Materiały wykładowe (fragmenty)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Materiały wykładowe (fragmenty)"

Transkrypt

1 Materiały wykładowe (fragmenty) 1

2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 2

3 Techniki optymalizacji Cz. 1 3

4 Wyłączenie odpowiedzialności Prezentowane materiały, będące dodatkiem pomocniczym do wykładów, z konieczności fragmentarycznym i niedopracowanym, należy wykorzystywaćz pełnąświadomościąfaktu, że mogąnie byćpozbawione przypadkowych błędów, braków, wypaczeń i przeinaczeń:-) Autor

5 ... 5

6 Wymagane (i wykorzystywane) pojęcia algebraiczne Podstawowe operacje na wektorach i macierzach (prawie) wszędzie Różniczkowanie funkcji metody newtonowskie Macierz nieujemnie/niedodatnio określona metoda Levenberga-Marquarda, metoda MDS Wartości własne macierzy metoda Levenberga-Marquarda, metoda MDS 6

7 Wymagane (i wykorzystywane) pojęcia geometryczne Przestrzenie wielowymiarowe (prawie) wszędzie Interpretacja wektorów w przestrzeniach wielowymiarowych (prawie) wszędzie Interpretacja funkcji w przestrzeniach wielowymiarowych (prawie) wszędzie 7

8 ... 8

9 Przedstawiane metody/rozwiązania Rodzaje przedstawianych metod: klasyczne dla dziedziny optymalizacji ciągłej dawno zdefiniowane dokładnie przebadane to się jednak zmienia! Związki z metodami metaheurystycznymi: metody klasyczne mają zastosowania podrzędne heurystyczne lub dokładne (w zależności od postaci wyników) metody lokalne potencjalne wykorzystanie: generowanie kolejnych rozwiązań (jako lokalnych ekstremów) w metodach metaheurystycznych 9

10 Przedstawiane metody/rozwiązania Postać problemu minimalizacja funkcji co w przypadku maksymalizacji? co w przypadku poszukiwania konkretnej wartości? optymalizacja/aproksymacja przy (ewentualnie istniejących) ograniczeniach ograniczenia jednowymiarowe (zakres zmienności) ograniczenia wielowymiarowe /robocze, właściwe/ 10

11 Przedstawiane metody/rozwiązania Postaci funkcji celu i ograniczeń (zawsze) dane analitycznie wzór! (zazwyczaj) dodatkowo uwarunkowane ciągłe, gładkie, (przykłady?) nieraz konkretnie: liniowe, kwadratowe, 11

12 Przedstawiane metody/rozwiązania Generowane rozwiązania dokładne w sensie dokładności maszynowej* przybliżone * temat dokładności maszynowej nie będzie bliżej na tym wykładzie przedstawiany 12

13 ... 13

14 Optymalizacja w języku Słownik wyrazów obcych PWN optymalizacja-cji, ż, blm 1.«organizowanie jakichśdziałań, procesów itp. w taki sposób, aby dały jak największe efekty przy jak najmniejszych nakładach» 2.ekon.«poszukiwanie za pomocąmetod matematycznych najlepszego ze względu na wybrane kryterium (np. koszt lub zysk) rozwiązania danego zagadnienia gospodarczego, przy uwzględnieniu określonych ograniczeń» optymalny «najlepszy z możliwych w jakichś warunkach» <fr. optimal>!niepoprawnie: Najbardziej optymalne, poprawnie: optymalne, rozwiązanie. 14

15 Optymalizacja w języku Komentarz: kryterium: warunek ( muszą spełnione być pewne kryteria ) trzecie znaczenie: funkcja celu ( wielokryterialne PL ) koszt lub zysk? ( kryterium (np. koszt lub zysk)... ) 15

16 Optymalizacja w zastosowaniach Optymalizacja ma zastosowania w takich dziedzinach jak fizyka technika chemia inżynieria informatyka biologia ekonomia... 16

17 Optymalizacja w życiu Hodży Nasreddina:-) Kim jest/był Hodża Nasreddin? bliskowschodni średniowieczny mędrzec-podróżnik, zajmujący się rozwiązywaniem zagadek, m.in. matematycznych i logicznych jego rozmaite przygody sąfabularyzowanymi zapisami bliskowschodnich mądrości ludowych Więcej o życiu Hodży Nasreddinam.in. w książce Przygody Hodży Nasreddina (a jeszcze więcej: w Internecie!) 17

