane powyższą całką określa masę zgromazoną wewnątrz ramki. oczywiście zachozi Brzegowe rozkłay prawopoobieństwa: p..f. zmiennej niezależna o p..f. zmiennej niezależna o p(, ) integrate over p( ) = = p (, ) p (, ) p( ) integrate over = = ( ) p(, ) ( ) p(, )
12 Korelacja tenencja zmiennej losowej o zmian wraz ze zmianami zmiennej losowej korelacja oatnia : waga mężczyzn wzrasta wraz z ich wzrostem korelacja ujemna : ługość życia człowieka maleje wraz z ze wzrostem ilości wypalonych papierosów oatnia korelacja ujemna korelacja nieskorelowane Ilościowe ujęcie korelacji p(, ) s(, ) s(, ) p(, ) + + oraz są w tym prostokącie ujemne więc iloczyn jest oatni, it. p..f. zmienne losowe oniesione o wartości śrenich o wartości Wymnóż i scałkuj s(, )
13 Wariancje i kowariancje są często zapisywane wspólnie w macierzy C C =, la większej ilości zmiennych [,, ] T, K N,,, K N = [ ] T, C =,3 L,,3 L,3,3 3 L la rozkłau normalnego wielowymiarowa i jenowymiarowa funkcja gęstości prawopoobieństwa ma rozkła: =,,, L L L L K, macierz C jest symetryczna tworzymy wektory N macierz kowariancji C na głównej przekątnej posiaa wariancje poszczególnych zmiennych Pierwiastek z wyznacznika macierzy kowariancji Macierz owrotna o macierzy kowariancji
Wykład 1. Andrzej Leśniak KGIS, GGiOŚ AGH. Cele. Zaprezentowanie praktycznego podejścia do analizy danych (szczególnie danych środowiskowych)
Analiza anych śroowiskowych III rok OŚ Wykła 1 Anrzej Leśniak KGIS, GGiOŚ AGH Cele Zaprezentowanie praktycznego poejścia o analizy anych (szczególnie anych śroowiskowych) Zaznajomienie z postawowymi (!!!)
Bardziej szczegółowoMetrologia Techniczna
Zakła Metrologii i Baań Jakości Wrocław, nia Rok i kierunek stuiów Grupa (zień tygonia i gozina rozpoczęcia zajęć) Metrologia Techniczna Ćwiczenie... Imię i nazwisko Imię i nazwisko Imię i nazwisko Błęy
Bardziej szczegółowoWYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0
WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego
Bardziej szczegółowoO nauczaniu oceny niepewności standardowej
8 O nauczaniu oceny niepewności stanarowej Henryk Szyłowski Wyział Fizyki UAM, Poznań PROBLEM O lat 90. ubiegłego wieku istnieją mięzynaroowe normy oceny niepewności pomiarowych [, ], zawierające jenolitą
Bardziej szczegółowo1. Podstawowe pojęcia w wymianie ciepła
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Bardziej szczegółowoPole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Bardziej szczegółowoPole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Bardziej szczegółowoPole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Bardziej szczegółowoUNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI. Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH
UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH WPROWADZENIE Opcje są instrumentem pochonym, zatem takim, którego cena zależy o ceny instrumentu
Bardziej szczegółowoWykład Pole magnetyczne, indukcja elektromagnetyczna
Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki
Bardziej szczegółowoEkonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007
Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4
ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?
Bardziej szczegółowoPrzekształcenie całkowe Fouriera
Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy
Bardziej szczegółowoAlgorytmy graficzne. Metody binaryzacji obrazów
Algorytmy graficzne Metoy binaryzacji obrazów Progowanie i binaryzacja Binaryzacja jest procesem konwersji obrazów kolorowych lub monochromatycznych (w ocieniach szarości) o obrazu wupoziomowego (binarnego).
