Fala elektromagnetyczna prowadzona wzdłuż pojedynczego przewodu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fala elektromagnetyczna prowadzona wzdłuż pojedynczego przewodu"

Transkrypt

1 napisał Michał Wierzbicki Fala elektromagnetyczna prowadzona wzdłuż pojedynczego przewodu Problem rozchodzenia się fali elektromagnetycznej wzdłuż pojedynczego przewodu został rozwiązany w sposób ścisły po raz pierwszy przez Arnolda Sommerfelda 1. W języku niemieckim taką falę nazywa się Drahtwelle. Zakładamy, że mamy do czynienia z modem TM, w którym pole magnetyczne ma tylko jedną składową B ϕ w układzie cylindrycznym. Pole elektryczne ma składowe E ρ i E z, to znaczy linie sił pola elektrycznego leżą w płaszczyznie zawierającej oś z. Symetria cylindryczna pozwala nam założyć, że pole elektromagnetyczne nie zależy od współrzędnej ϕ. Zależność składowych pól od współrzędnej z w postaci: B ϕ, E ρ, E z e i(kz ωt) (1) oznacza, że fala propaguje się wzdłuż osi z. Prawo Faradaya: E= B t wyrażone we współrzędnych cylindrycznych, można zapisać w postaci (2) ( E ) ϕ = E ρ E z z ρ = iωb ϕ (3) ike ρ gdzie pochodną po z można zastąpić mnożeniem przez czynnik ik, a pochodną po czasie mnożeniem przez czynnik iω. Prawo Ampera z prądem przesunięcia wynosi B=µµ 0 j+ǫǫ 0 E t =α E (4) Gęstość prądu można wyrazić przez różniczkowe prawo Ohma: j=σ E, gdzieσ jest przewodnością własciwą materiału przewodnika. Zamieniając pochodną po czasie przez czynnik iω, prawą stronę prawa Ampera można uprościć, wprowadzając oznaczenie: α=µµ 0 σ iωµµ 0 ǫǫ 0. Równanie (4) zapisane w układzie cylindrycznym dla składowych z iρprzyjmuje postać: 1 A. Sommerfeld, Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes, Annalen der Physik und Chemie 67 (1899) 233. A. Sommerfeld, Vorlesungen über theoretische Physik, Band III Elektrodynamik, 22. 1

2 ( B ) z = 1 ( ) ρbϕ =αez (5) ρ ρ ( B ) ρ = B ϕ z ikb ϕ = αe ρ (6) Elektryczne prawo Gaussa w układzie cylindrycznym wynosi E= 1 ρ ρ ( ) E z ρeϕ + z = 0 (7) ike z Z powodu symetrii cylindrycznej magnetyczne prawo Gaussa jest spełnione tożsamościowo: B= 1 B ϕ ρ ϕ = 0 (8) Korzystając z równania (6) można wyrazić składową E ρ przez B ϕ : Równanie (3) można przepisać w postaci: E ρ = ik α B ϕ (9) Stąd E z ρ = ike ρ iωb ϕ (10) B ϕ = α E z (k 2 iωα) ρ Wstawiając powyższe wyrażenie na B ϕ do równania (5) otrzymujemy nastepujące równanie różniczkowe dla składowej podłużnej E z : 2 E z ρ ρ (11) E z ρ +κ2 E z = 0 (12) gdzie κ 2 = iωα k 2. Jest to równanie Bessela rzędu 0. Jego rozwiązaniem jest kombinacja liniowa funkcji Bessela pierwszego rodzaju J 0 i drugiego rodzaju Y 0 : E z (ρ)= A J 0 (κρ)+ B Y 0 (κρ) (13) 2