18 Optymalizacja w życiu Hodży Nasreddina:-) Problem majątku dwaj bracia odziedziczyli majątek po ojcu, który przykazał im podzielić się nim sprawiedliwie, nie podał jednak konkretnie, które dobra mają przypaść w spadku któremu z braci bracia natychmiast pokłócili sięo majątek, ponieważkażdy z nich proponowałinny podziałpozostałych po ojcu dóbr na dwie części: każdy dzieliłrzeczy w taki sposób, aby wartości obu części nie były równe, oczywiście przydzielając sobie częśćo większej wartości, a swemu bratu część o mniejszej wartości 18

19 Optymalizacja w życiu Hodży Nasreddina:-) Jak można rozwiązać powyższy konflikt? Jak rozwiązał ten konflikt Hodża Nasreddin? 19

20 Optymalizacja w życiu Hodży Nasreddina:-) Możliwe rozwiązanie konfliktu jeden z braci dokonuje podziału dziedziczonych rzeczy na dwie części drugi podejmuje decyzję to tym, która część przypadnie komu w udziale 20

21 Optymalizacja w życiu Hodży Nasreddina:-) Interesujące cechy zaproponowanego rozwiązania jeżeli dokonujący podziału podzieli dziedziczone dobra na dwie części o nierównej wartości, to naraża sięna to, że (wskutek decyzji drugiego z braci) przypadnie mu w udziale część mniej wartościowa dokonujący podziału powinien więc dążyćdo tego, aby różnica wartości obu części spadku była jak najmniejsza, w rezultacie czego bracia zostaną sprawiedliwie obdzieleni spadkiem w idealnym przypadku wartości obu części będą jednakowe! (choć taki podział może nie być możliwy do zrealizowania) 21

22 Optymalizacja w życiu Hodży Nasreddina:-) Optymalizacyjny punkt widzenia tego problemu i jego rozwiązania tzw. problem min-max lub osoba dokonująca podziału wie, że jeżeli któraś z utworzonych przez nią części majątku będzie większej wartości, to osoba wybierająca na pewno przydzieli tęczęśćsobie (wniosek: tworzenie jakiejkolwiek części o wartości większej od innych części nie jest korzystne!) oznacza to, że osoba dokonująca podziału powinna minimalizować(min) wartość największej (max) z tworzonych części tzw. problem max-min osoba dokonująca podziału wie, że jeżeli któraś z utworzonych przez nią części majątku będzie mniejszej wartości, to osoba wybierająca na pewno przydzieli sobie innączęść(wniosek: tworzenie części o wartości mniejszej od innych części nie jest korzystne!) oznacza to, że osoba dokonująca podziału powinna maksymalizować(max) wartość najmniejszej (min) z tworzonych części 22

23 ... 23

24 Problem ekstremów Problem ekstremów czyli jak dla nietrywialnegoproblemu optymalizacji bez ograniczeń(czyli zadania przeszukiwania przestrzeni wielowymiarowych) skonstruować nietrywialne podejście rozwiązujące ten problem 24

25 ... 25

26 Elementy ekstremalne w zbiorach uporządkowanych W zbiorze X uporządkowanym relacjami,, < oraz > można zdefiniować element najmniejszy: jest nim a X spełniający a x X a < x element największy: jest nim b X spełniający b x X b > x 26

27 Elementy ekstremalne w zbiorach uporządkowanych W zbiorze X uporządkowanym relacjami,, < oraz > można zdefiniować element minimalny: jest nim c X spełniający x X c x ( x X x < c) element maksymalny: jest nim d X spełniający x X d x ( x X x > c) 27

28 Dygresja Quiz czy istnieje element najmniejszy zbioru {a 1, a 2, a 3, a 4, a 5, a 6, a 7, a 8, a 9 }, gdzie a 1 =3, a 2 =9, a 3 =2, a 4 =7, a 5 =1, a 6 =9, a 7 =4, a 8 =4, a 9 =5? tak! jest nim: a 5 (równe 1) 28

29 Dygresja Quiz czy istnieje element minimalny zbioru {a 1, a 2, a 3, a 4, a 5, a 6, a 7, a 8, a 9 }, gdzie a 1 =3, a 2 =9, a 3 =2, a 4 =7, a 5 =1, a 6 =9, a 7 =4, a 8 =4, a 9 =5? tak! jest nim: a 5 (równe 1) 29

30 Dygresja Quiz czy istnieje element największy zbioru {a 1, a 2, a 3, a 4, a 5, a 6, a 7, a 8, a 9 }, gdzie a 1 =3, a 2 =9, a 3 =2, a 4 =7, a 5 =1, a 6 =9, a 7 =4, a 8 =4, a 9 =5? nie! 30

31 Dygresja Quiz czy istnieje element maksymalny zbioru {a 1, a 2, a 3, a 4, a 5, a 6, a 7, a 8, a 9 }, gdzie a 1 =3, a 2 =9, a 3 =2, a 4 =7, a 5 =1, a 6 =9, a 7 =4, a 8 =4, a 9 =5? tak! (i to nie jeden, lecz dwa!) sąnimi: a 2 (równe 9) oraz a 6 (równe 9) 31