Bardziej szczegółowoStatystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoRozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Bardziej szczegółowoKomputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Bardziej szczegółowoHISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Bardziej szczegółowoRozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Bardziej szczegółowoStatystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38
Statystyka Wykład 8 Magdalena Alama-Bućko 23 kwietnia 2017 Magdalena Alama-Bućko Statystyka 23 kwietnia 2017 1 / 38 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoLista 6. Kamil Matuszewski 13 kwietnia D n =
Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam
Bardziej szczegółowoWykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Bardziej szczegółowoStatystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way
Bardziej szczegółowoMetoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa
Metoa obrazów wielki skrypt prze poświąteczny, CZĘŚĆ POTRZEBNA DO OFa 1. Równania i warunki brzegowe Dlaczego w ogóle metoa obrazów ziała? W elektrostatyce o policzenia wszystkiego wystarczą 2 rzeczy:
Bardziej szczegółowoAkademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Bardziej szczegółowoRozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości
Bardziej szczegółowoPozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Bardziej szczegółowoMetody obliczeniowe. wykład nr 5. metody Monte Carlo zastosowanie metod do obliczenia całek wielokrotnych. Nr: 1
Nr: Metoy obliczeniowe wykła nr 5 etoy Monte Carlo zastosowanie eto o obliczenia całek wielokrotnych Nr: Obliczanie całek wielokrotnych... f (,..., n... n? kubatury - wielowyiarowe opowieniki kwaratur
Bardziej szczegółowoSTATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
Bardziej szczegółowoRegresja i Korelacja
Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane
Bardziej szczegółowo1 Postulaty mechaniki kwantowej
1 1.1 Postulat Pierwszy Stan ukłau kwantowomechanicznego opisuje funkcja falowa Ψ(r 1, r 2,..., r N, t) zwana także funkcją stanu taka, że kwarat jej moułu: Ψ 2 = Ψ Ψ pomnożony przez element objętości
Bardziej szczegółowoOpis przedmiotu: Probabilistyka I
Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca
Bardziej szczegółowodr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK303 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
Bardziej szczegółowoElementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoPróba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Bardziej szczegółowoMETODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
Bardziej szczegółowoRozkłady dwuwymiarowe. Tablice dwudzielcze. Przykład (wstępny):
Rozkłady dwuwymiarowe Rozkłady brzegowe Rozkłady warunkowe Niezależność Kowariancja Współczynnik korelacji (Przykłady na tablicy) Tablice dwudzielcze Najprostsze tablice 2x2 : dwa rzędy i dwie kolumny
Bardziej szczegółowoOPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Metody opracowania obserwacji 2 Kod modułu 04-A-MOO-60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów
Bardziej szczegółowoweryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę)
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU
Bardziej szczegółowoSTATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt
STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Plan wykładów Data WYKŁDY 1.X rachunek prawdopodobieństwa; 8.X zmienna losowa jednowymiarowa, funkcja rozkładu, dystrybuanta 15.X
Bardziej szczegółowoStatystyka. Wykład 7. Magdalena Alama-Bućko. 3 kwietnia Magdalena Alama-Bućko Statystyka 3 kwietnia / 36
Statystyka Wykład 7 Magdalena Alama-Bućko 3 kwietnia 2017 Magdalena Alama-Bućko Statystyka 3 kwietnia 2017 1 / 36 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoW2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Bardziej szczegółowoAnaliza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Bardziej szczegółowoStatystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Zmienna losowa i jej rozkład Mając daną przestrzeń probabilistyczną, czyli parę (&, P) stanowiącą model pewnego doświadczenia losowego (gdzie
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Rachunek prawdopodobieństwa Probability theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia
Bardziej szczegółowoPomiar siły parcie na powierzchnie płaską
Pomiar siły parcie na powierzchnie płaską Wydawać by się mogło, że pomiar wartości parcia na powierzchnie płaską jest technicznie trudne. Tak jest jeżeli wyobrazimy sobie pomiar na ściankę boczną naczynia
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie
Bardziej szczegółowoAnaliza głównych składowych- redukcja wymiaru, wykł. 12
Analiza głównych składowych- redukcja wymiaru, wykł. 12 Joanna Jędrzejowicz Instytut Informatyki Konieczność redukcji wymiaru w eksploracji danych bazy danych spotykane w zadaniach eksploracji danych mają
Bardziej szczegółowo( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Bardziej szczegółowoWykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług
Bardziej szczegółowoOpis przedmiotu. Karta przedmiotu - Probabilistyka I Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK304 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoWprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Bardziej szczegółowoEstymacja parametrów, przedziały ufności etc
Estymacja parametrów, przedziały ufności etc Liniowa MNK przypomnienie Wariancja parametrów Postulat Bayesa: rozkłady p-stwa dla parametrów Przypadek nieliniowy Przedziały ufności Rozkłady chi-kwadrat,
Bardziej szczegółowoZadania z badań operacyjnych Przygotowanie do kolokwium pisemnego
Zaania z baań operacyjnych Przygotowanie o kolokwium pisemnego 1..21 Zaanie 1.1. Dane jest zaanie programowania liniowego: 4x 1 + 3x 2 max 2x 1 + 2x 2 1 x 1 + 2x 2 4 4x 2 8 x 1, x 2 Sprowazić zaanie o
Bardziej szczegółowoStatystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoRegresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Bardziej szczegółowoWybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Bardziej szczegółowoMechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
Bardziej szczegółowoALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Regresja liniowa Korelacja Modelowanie Analiza modelu Wnioskowanie Korelacja 3 Korelacja R: charakteryzuje
Bardziej szczegółowoĆwiczenie: Wybrane zagadnienia z korelacji i regresji.
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)
Bardziej szczegółowoZawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Bardziej szczegółowoStatystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Bardziej szczegółowoMikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez
Bardziej szczegółowoCzęsto spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:
Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,
Bardziej szczegółowoWłasności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Bardziej szczegółowoSpis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Bardziej szczegółowoKORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Bardziej szczegółowoKOOF Szczecin: www.of.szc.pl
LVIII OLIMPIADA FIZYCZNA (2008/2009). Stopień II, zaanie oświaczalne D. Źróło: Autor: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej. Ernest Groner Komitet Główny Olimpiay Fizycznej,
Bardziej szczegółowoZakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji
Bardziej szczegółowoEkonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej
Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa
Bardziej szczegółowoW1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Bardziej szczegółowoWykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau
Bardziej szczegółowoWybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Bardziej szczegółowoRachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18
Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Analityka gospodarcza I. Informacje podstawowe Nazwa przedmiotu Rachunek prawdopodobieństwa Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIE STWA
Jerzy Ombach RACHUNEK PRAWDOPODOBIE STWA WSPOMAGANY KOMPUTEROWO DLA STUDENTÓW MATEMATYKI STOSOWANEJ Wydawnictwo Uniwersytetu Jagielloƒskiego Seria Matematyka Książka finansowana przez Wydział Matematyki
Bardziej szczegółowoWażne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Bardziej szczegółowoAnaliza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Bardziej szczegółowoRozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Bardziej szczegółowoPDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Bardziej szczegółowoMikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków
Bardziej szczegółowo7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Bardziej szczegółowoAgnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Bardziej szczegółowoBiostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoWykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Bardziej szczegółowoW statystyce stopień zależności między cechami można wyrazić wg następującej skali: n 1
Temat: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00 0,20) Słaba
Bardziej szczegółowoINFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
Bardziej szczegółowoWstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Bardziej szczegółowoStatystyka. Wykład 6. Magdalena Alama-Bućko. 9 kwietnia Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
Statystyka Wykład 6 Magdalena Alama-Bućko 9 kwietnia 2018 Magdalena Alama-Bućko Statystyka 9 kwietnia 2018 1 / 36 Krzywa koncentracji Lorenza w ekonometrii, ekologii, geografii ludności itp. koncentrację
Bardziej szczegółowoWYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo
Bardziej szczegółowoStatystyka. Wykład 5. Magdalena Alama-Bućko. 20 marca Magdalena Alama-Bućko Statystyka 20 marca / 26
Statystyka Wykład 5 Magdalena Alama-Bućko 20 marca 2017 Magdalena Alama-Bućko Statystyka 20 marca 2017 1 / 26 Koncentracja Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności
Bardziej szczegółowoAgnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Bardziej szczegółowoTRANSFORMACJE I JAKOŚĆ DANYCH
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING TRANSFORMACJE I JAKOŚĆ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Bardziej szczegółowo