3 Umawiamy się, że przy wyciąganiu pierwiastka zκ 2 wielkośćκ ma część urojoną większą od zera. Zgodnie z równaniami (9) i (11) składowe B ϕ i E ρ są proporcjonalne do pochodnej składowej podłużnej E z : B ϕ = α E z κ 2 ρ, E ρ= ik E z (14) κ 2 ρ Można zauważyć, że elektryczne prawo Gaussa (7) jest automatycznie spełnione. Ponieważ posługujemy się zespoloną reprezentacją pola elektromagnetycznego to możemy zastosować alternatywny zapis dla funkcji Bessela w postaci funkcji Hankela pierwszego i drugiego rodzaju: E z (ρ)= A H (1) 0 (κρ)+ B H(2) 0 (κρ) (15) gdzie funkcje Hankela zdefiniowane są jako: H (1,2) 0 (x)= J 0 (x)±iy 0 (x) (16) Funkcja Bessela drugiego rodzaju Y 0 dla argumentu rzeczywistego lub zespolonego jest rozbieżna wρ=0. Nie ma fizycznego powodu aby na osi przewodu pole elektryczne było nieskończenie duże. Z tego względu wewnątrz przewodu o promieniu R, dlaρ<r wybieramy rozwiązanie równania (12) w postaci E int z (ρ)= A J 0 (κρ) (17) Na zewnątrz przewodu mamy próżnię, dla której przewodnictwo właściwe σ = 0, a względne stałe dielektryczneµ=ǫ= 1. Stałaα dla próżni wynosi: a stała κ przyjmuje wartość: α 0 = iωµ 0 ǫ 0 = iω c 2 (18) ω 2 κ 0 = c 2 k2 (19) Na zewnątrz przewodu (dlaρ>r) składową podłużną E z wyraźmy w postaci (15) kombinacji liniowej funkcji Hankela E z (ρ)= A H (1) 0 (κ 0ρ)+ B H (2) 0 (κ 0ρ) (20) Mogą zachodzić dwa przypadki: 1) k<ω/c stałaκ rzeczywista 2) k>ω/c stałaκ zespolona 2 2 Zgodnie z wcześniejszą umową zakładamy, że jej część urojona jest większa od zera. 3

4 W przypadku pierwszym funkcje Bessela pierwszego J 0 i drugiego rodzaju Y 0 dla argumentu rzeczywistego dążą do zera w nieskończoności. Fizyczny warunek znikania pól w nieskończoności jest więc spełniony przez obie funkcje. Aby zmniejszyć liczbę stałych nieoznaczonych, musimy zastosować silniejszy warunek promieniowania. Zakładamy, że fala elektromagnetyczna prowadzona wzdłuż przewodu przenosi energię tylko wzdłuż przewodu to znaczy że energia nie jest wypromieniowywana radialnie. Składowa radialna zespolonego wektora Poyntinga: ( S ) ρ = 1 2µ 0 Re ( E B ) ρ = 1 2µ 0 Re (E z B ϕ ) (21) wycałkowana po obwodzie okręgu o promieniuρdaje średnią w czasie moc P wypromieniowaną radialnie od przewodu. P(ρ)=2πρ S ρ (ρ) (22) Aby w granicy dlaρ moc P dążyła do zera, składowa S ρ powinna zmierzać do zera szybciej niż 1/ρ. Zgodnie z równaniem (14) składowa B ϕ jest proporcjonalna do pochodnej poρskładowej E z. Okazuje się, że w przypadku 1) warunek promieniowania, dla E z danego równaniem (20) zκ 0 rzeczywistym, nie jest spełniony, co łatwo sprawdzić w programie Mathematica, obliczając pierwszy wyraz rozwinięcia w szereg względem nieskończoności funkcji E z (r) E z(r), gdzie r= κ 0 ρ: f [r ]= A HankelH1[0, r]+ B HankelH2[0, r]; (Series[f [r] Conjugate[f [r]],{r,, 1}]//Normal//Re//ComplexExpand)/.{Arg[r] 0} //PowerExpand//Simplify 4ABCos[2r] πr Pozostaje więc nam przypadek 2) gdyκ 0 jest zespolone. W tym przypadku funkcja Hankela drugiego rodzaju H (2) 0 dla argumentu zespolonego o dodatniej części urojonej jest rozbieżna w nieskończoności: q=1+i; Series[HankelH1[0, q r],{r,, 1}]//Normal//Abs//ComplexExpand 2 1/4 e r π ( r 2 ) 1/4 4