32 Elementy ekstremalne w zbiorach uporządkowanych Definicje elementu minimalnego/maksymalnego wykorzystuje się w przypadku problemu optymalizacji funkcji f(x) zbiorem uporządkowanym jest przeciwdziedzinafunkcji f(x) (która dla funkcji rzeczywistej stanowi podzbiór zbioru liczb rzeczywistych) poszukiwany jest argument funkcji (czyli element jej dziedziny D), dla którego wartość tej funkcji jest minimalna (niekoniecznie najmniejsza), czyli x* D taki, że x D f(x*) f(x) skrócony zapis powyższej zależności: x* = argmin x D f(x) (x* będzie dalej nazywany rozwiązaniem (funkcji) ) (czym argmin różni się od min?) 32

33 ... 33

34 Pochodne funkcji w postaci wektorowo/macierzowej Pochodne prostych funkcji w postaci skalarnej (przypomnienie) afinicznej(popularnie zwanej liniową) f(x) = ax+ b f/ x = a 2 f/ x 2 = 0 3 f/ x 3 = 0 kwadratowej: f(x) = ax 2 + bx+ c f/ x = 2ax + b 2 f/ x 2 = 2a 3 f/ x 3 = 0 4 f/ x 4 = 0 34

35 Pochodne funkcji w postaci wektorowo/macierzowej Pochodne prostych funkcji w postaci skalarnej (przypomnienie) liniowej f(x) = ax f/ x = a 2 f/ x 2 = 0 3 f/ x 3 = 0 (ściśle) kwadratowej: f(x) = ax 2 f/ x = 2ax 2 f/ x 2 = 2a 3 f/ x 3 = 0 4 f/ x 4 = 0 35

36 Pochodne funkcji w postaci wektorowo/macierzowej Pochodne prostych funkcji w postaci wektorowo/macierzowej liniowej: f(x) = a T x f/ x= a formy kwadratowej: f(x) = x T Ax f/ x= (A+ A T )x 2 f/ x 2 = A+ A T w szczególnym przypadku, gdy A T = A(czyli macierz Ajest symetryczna) 2 f/ x 2 = A+ A T = A+ A= 2A(jednocześnie 2 f/ x 2 = 2A T ) w bardzo szczególnym przypadku, gdy A = [a] (czyli macierz A reprezentuje skalar) 2 f/ x 2 = [a]+ [a] T = [a]+ [a]= 2[a] (czyli, właściwie, 2 f/ x 2 = 2a) 36

37 Pochodne funkcji w postaci wektorowo/macierzowej Pochodne prostych funkcji w postaci wektorowo/macierzowej afinicznej: f(x) = a T x+ b f/ x= a (pełnej) kwadratowej: f(x) = x T Ax+ b T x+ c f/ x= (A+ A T )x+ b 2 f/ x 2 = A+ A T 37

38 Pochodne funkcji w postaci wektorowo/macierzowej Pochodne prostych funkcji w postaci wektorowo/macierzowej f(x) = ax 1 f/ x = a f(x) = ax 2 f/ x = 2ax f(x) = ax 3 f/ x = 3ax 2... f(x) = a(x x 0 ) 1 f/ x = a f(x) = a(x x 0 ) 2 f/ x = 2a(x x 0 ) f(x) = a(x x 0 ) 3 f/ x = 3a(x x 0 )

39 Pochodne funkcji w postaci wektorowo/macierzowej Oznaczenie pochodnych wielokrotnych f (k) (x) oznaczenie k-tej pochodnej funkcji f(x) w szczególności f (0) (x) f(x) funkcja f (1) (x) f (x) jej pierwsza pochodna f (2) (x) f (x) jej druga pochodna 39

40 ... 40

41 Szereg Taylora Generator wzorów funkcji, np. f(x) = e x rozwinięcie nieskończone: e x = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! + x 5 /5! +... rozwinięcie skończone, sześcioelementowe: e x = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! + x 5 /5! 41

42 Szereg Taylora Dane jest wyrażenie T(x) = k=0.. a k (x x 0 ) k jest ono zależne od zmiennego argumentu x, ustalonej wartości x 0 oraz ustalonych wartości a k (dla k=0.. ) wyrażenie to reprezentuje sumęnieskończonego ciągu o elementach a k (x x 0 ) k (dla k=0.. ) T(x) jest więc sumą nieskończonej liczby elementów Przyjmując, że w 0 = 1 dla wszystkich możliwych w (także dla w = 0), wyrażenie T(x) można przedstawićw postaci T(x) = a 0 + k=1.. a k (x x 0 ) k gdy dla wszystkich k większych od pewnego ustalonego n zachodzi a k (x x 0 ) k = 0, wyrażenie T(x) można zapisać w postaci T n (x) = a 0 + k=1..n a k (x x 0 ) k wyrażenie to reprezentuje wtedy sumęskończonego ciągu o elementach a k (x x 0 ) k (dla k=0..n) T n (x) jest więc sumąskończonej liczby elementów, a konkretniej: wielomianem stopnia n od argumentu x 42

43 Szereg Taylora Dzięki podobieństwu do wielomianu, wyrażenie T(x) może byćróżniczkowane (operacja jest analogiczna do różniczkowania wielomianów) Tzn. jeżeli: T(x) = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 + a 4 (x x 0 ) 4 + to: T (x) = 0 + a 1 + 2a 2 (x x 0 ) + 3a 3 (x x 0 ) 2 + 4a 4 (x x 0 ) 3 + T (x) = a a 3 (x x 0 ) + 4 3a 4 (x x 0 ) 2 + T (x) = a a 4 (x x 0 ) + 43

44 Szereg Taylora Wyrażenie T(x) może zostaćużyte do wyrażania (w przybliżony lub dokładny sposób) wartości pewnej funkcji f(x) (czyli funkcji zależnej od argumentu x) wyrażanie to ma szanse powodzenia, gdy możliwe jest znalezienie wartości x 0 oraz a k (dla k=0.. ), które gwarantująf(x) = T(x) dla wszystkich (lub wybranych) x należących do dziedziny funkcji f(x) mówimy wtedy, że dokonano rozwinięcia wartości funkcji f(x) w szereg Taylora często operacji tej dokonuje sięnajpierw ustalając wartośćx 0, a potem dopiero wartości a k (dla k=0.. ) mówimy wtedy, że dokonano rozwinięcia wartości funkcji f(x) wokółwartości x 0 operacja ta jest szczególnie łatwa dla funkcji wielokrotnie różniczkowalnych 44

45 Szereg Taylora Niech dana będzie wielokrotnie różniczkowalna funkcja f(x), której wartośćma byćwyrażona z użyciem T(x), a więc zakładamy istnienie a i oraz x 0 takich, że: f(x) = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 + a 4 (x x 0 )

46 Szereg Taylora Wystarczy więc tylko znaleźćwartości a i oraz x 0 i rozwinięcie funkcji f(x) w szereg Taylora jest gotowe! 46

47 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a 0 równanie f(x) = T(x) ma postać f(x) = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 + a 4 (x x 0 ) 4 + niech x = x 0, wtedy f(x 0 ) = a 0 + a 1 (x 0 x 0 ) + a 2 (x 0 x 0 ) 2 + a 3 (x 0 x 0 ) 3 + a 4 (x 0 x 0 ) 4 + f(x 0 ) = a 0 + a a a a f(x 0 ) = a 0 a więc a 0 można ustalićobliczając f(x 0 ) 47

48 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a 1 w rezultacie jednokrotnego zróżniczkowania (ze względu na x) obu stron równania f(x) = T(x) otrzymujemy f (x) = a 1 + 2a 2 (x x 0 ) + 3a 3 (x x 0 ) 2 + 4a 4 (x x 0 ) 3 + niech x = x 0, wtedy f (x 0 ) = a 1 + 2a 2 (x 0 x 0 ) + 3a 3 (x 0 x 0 ) 2 + 4a 4 (x 0 x 0 ) 3 + f (x 0 ) = a 1 + 2a a a f (x 0 ) = a 1 a więc a 1 można ustalićobliczając f (x 0 ) 48

49 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a 2 w rezultacie dwukrotnego zróżniczkowania (ze względu na x) obu stron równania f(x) = T(x) otrzymujemy f (x) = 2a a 3 (x x 0 ) + 4 3a 4 (x x 0 ) 2 + niech x = x 0, wtedy f (x 0 ) = 2a a 3 (x 0 x 0 ) + 4 3a 4 (x 0 x 0 ) 2 + f (x 0 ) = 2a a a f (x 0 ) = 2a 2 a więc a 2 można ustalićobliczając f (x 0 )/2 49

50 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a 3 w rezultacie trzykrotnego zróżniczkowania (ze względu na x) obu stron równania f(x) = T(x) otrzymujemy f (x) = 3 2a a 4 (x x 0 ) + niech x = x 0, wtedy f (x 0 ) = 3 2a 3 (x 0 x 0 ) + 4 3a 4 (x 0 x 0 ) 2 + f (x 0 ) = 3 2a a f (x 0 ) = 3 2a 3 a więc a 3 można ustalićobliczając f (x 0 )/(2 3) 50