5 Series[HankelH2[0, q r],{r,, 1}]//Normal//Abs//ComplexExpand 2 1/4 e r π ( r 2 ) 1/4 W wyrażeniu (20) pozostawiamy tylko funkcję Hankela pierwszego rodzaju H (1) 0. Dalej przez H m będziemy rozumieć funkcję pierwszego rodzaju H m (1). Łatwo sprawdzić, że funkcja Hankela pierwszego rodzaju spełnia warunek promieniowania: f [r ]=HankelH1[0, q r] Conjugate[q HankelH1[1, q r]]//abs; (Series[ f [r],{r,, 1}]//Normal//ComplexExpand)/.{Arg[r] 0}//Simplify//PowerExpand 2e 2r πr gdzie skorzystaliśmy ze wzoru na pochodną funkcji Hankela: H 0 (x)= H 1(x). Ostatecznie, warunek promieniowania wymaga, aby składowa podłużna pola elektrycznego na zewnątrz przewodu dlaρ>rmiała postać: E ext z (ρ)= B H 0 (κ 0 ρ) (23) gdzie κ 0 zespolone dane jest wzorem (19). Zgodnie ze wzorami (14) składowe B ϕ i E ρ pola elektromagnetycznego wewnątrz przewodu dla ρ < R (int) i na zewnątrz przewodu dlaρ>r(ext) wynoszą odpowiednio oraz B int ϕ (ρ)= α κ A J 1(κρ), E int ρ (ρ)= ik κ A J 1(κρ) (24) B ext ϕ (ρ)= α 0 B H 1 (κ 0 ρ), Eρ ext κ 0 (ρ)= ik κ 0 B H 1 (κ 0 ρ) (25) gdzie skorzystaliśmy ze wzoru na pochodną funkcji Bessela: J 0 (x)= J 1(x). Na powierzchni przewodu muszą być spełnione następujące warunki brzegowe: 1) ciągłość składowej natężenia pola elektrycznego stycznej do powierzchni granicznej: E int z = E ext z (26) oraz 2) ciągłość składowej natężenia pola magnetycznego do powierzchni granicznej: H int ϕ = H ext ϕ (27) 5

6 Ściśle rzecz biorąc, w ogólnym przypadku składowa styczna natężenia pola magnetycznego powinna doznawać skoku równego natężeniu swobodnego prądu powierzchniowegoκ sw płynącego po powierzchni granicznej. W przypadku przewodnika spełniającego różniczkowe prawo Ohma: j = σ E mamy do czynienia tylko z prądem objętościowym. Korzystając z równania materiałowego, natężenie pola magnetycznego H można wyrazić przez indukcję B. Warunki (26) i (27) na powierzchni przewodnika o promieniu R oznaczają więc: E int z (R)= Ez ext (R), 1 µ Bint ϕ (R)= Bext ϕ (R) (28) Korzystając z równań (24) i (25) otrzymujemy układ dwóch równań liniowych jednorodnych z niewiadomymi amplitudami pola elektrycznego A i B wewnątrz i na zewnątrz przewodnika: 1 µ A J 0 (κ R)= B H 0 (κ R) α κ A J 1(κ R)= α 0 B H 1 (κ 0 R) κ 0 Warunkiem koniecznym rozwiązalności układu równań (29) jest znikanie jego wyznacznika µκ R J 0 (κ R) α J 1 (κ R) = κ 0 R H 0 (κ 0 R) (30) α 0 H 1 (κ 0 R) Jest to uwikłane równanie zawierające w sobie relację dyspersji k(ω) dla fali elektromagnetycznej prowadzonej wzdłuż przewodnika. Do obliczeń numerycznych dla konkretnych wartości stałych materiałowych wygodnie jest wprowadzić pewne oznaczenia. Zespolony współczynnik załamania materiału z którego wykonany jest przewód wynosi 3 n 2 =µǫ+ iµσ (31) ǫ 0 ω Parametry α i κ materiału przewodnika, występujące w równaniach można wówczas zapisać jako: α= iω ( ω n ) 2 n 2, κ 2 = k 2 (32) c 2 c Próżnia na zewnątrz przewodu ma oczywiście współczynnik załamania n = 1, stąd α 0 = iω ( ω ) 2, κ 2 c 2 0 = k 2 (33) c Można zauważyć, żeα/α 0 = n 2. Jeśli wprowadzimy następujące oznaczenia bezwymiarowe: 3 Patrz temat: płaska fala elektromagnetyczna w ośrodku przewodzącym (29) 6

7 bezwymiarowa częstość drgań: q = ωr/c bezwymiarowy wektor falowy: h = kr to parametryκ iκ 0 będziemy mogli zastąpić ich bezwymiarowymi odpowiednikami: X 2 = n 2 q 2 h 2, X 2 0 = q2 h 2 (34) Uwikłane równanie (30) można wówczas zapisać w postaci bezwymiarowej jako µ X J 0 (X) n 2 J 1 (X) = X 0 H 0 (X 0 ) H 1 (X 0 ) (35) Gruby przewód miedziany Niech promień przewodu wynosi: R = 1 mm, częstotliwość drgań fali: f = 1 GHz. Przewód jest wykonany z miedzi, dla której przewodnictwo właściwe wynosi σ = 5, (Ω m) 1, a względna przenikalność magnetyczna:µ=1. Zespolony współczynnik załamania (31) ma wówczas dominującą bardzo dużą część urojoną 4 : Bezwymiarowa częstość drgań: n 2 σ i ǫ 0 ω = i 1,0 109 q= ωr = 2, c Szukamy rozwiązania równania (35) dla h q. Argument lewej strony równania (35) jest wówczas bardzo duży X nq=469,0 (1+i) i praktycznie nie zależy od h. Argument prawej strony jest natomiast bardzo mały X 0 q<1. Dokładne rozwiązanie 5 znalezione w Mathematice za pomocą funkcjifindroot wynosi h=q+δ, gdzie δ=(1,62+i 0,78) Wówczas X 0 = (0, 61+i2,67) Bezwymiarowy wektor falowy h ma niewielką część urojoną, co oznacza słabe tłumienie fali. Prędkość fazowa v f =ω/k wyrażona przez wielkości bezwymiarowe wynosi v f c = q Re(h) = 0, i jest mniejsza od prędkości światła jedynie o 7, c. Zmiana amplitudy fali na długości R=1 mm wynosi e Im(h) 1 Im(h), co w przeliczeniu daje znikomą wartość 4 Określenie stałej dielektrycznejǫ materiału przewodzącego jest dość problematyczne z punktu widzenia eksperymentalnego, gdyż fala elektromagnetyczna odbija się od przewodnika. 5 Rozwiązanie przybliżone można otrzymać stosując wyrażenia dla przybliżonej wartości funkcji Bessela dla dużych argumentów i funkcji Hankela dla małych argumentów. 7

8 współczynnika tłumienia 6 fali równą 3,4 db/km. Fala TM prowadzona wzdłuż przewodu porusza się praktycznie bez tłumienia z prędkością światła. Wprowadzając odległość od przewodu mierzoną w jego promieniach: u = ρ/r, możemy napisać następujące wyrażenia bezwymiarowe na składowe pola elektromagnetycznego. Wewnątrz przewodu dla u<1mamy: Ez int (u)= A J 0 (X u) Bϕ int (u)= qn2 cx A J 1(X u) Na zewnątrz przewodu dla u>1 mamy: E int ρ (u)= ih X A J 1(X u) Ez ext (u)= B H 0 (X 0 u) Eρ ext ih (u)= B H 1 (X 0 u) X 0 B ext ϕ (u)= qn2 cx 0 B H 1 (X 0 u) Za wartość stałej A możemy przyjąć 1/J 0 (X), wówczas formalnie wartość składowej pola elektrycznego na powierzchni przewodu 7 wynosi E z (R) = 1. Stała B zgodnie z równaniem (29) będzie wówczas równa B=1/H 0 (X). Zależność między amplitudami składowych poprzecznych pola elektrycznego i magnetycznego fali jest następująca: E ρ = B ϕ hc qn 2 c n 2 Na zewnątrz przewodu współczynnik załamania n=1, stąd stosunek amplitud pól E i B wynosi c, tak jak dla płaskiej fali elektromagnetycznej w próżni. Z analizy numerycznych wartości składowych pól, którą łatwo przeprowadzić w programie Mathematica wynika, że dominujące znaczenie ma składowa E ρ na zewnątrz przewodnika. Na zewnętrznej powierzchni przewodnika, dla podanych wyżej wartości parametrów, wynosi ona Eρ ext(r)=3, Na wewnętrznej powierzchni przewodnika Eρ int(r)=3,2 10 5, a więc praktycznie zero. Mamy więc do czynienia prawie dokładnie z falą poprzeczną TEM. Cała energia przenoszona jest przez falę wzdłuż i na zewnątrz przewodnika. Jak widać na rysunku 2 wewnątrz przewodu mamy do czynienia z silnym efektem naskórkowym. Składowa E z a co za tym idzie i indukowany prąd są różne od zera praktycznie w bardzo cienkiej warstwie przy powierzchni przewodu dla 0,99 R<ρ<R. 6 Fizycznym mechanizmem tłumienia jest przemiana energii fali na ciepło Joule a-lenza wydzielające się w przewodzie 7 Ta składowa jest ciągła na powierzchni przewodu. 8

9 Rysunek 1: Rozkład pola elektromagnetycznego fali wokół przewodnika. Możliwość praktycznego zastosowania fali prowadzonej wzdłuż pojedynczego przewodu ogranicza niestety fakt, iż pole elektromagnetyczne fali rozciąga się daleko poza przewodem. Jak widać z rysunku 3 natężenie pola elektrycznego maleje praktycznie jak 1/ρ wraz z rosnącą odległością od przewodu. 9

10 Rysunek 2: Rozkład pola elektromagnetycznego wewnątrz przewodnika. Rysunek 3: Zależność natężenia pola elektrycznego od odległości od przewodu. 10