51 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a 4 w rezultacie czterokrotnego zróżniczkowania (ze względu na x) obu stron równania f(x) = T(x) otrzymujemy f (x) = 4 3 2a 4 + niech x = x 0, wtedy f (x 0 ) = 4 3 2a 4 + f (x 0 ) = 4 3 2a 4 a więc a 4 można ustalićobliczając f (x 0 )/(2 3 4) 51

52 Szereg Taylora Proces poszukiwania współczynników a k współczynnik a k (w ogólności) w rezultacie k-krotnego zróżniczkowania (ze względu na x) obu stron równania f(x) = T(x) otrzymujemy f (k) (x) = k (k 1) 2 a k + niech x = x 0, wtedy f (k) (x) = k (k 1) 2 a k = k! a k a więc a k można ustalićobliczając f (k) (x 0 )/(k!) 52

53 Szereg Taylora Czyli dla wielokrotnie różniczkowalnej f(x) mamy f(x) = f(x 0 ) + f (x 0 )(x x 0 ) + f (x 0 )/2 (x x 0 ) 2 + f (x 0 )/3! (x x 0 ) 3 + Wykorzystując 0! = 1! = 1 mamy: f(x) = k=0.. f (k) (x 0 )/k! (x x 0 ) k (założenie: istnienie f (x 0 ), f (x 0 ),..., f (k) (x 0 )) 53

54 Szereg Taylora Dzięki temu, że k! szybko rośnie, w wielu przypadkach, dla odpowiednio dużych k zachodzi f (k) (x 0 )(x x 0 ) k << k! Oczywiście wtedy: f (k) (x 0 )(x x 0 ) k /k! << 1 czy wręcz f (k) (x 0 )(x x 0 ) k /k! 0 54

55 Szereg Taylora Dzięki temu możliwe jest skrócenie szeregu do kilku (np. n) początkowych elementów (czyli tych, dla których zakładamy, że f (k) (x 0 )(x x 0 ) k /k! 0 nie zachodzi) f(x) k=0..n f (k) (x 0 )/k! (x x 0 ) k Gdy skrócenie jest niemożliwe, stosuje sięzapis pozwalający na wyróżnienie tzw. reszty (oznaczenie R n+1 ) f(x) = k=0.. f (k) (x 0 )/k! (x x 0 ) k = k=0..n f (k) (x 0 )/k! (x x 0 ) k + R n+1 55

56 Szereg Taylora Szereg T(x) nosi nazwę szeregu Taylora gdy x 0 = 0, szereg Tayloranazywa sięszeregiem MacLaurina Wiele popularnych funkcji analitycznych posiada rozwinięcia w szereg Taylora(względnie MacLaurina) wniosek: funkcje te dają się przedstawić w postaci nieskończonego wielomianu zyski z powyższego dotyczą: interpretacji ewaluacji 56

57 Szereg Taylora Pytanie: jeżeli (nawet skomplikowane) funkcje (np. e x ) posiadająrozwinięcia Taylora(czyli można je przedstawiaćw postaci wielomianu), to może warto w ogóle zrezygnowąćz posługiwania siętymi funkcjami i po prostu wszędzie używać ich rozwinięć? czyli np. przyjąć raz na dobre, że f(x) T n (x) = k=0..n f (k) (x 0 )/k! (x x 0 ) k (oczywiście pamiętając, że T n (x) jest jedynie przybliżeniem) (ale o kontrolowalnej dokładności /wpływ parametru n/) 57

58 Szereg Taylora Odpowiedź: mimo wszystko nie warto! :-) (wręcz: nie można!) przyczyna: rozwinięcie jest lokalne (czyli: inne dla każdego x 0 ) 58

59 Szereg Taylora Przykład: sześcioelementowe T 5 (x) rozwinięcie funkcji e x w szereg Taylorawokółwartości x 0 = 0 funkcja i jej pochodne: (e x ) (0) = e x (e x ) (1) = (e x ) = e x (e x ) (2) = (e x ) = e x (e x ) (3) = (e x ) = e x (e x ) (4) = (e x ) = e x (e x ) (5) = (e x ) = e x... 59

60 Szereg Taylora Przykład: sześcioelementowe T 5 (x) rozwinięcie funkcji e x w szereg Taylorawokółwartości x 0 = 0 współczynniki a k a 0 = f (0) (x 0 )/(0!) = e 0 /1 = 1/1 = 1 a 1 = f (1) (x 0 )/(1!) = e 0 /1 = 1/1 = 1 a 2 = f (2) (x 0 )/(2!) = e 0 /2 = 1/2 a 3 = f (3) (x 0 )/(3!) = e 0 /6 = 1/6 a 4 = f (4) (x 0 )/(4!) = e 0 /24 = 1/24 a 5 = f (5) (x 0 )/(5!) = e 0 /120 = 1/

61 Szereg Taylora Ostateczny wzór: rozwinięcie nieskończone e x = T(x) = k=0.. f (k) (x 0 )/k! (x x 0 ) k = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! + x 5 /5! +... rozwinięcie skończone, sześcioelementowe: e x T 5 (x) = k=0..5 f (k) (x 0 )/k! (x x 0 ) k = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! + x 5 /5! 61

62 Szereg Taylora x T 5 (x) e x = = = = = = = = =

63 Szereg Taylora Kolory wykresów: f(x) = e x w 0 (x) = 1 w 1 (x) = 1 + x w 2 (x) = 1 + x + x 2 /2! w 3 (x) = 1 + x + x 2 /2! + x 3 /3! w 4 (x) = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! w 5 (x) = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! + x 5 /5! 63

64

65

66

67

68

69

70

71 Szereg Taylora Inny przykład: dwunastoelementowe T 11 (x) rozwinięcie funkcji sin(x) w szereg Taylorawokółwartości x 0 = 0 sin(x) T(x) = k=0.. f (k) (x 0 )/k! (x x 0 ) k = = 0 + x + 0 x 3 /3! x 5 /5! + 0 x 7 /7! x 9 /9! + 0 x 11 /11!

72 Szereg Taylora Kolory wykresów: f(x) = sin(x) w 0 (x) = 0 w 1 (x) = x w 2 (x) = x w 3 (x) = x -x 3 /3! w 4 (x) = x -x 3 /3! w 5 (x) = x -x 3 /3! + x 5 /5! w 6 (x) = x -x 3 /3! + x 5 /5! w 7 (x) = x -x 3 /3! + x 5 /5! -x 7 /7! w 8 (x) = x -x 3 /3! + x 5 /5! -x 7 /7! w 9 (x) = x -x 3 /3! + x 5 /5! -x 7 /7! + x 9 /9! w 10 (x) = x -x 3 /3! + x 5 /5! -x 7 /7! + x 9 /9! w 11 (x) = x -x 3 /3! + x 5 /5! -x 7 /7! + x 9 /9! -x 11 /11! 72

73 4 Szereg Taylora Ostateczny wzór (rozwinięcie skończone, pięcioelementowe):

74 4 Szereg Taylora Ostateczny wzór (rozwinięcie skończone, pięcioelementowe):

75 4 Szereg Taylora Ostateczny wzór (rozwinięcie skończone, pięcioelementowe):

76 4 Szereg Taylora Ostateczny wzór (rozwinięcie skończone, pięcioelementowe):

77 4 Szereg Taylora Ostateczny wzór (rozwinięcie skończone, pięcioelementowe):

78 4 Szereg Taylora Ostateczny wzór (rozwinięcie skończone, pięcioelementowe):

79 4 Szereg Taylora Ostateczny wzór (rozwinięcie skończone, pięcioelementowe):

80 Szereg Taylora Jeszcze inny przykład: dwunastoelementowe T 11 (x) rozwinięcie funkcji cos(x)w szereg Taylorawokółwartości x 0 = 0 cos(x) T(x) = k=0.. f (k) (x 0 )/k! (x x 0 ) k = =... 80

81 Szereg Taylora Przybliżanie funkcji f(x) szeregiem Taylora niech dane będą ustalony obszar S funkcja f(x) określona w obszarze S i posiadająca wszystkie pochodne określone w obszarze S rozwinięcie T(x) funkcji f(x) w szereg Taylorawokółpunktu x 0 S dane jest następującym wzorem T(x) = f (0) (x 0 )/(0!) (x x 0 ) 0 + f (1) (x 0 )/(1!) (x x 0 ) 1 + f (2) (x 0 )/(2!) (x x 0 ) 2 + uwaga: rozwinięcie może obejmować nieskończoną lub skończoną liczbę(niezerowych) składników (w przypadku liczby skończonej ostatni element szeregu jest innej postaci /i stanowi tzw. resztę/) 81

82 Szereg Taylora Przybliżanie funkcji f(x) szeregiem Taylora, c.d. aby otrzymać dokładniejsze przybliżenie wartości funkcji w punktach odległych od (zastosowanego) x 0 należy: stosować wieloelementowe przybliżenia użyć nowego x 0 do utworzenia nowego rozwinięcia 82

83 ... 83

84 Dygresja 50, , , , , , , , , ,

85 Dygresja 85

86 Dygresja 50, ,894 50,89 50, , , ,27 295, , , , ,6... 0, ,000 0,00 0,0... 0, ,833 0,83 0,8... 1, ,079 1,08 1,1... 0, ,000 0,00 0,0... 0, ,000 0,00 0, , , , ,9... 0, ,027 0,03 0,

87 Dygresja 10 x x 87

88 Dygresja 3 log 10 (x) x 88

89 Dygresja 50, , , , , ,086 0, ,309 0, ,079 1, ,033 0, ,377 0, , , ,700 0, ,571 89

90 Dygresja

91 Dygresja 2 0, , , , , , , , , ,

92 Dygresja 3 0, , , , , , , , , , x

93 Dygresja 10 x x 93

94 Dygresja log 10 (10 x ) x 94

95 ... 95

96 Współczynnik i rząd zbieżności ciągu Idea współczynnika i rzędu zbieżności ciągu skalarów 96

97 Współczynnik i rząd zbieżności ciągu Idea współczynnika i rzędu zbieżności ciągu skalarów niech s 0, s 1, s 2, będzie ciągiem skalarów zbieżnym do skalara s = lim k s k niech p 1 będzie maksymalnąwartością, dla której istnieje granica = lim k s k+1 s / s k s p wtedy wartość p nazywamy rzędem zbieżności wartość nazywamy współczynnikiem zbieżności p-tego rzędu jeżeli p = 1 i (0,1), to ciąg ma zbieżnośćliniową p = 1 i = 0 lub p > 1, to ciąg ma zbieżnośćsuperliniową (w znaczeniu: lepszą od liniowej) 97

98 Współczynnik i rząd zbieżności ciągu Ilustracja (rząd pierwszy) 98

99 Współczynnik i rząd zbieżności ciągu Ilustracja (rząd drugi) 99

100 Współczynnik i rząd zbieżności ciągu Idea współczynnika... po zastosowaniu oznaczenia e k = s k+1 s (error), dla dużych n zachodzi e k+1 = (e k ) p 100

101 Współczynnik i rząd zbieżności ciągu Idea... ciąg e k+1 = (e k ) p dla e 0 = 1 = 2 p = 1 2 0, , , , , , , , , ,

102 Współczynnik i rząd zbieżności ciągu Idea... ciąg e k+1 = (e k ) p dla e 0 = 1 = 1/2 p =

103 Współczynnik i rząd zbieżności ciągu Idea... ciąg e k+1 = (e k ) p dla e 0 = 1 = 2 p =

104 Współczynnik i rząd zbieżności ciągu Idea... ciąg e k+1 = (e k ) p dla e 0 = 1 = 2 p = 2 2 0, , , , , ,22E+18 18, ,70E+38 38, ,79E+76 76, ,70E , ,99E , x

105 Współczynnik i rząd zbieżności ciągu Idea... ciąg e k+1 = (e k ) p dla e 0 = 1 = 1/2 p =

106 Współczynnik i rząd zbieżności ciągu (Przykładowe) porównanie: ciąg e k+1 = (e k ) p ciąg e k+1 = (e k ) p dla dla e 0 = 1 e 0 = 1 = 2 = 2 p = 1 p = 2 czyli czyli e k+1 = 2(e k ) 1 = 2e k e k+1 = 2(e k ) 2 wtedy wtedy log(e k+1 ) = log(2e k ) log(e k+1 ) = log(2(e k ) 2 ) = log(2)+log(e k ) = 2(log(2)+log(e k )) W ogólności log(e k+1 ) = log( (e k ) p ) = p log( e k ) = p (log( )+log(e k )) generuje przyrost wykładniczy dla 1 p > 0 106

107 Współczynnik i rząd zbieżności ciągu Idea współczynnika i rzędu zbieżności ciągu wektorów 107

108 Współczynnik i rząd zbieżności ciągu Idea współczynnika i rzędu zbieżności ciągu wektorów niech w 0, w 1, w 2, będzie ciągiem wektorów zbieżnym do wektora w= lim k w k niech p 1 będzie maksymalnąwartością, dla której istnieje granica = lim k w k+1 w / w k w p, wtedy wartość p nazywamy rzędem zbieżności wartość nazywamy współczynnikiem zbieżności p-tego rzędu jeżeli p = 1 i (0,1), to ciąg ma zbieżnośćliniową p = 1 i = 0 lub p > 1, to ciąg ma zbieżnośćsuperliniową (w znaczeniu: lepszą od liniowej) 108

109

110 Aproksymacja i optymalizacja: ilustracja problemów Przykład funkcji: f(x) = x 4 50x x

111 Aproksymacja i optymalizacja: ilustracja problemów Aproksymacja problem istnienia rozwiązań(miejsc zerowych) brak miejsc zerowych asymptotyczne zbliżanie miejsca zerowe poza granicami przedziału zmienności

112 Aproksymacja i optymalizacja: ilustracja problemów Aproksymacja problem jednoznaczności rozwiązań(miejsc zerowych) policzalne liczby miejsc zerowych niepoliczalne ilości miejsc zerowych policzalne liczby niepoliczalnych ilości miejsc zerowych

113 Aproksymacja i optymalizacja: ilustracja problemów Optymalizacja problem istnienia rozwiązań brak rozwiązań asymptotyczne zbliżanie rozwiązania poza granicami przedziału zmienności

114 Aproksymacja i optymalizacja: ilustracja problemów Optymalizacja problem jednoznaczności rozwiązań(minimów/maksimów) policzalne liczby rozwiązań niepoliczalne ilości rozwiązań policzalne liczby niepoliczalnych ilości rozwiązań

115 Aproksymacja i optymalizacja: ilustracja problemów Ograniczona ilość informacji w aproksymacji/optymalizacji 115

116 Aproksymacja i optymalizacja: ilustracja problemów Ograniczona ilość informacji w aproksymacji/optymalizacji wartość funkcji i wartość jej (pierwszej) pochodnej 116

117 Aproksymacja i optymalizacja: ilustracja problemów Ograniczona ilość informacji w aproksymacji/optymalizacji bez względu na ilośćtakich danych, to nie to samo, co informacja o całym przebiegu funkcji! 117

118

Materiały wykładowe (fragmenty)

Materiały wykładowe (fragmenty) Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

Bardziej szczegółowo

Materiały wykładowe (fragmenty)

Materiały wykładowe (fragmenty) Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

Bardziej szczegółowo

Materiały wykładowe (fragmenty)

Materiały wykładowe (fragmenty) Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

Bardziej szczegółowo

Teoria Informacji i Metody Kompresji Danych

Teoria Informacji i Metody Kompresji Danych Teoria Informacji i Metody Kompresji Danych 1 Materiały wykładowe (fragmenty) 2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty

Bardziej szczegółowo

Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań

Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań ... Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 Wyłączenie odpowiedzialności

Bardziej szczegółowo

Techniki optymalizacji. Cz. 1

Techniki optymalizacji. Cz. 1 Techniki optymalizacji Cz. 1 1 Przedstawiane metody/rozwiązania Rodzaje przedstawianych metod: klasyczne dla dziedziny optymalizacji ciągłej dawno zdefiniowane dokładnie przebadane Związki z metodami metaheurystycznymi:

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

S n = a 1 1 qn,gdyq 1

S n = a 1 1 qn,gdyq 1 Spis treści Powtórzenie wiadomości... 9 Zadania i zbiory... 10 Obliczenia... 18 Ciągi... 27 Własności funkcji... 31 Funkcje liniowe i kwadratowe... 39 Wielomiany i wyrażenia wymierne... 45 Funkcje wykładnicze

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

KONSPEKT FUNKCJE cz. 1.

KONSPEKT FUNKCJE cz. 1. KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 2

Kształcenie w zakresie podstawowym. Klasa 2 Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.

Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych. Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

Bardzo łatwa lista powtórkowa

Bardzo łatwa lista powtórkowa Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin

Bardziej szczegółowo

Pochodne wyższych rzędów definicja i przykłady

Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a. Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Równania i nierówności wykładnicze i logarytmiczne

Równania i nierówności wykładnicze i logarytmiczne Równania i nierówności wykładnicze i logarytmiczne Paweł Foralewski Teoria Ponieważ funkcje wykładnicza i logarytmiczna zostały wprowadzone wcześniej, tutaj przypomnimy tylko definicję logarytmu i jego

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur.

Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. 1. Identyfikator funkcji,

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,

Bardziej szczegółowo

Iteracyjne rozwiązywanie równań

Iteracyjne rozwiązywanie równań Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie

Bardziej szczegółowo

Całki niewłaściwe. Całki w granicach nieskończonych

Całki niewłaściwe. Całki w granicach nieskończonych Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

RÓWNANIA NIELINIOWE Maciej Patan

RÓWNANIA NIELINIOWE Maciej Patan RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

Teoria Informacji i Metody Kompresji Danych

Teoria Informacji i Metody Kompresji Danych Teoria Informacji i Metody Kompresji Danych 1 Przykładowe zadania (dodatkowe materiały wykładowe) 2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Dział Rozdział Liczba h

Dział Rozdział Liczba h MATEMATYKA ZR Ramowy rozkład materiału w kolejnych tomach podręczników 1. Działania na liczbach Tom I część 1 1.1. Ćwiczenia w działaniach na ułamkach 1.. Obliczenia procentowe 1.3. Potęga o wykładniku

Bardziej szczegółowo

Funkcja f jest ograniczona, jeśli jest ona ograniczona z

Funkcja f jest ograniczona, jeśli jest ona ograniczona z FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru. Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a

Bardziej szczegółowo