Efekt naskórkowy (skin effect)

Efekt naskórkowy (skin effect) Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Fotonika. Plan: Wykład 3: Polaryzacja światła

Fotonika. Plan: Wykład 3: Polaryzacja światła Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,

Bardziej szczegółowo

Zastosowanie zespolonego wektora Poyntinga do wyznaczania impedancji

Zastosowanie zespolonego wektora Poyntinga do wyznaczania impedancji napisał Michał Wierzbicki Zastosowanie zespolonego wektora Poyntinga do wyznaczania impedancji Dla pól elektromagnetycznych harmonicznie zależnych od czasu z czynnikiem e iωt można zdefiniować zespolony

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

Równania Maxwella. Wstęp E B H J D

Równania Maxwella. Wstęp E B H J D Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Pole elektrostatyczne

Pole elektrostatyczne Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

KATEDRA TELEKOMUNIKACJI I FOTONIKI

KATEDRA TELEKOMUNIKACJI I FOTONIKI ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13 Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Rozdział 7 Fale elektromagnetyczne 7.1 Prąd przesunięcia. II równanie Maxwella Poznane dotąd prawa elektrostatyki, magnetostatyki oraz indukcji elektromagnetycznej można sformułować w czterech podstawowych

Bardziej szczegółowo

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

III. Opis falowy. /~bezet

III. Opis falowy.  /~bezet Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3

Bardziej szczegółowo

Podstawy fizyki sezon 2 6. Równania Maxwella

Podstawy fizyki sezon 2 6. Równania Maxwella Podstawy fizyki sezon 2 6. Równania Maxwella Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas pokazaliśmy:

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech

Fizyka 2 Wróbel Wojciech Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Współczynniki pojemności

Współczynniki pojemności napisał Micał Wierzbicki Współczynniki pojemności Rozważmy układ N przewodników. Powierzcnia każdego z nic jest powierzcnią ekwipotencjalną: ϕ i = const, i = 1,,..., N. W obszarze między przewodnikami

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo

Bardziej szczegółowo

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi

Bardziej szczegółowo

Model oscylatorów tłumionych

Model oscylatorów tłumionych Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia

Bardziej szczegółowo

Rezonator prostopadłościenny

Rezonator prostopadłościenny napisał Michał Wierzbicki Rezonator prostopadłościenny Rozważmy prostopadłościan o bokach a > b > d (pusty w środku), którego scianki wykonane są z idealnego przewodnika. Wewnątrz takiego rezonatora będziemy

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Podstawy elektromagnetyzmu Wykład 11 Fale elektromagnetyczne Równania Maxwella H=J D t E= B t D= B=0 D= E J= E B= H Ruch ładunku jest źródłem pola magnetycznego Zmiana pola magnetycznego w czasie jest

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

Obliczanie indukcyjności cewek

Obliczanie indukcyjności cewek napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Podstawy elektromagnetyzmu. Wykład 12. Energia PEM

Podstawy elektromagnetyzmu. Wykład 12. Energia PEM Podstawy elektromagnetyzmu Wykład 12 Energia PEM Energia pola elektromagnetycznego Pole elektryczne W E = V w E dv w E = E D 2 = E 2 2 = D2 2 Pole magnetyczne Całkowita energia W = V w E w H dv = = 1 E

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017

Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017 Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Zwój nad przewodzącą płytą

Zwój nad przewodzącą płytą Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której

Bardziej szczegółowo

Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych

Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych napisał Michał Wierzbicki Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych Rozważmy tak zwaną linię Lechera, czyli układ dwóch równoległych, nieskończonych przewodników, o przekroju

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy

Bardziej szczegółowo

Równania Maxwella i równanie falowe

Równania Maxwella i równanie falowe Równania Maxwella i równanie falowe Prezentacja zawiera kopie folii omawianch na wkładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wkorzstanie niekomercjne dozwolone pod warunkiem podania

Bardziej szczegółowo

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

Równania Maxwella. roth t

Równania Maxwella. roth t , H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO

PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO wyprowadzenie bez mechaniki kwantowej. Opracował mgr inż. Herbert S. Mączko Celem jest wyznaczenie objętościowej gęstości energii ρ T promieniowania w równoległościennej,

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 4 lutego 4 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

= sin. = 2Rsin. R = E m. = sin

= sin. = 2Rsin. R = E m. = sin Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i

Bardziej szczegółowo

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium Fizyka Kolokwium Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 Fizyka w poprzednim odcinku Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM dt B Siła elektromotoryczna

Bardziej szczegółowo

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo