Materiały wykładowe (fragmenty)
|
|
- Bogdan Romanowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Materiały wykładowe (fragmenty) 1
2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 2
3 Techniki optymalizacji Cz. 1 3
4 Wyłączenie odpowiedzialności Prezentowane materiały, będące dodatkiem pomocniczym do wykładów, z konieczności fragmentarycznym i niedopracowanym, należy wykorzystywaćz pełnąświadomościąfaktu, że mogąnie byćpozbawione przypadkowych błędów, braków, wypaczeń i przeinaczeń:-) Autor
5 ... 5
6 Rzeczywiste pierwiastki z jedynki pierwszego stopnia pytanie: czy istniejąi jakie sązera jednowymiarowej funkcji rzeczywistej f(x) o argumencie rzeczywistym x danej wzorem f(x) = x 1 1? odpowiedź: x = 1 (istnieje jedno zero tej funkcji) drugiego stopnia pytanie: czy istniejąi jakie sązera jednowymiarowej funkcji rzeczywistej f(x) o argumencie rzeczywistym x danej wzorem f(x) = x 2 1? odpowiedź: x = 1 oraz x = 1 (istniejądwa zera tej funkcji) trzeciego stopnia pytanie: czy istniejąi jakie sązera jednowymiarowej funkcji rzeczywistej f(x) o argumencie rzeczywistym x danej wzorem f(x) = x 3 1? odpowiedź: x = 1 (istnieje jedno zero tej funkcji) czwartego stopnia pytanie: czy istniejąi jakie sązera jednowymiarowej funkcji rzeczywistej f(x) o argumencie rzeczywistym x danej wzorem f(x) = x 4 1? odpowiedź: x = 1 oraz x = 1 (istniejądwa zera tej funkcji) 6
7 Zespolone pierwiastki z jedynki pierwszego stopnia pytanie: czy istniejąi jakie sązera jednowymiarowej funkcji zespolonej f(x) o argumencie zespolonym x danej wzorem f(x) = x 1 1? odpowiedź: x = 1+0i (istnieje jedno zero tej funkcji) drugiego stopnia pytanie: czy istniejąi jakie sązera jednowymiarowej funkcji zespolonej f(x) o argumencie zespolonym x danej wzorem f(x) = x 2 1? odpowiedź: x = 1+0i oraz x = 1+0i (istniejądwa zera tej funkcji) trzeciego stopnia pytanie: czy istniejąi jakie sązera jednowymiarowej funkcji zespolonej f(x) o argumencie zespolonym x danej wzorem f(x) = x 3 1? odpowiedź: x = 1+0i, x = ( 1+3 1/2 i)/2 oraz x = ( 1 3 1/2 i)/2 (istnieją trzy zera tej funkcji) czwartego stopnia pytanie: czy istniejąi jakie sązera jednowymiarowej funkcji zespolonej f(x) o argumencie zespolonym x danej wzorem f(x) = x 4 1? odpowiedź: x = 1+0i, x = 0+i, x = 1+0i oraz x = 0 i (istnieją cztery zera tej funkcji) 7
8 Zespolone pierwiastki z jedynki stopnia czwartego oczywiście spełniają x = 1+0i: x 4 = (1+0i) 4 = 1 4 = 1 x = 0+i: x 4 = (0+i) 4 = i 4 = (i 2 ) 2 = ( 1) 2 = 1 x = 1+0i: x 4 = ( 1+0i) 4 = ( 1) 4 = 1 x = 0 i: x 4 = (0 i) 4 = ( i) 4 = (( i) 2 ) 2 = (( 1) 2 i 2 ) 2 = (1 i 2 ) 2 = (1 ( 1)) 2 = ( 1) 2 = 1 8
9 Także zespolone pierwiastki z jedynki stopnia trzeciego spełniają x = 1+0i: x 3 = (1+0i) 3 =...? x = ( 1+3 1/2 i)/2: x 3 = (( 1+3 1/2 i)/2) 3 =...? x = ( 1 3 1/2 i)/2: x 3 = (( 1 3 1/2 i)/2) 3 =...? 9
10 Cztery zera funkcji zespolonej f(x) = x 4 1 (i dwa zera funkcji rzeczywistej f(x) = x 4 1) 10
11 Aproksymacyjna metoda Newtona w poszukiwaniu pierwiastków z jedynki n-tego stopnia wyprowadzenie (aproksymacyjnego) schematu iteracyjnego funkcja: f(x) = x n 1 pochodna: f (x) = nx n 1 schemat: x k+1 = x k f(x k )/f (x k ) = x k ((x k ) n 1)/(n(x k ) n 1 ) = = x k (x k ) n /(n(x k ) n 1 ) + 1/(n(x k ) n 1 ) = = x k x k /n + 1/(n(x k ) n 1 ) = = (n 1)/n x k + 1/n 1/(x k ) n 1 wobec istnienia wielu zer funkcji (wielu pierwiastków z jedynki) aproksymacyjna metoda Newtona może znaleźć dowolne z nich to, które rozwiązanie zostanie znalezione, zależy od punktu początkowego (x 0 w schemacie iteracyjnym) zachodzi pytanie: Jaka jest zależnośćpomiędzy położeniem punktów początkowych a znajdowanymi pierwiastkami? 11
12 Który pierwiastek znajdzie metoda Newtona startując z tego punktu? 12
13 Baseny przyciągania w przypadku problemu poszukiwania pierwiastków z jedynki czwartego stopnia każdy możliwy punkt początkowy (czyli w praktyce każdą liczbęzespoloną) można przydzielićdo jednego z pięciu rozłącznych podzbiorów podzbiór punktów, dla których znaleziony zostaje pierwiastek 1 podzbiór punktów, dla których znaleziony zostaje pierwiastek 1 podzbiór punktów, dla których znaleziony zostaje pierwiastek i podzbiór punktów, dla których znaleziony zostaje pierwiastek i podzbiór punktów, dla których nie znaleziony zostaje żaden pierwiastek podzbiory te noszą nazwę basenów przyciągania pytanie o zależnośćpomiędzy położeniem punktów początkowych a znajdowanymi pierwiastkami przyjmuje postać: Jakie kształty mają baseny przyciągania? 13
14 Baseny przyciągania? 14
15 Obszary Woronoja 15
16 Obszary Woronoja dla pierwiastków z jedynki czwartego stopnia. Czy są to jednocześnie baseny przyciągania metody Newtona? 16
17 Czy obszary Woronojasąbasenami przyciągania dla pierwiastków z jedynki czwartego stopnia? nie! Jak więc wyglądają te baseny? 17
18 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki czwartego stopnia) 18
19 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki czwartego stopnia) 19
20 Baseny przyciągania metody Newtona; powiększenie * 2 (w problemie pierwiastków z jedynki czwartego stopnia) 20
21 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki czwartego stopnia) 21
22 Baseny przyciągania metody Newtona; powiększenie * 4 (w problemie pierwiastków z jedynki czwartego stopnia) 22
23 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki czwartego stopnia) 23
24 Baseny przyciągania metody Newtona; powiększenie * 8 (w problemie pierwiastków z jedynki czwartego stopnia) 24
25 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki czwartego stopnia) 25
26 Baseny przyciągania metody Newtona; powiększenie * 16 (w problemie pierwiastków z jedynki czwartego stopnia) 26
27 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki czwartego stopnia) 27
28 Baseny przyciągania metody Newtona; powiększenie * 32 (w problemie pierwiastków z jedynki czwartego stopnia) 28
29 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki czwartego stopnia) 29
30 Baseny przyciągania metody Newtona; powiększenie * 64 (w problemie pierwiastków z jedynki czwartego stopnia) 30
31 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki czwartego stopnia) 31
32 Baseny przyciągania metody Newtona; powiększenie * 128 (w problemie pierwiastków z jedynki czwartego stopnia) 32
33 ??? Baseny przyciągania metody Newtona; powiększenie * 256 (w problemie pierwiastków z jedynki czwartego stopnia) 33
34 powiększenie * 2 powiększenie * 128 (porównanie) 34
35 A jak wyglądająbaseny przyciaganiadla pierwiastków z jedynki wyższych, parzystych stopni? (szóstego, ósmego, ) 35
36 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki szóstego stopnia) 36
37 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki ósmego stopnia) 37
38 ??? Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki dziesiątego stopnia) 38
39 A jak wyglądająbaseny przyciaganiadla pierwiastków z jedynki nieparzystych stopni? (trzeciego, piątego, ) 39
40 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki trzeciego stopnia) 40
41 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki piątego stopnia) 41
42 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki siódmego stopnia) 42
43 Baseny przyciągania metody Newtona (w problemie pierwiastków z jedynki dziewiątego stopnia) 43
44 Przypomnienie szczegółów poprzedniego problemu: pierwiastki z jedynki n-tego stopnia to miejsca zerowe funkcji zespolonej f(x) = x n 1 dla n = 1, 2, 3, Następny problem: jak wyglądająbaseny przyciągania dla miejsc zerowych innych, potencjalnie dużo bardziej skomplikowanych, funkcji zespolonych? Np.: f(x) = x n 1 dla n = 5.5? n = 5.0? n = 5.5? f(x) będącej dowolnym wielomianem? f(x) będącej ilorazem dowolnych wielomianów? f(x) będącej dowolną funkcją? 44
45 Skrypt Matlab a generujący przedstawione obrazy całość(11 linii kodu + 3 linie komentarza) % inicjalizacja danych x = linspace(-1.5,+1.5,2000); y = linspace(-1.5,+1.5,2000); [X,Y] = meshgrid(x,y); Z = X + i*y; n = 9; % iteracja metody Newtona(uproszczona, bez warunków stopu) for k = 1:50; Z = ((n-1)/n)*z + (1/n)*1./(Z.^(n-1)); end % wyświetlenie wyniku imagesc(angle(z)); axis square; axis off; 45
46 ... 46
47 Podsumowanie metod newtonowskich Skuteczne uzasadnienie: niespotykanie wysoki rząd zbieżności Proste uzasadnienie: trywialność programów implementujących Ciekawe uzasadnienie: zastosowania w generowaniu obrazów fraktalnych 47
48 ... 48
Teoria Informacji i Metody Kompresji Danych
Teoria Informacji i Metody Kompresji Danych 1 Materiały wykładowe (fragmenty) 2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty
Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań
... Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 Wyłączenie odpowiedzialności
Teoria Informacji i Metody Kompresji Danych
Teoria Informacji i Metody Kompresji Danych 1 Przykładowe zadania (dodatkowe materiały wykładowe) 2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL
Materiały wykładowe (fragmenty)
Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Materiały wykładowe (fragmenty)
Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Materiały wykładowe (fragmenty)
Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7
Elementy metod numerycznych
Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych
Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Numeryczne
Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań
... Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 Wyłączenie odpowiedzialności
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =
Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.
Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. 1. Identyfikator funkcji,
1. Wielomiany Podstawowe definicje i twierdzenia
1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy
Metody numeryczne Wykład 7
Metody numeryczne Wykład 7 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Plan wykładu Rozwiązywanie równań algebraicznych
Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Wielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i
Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A
Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja
Wykłady z matematyki Liczby zespolone
Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223
Analiza numeryczna Kurs INP002009W Wykład 8 Interpolacja wielomianowa Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Wielomian interpolujący Wzór interpolacyjny Newtona Wzór interpolacyjny
Zagadnienia - równania nieliniowe
Zagadnienia - równania nieliniowe Sformułowanie zadania poszukiwania pierwiastków. Przedział izolacji. Twierdzenia o istnieniu pierwiastków. Warunki zatrzymywania algorytmów. Metoda połowienia: założenia,
Metody Obliczeniowe w Nauce i Technice
8. Wyznaczanie pierwiastków wielomianów Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Magdalena Nowak
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie
Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej
Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.
Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Metody Obliczeniowe w Nauce i Technice
7. Równania nieliniowe (non-linear equations) Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Dawid Prokopek
Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17
41. Niech z = 5 + 4i. Dla podanych liczb m, n podać taką liczbę całkowitą k, aby 5 zachodziła równość z m z n =z k. Uwaga na sprzężenie w drugim czynniku po lewej stronie. a) m = 1, n = 1, k = 9 ; b) m
Równania różniczkowe liniowe II rzędu
Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
Kurs wyrównawczy - teoria funkcji holomorficznych
Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
POSZUKIWANIE ZER FUNKCJI F(x). Zad. 2. Korzystając z metody punktu stałego znaleźć miejsce zerowe funkcji f(x) =
POSZUKIWANIE ZER FUNKCJI F(x). Metoda punktu stałego f(x) = x g(x) = 0 i szukamy punktu stałego wyrażenia x = g(x). Algorytm metody: x 0 =... for k = 1, 2,... x k = g(x k 1 ) if (znaleziono zero funkcji),
d) a n = e) a n = n 3 - n 2-16n + 16 f) a n = n 3-2n 2-50n +100
Ciągi - zadania Zad. 1 Oblicz sześć początkowych wyrazów ciągu (a n ) określonego wzorem a) a n = 3n + 2 b) a n = (n - 2)n c) a n = n 2-4 d) a n =n e) a n = f) a n = g) a n =(-1) n 2 n+3 h) a n = n - 2
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 9 WYRAŻENIA LOGICZNE, INSTRUKCJE WARUNKOWE I INSTRUKCJE ITERACYJNE W PROGRAMIE KOMPUTEROWYM MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR
W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów:
dr Urszula Konieczna-Spychała Instytut Matematyki i Fizyki UTP imif.utp.edu.pl Literatura: M. Lassak, Matematyka dla studiów technicznych. M. Gewert, Z. Skoczylas, Analiza matematyczna 1. M. Gewert, Z.
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
O geometrii semialgebraicznej
Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1
LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
czyli o szukaniu miejsc zerowych, których nie ma
zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych
Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Jerzy Nawrocki, Wprowadzenie do informatyki
Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańka jerzy.nawrocki@put.poznan.pl Obliczenia i metody numeryczne = a 2 + b 2 a + (b/a) 2 =b + (a/b) 2 Metody numeryczne begin a:= 3e-25;
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Metody Numeryczne. Wojciech Szewczuk
Metody Numeryczne Równania nieliniowe Równania nieliniowe W tych równaniach jedna lub więcej zmiennych występuje nieliniowo, np równanie Keplera x a sin x = b. Zajmiemy się teraz lokalizacją pierwiastków
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n
V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n
Podstawy MATLABA, cd.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie
Materiały wykładowe (fragmenty)
Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7
Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.
Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,
2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
pobieramy pierwszą literę komunikatu i wypełniamy nią (wszystkie pozycje tą samą literą) bufor słownikowy.
komunikat do zakodowania: a a b a b b a b a c c a b a a a a a c a c b c b b c c a a c b a 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 przyjmujemy długość bufora słownikowego
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Wielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s) = s n + 1 s n 1 ++a 1 s+a 0, 1) gdzie n N, a i R i = 0,,n), 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i i = 0,,n)
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii
Funkcje Część pierwsza Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są funkcje? y(x) x Co to są funkcje? y(x) x Co to są funkcje? Funkcja dla każdego argumentu ma określoną dokładnie jedną
Bardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle.
Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle. Sub Hasla1() Dim wzor_hasla As String Dim haslo As String Dim adres
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Elementy logiki. Zdania proste i złożone
Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
S n = a 1 1 qn,gdyq 1
Spis treści Powtórzenie wiadomości... 9 Zadania i zbiory... 10 Obliczenia... 18 Ciągi... 27 Własności funkcji... 31 Funkcje liniowe i kwadratowe... 39 Wielomiany i wyrażenia wymierne... 45 Funkcje wykładnicze
Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła
Problemy 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga 3 Ocena
Techniki regulacji automatycznej
Techniki regulacji automatycznej Metoda linii pierwiastkowych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 25 Plan wykładu Podstawy metody linii pierwiastkowych
do MATLABa programowanie WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa programowanie WYKŁAD Piotr Ciskowski instrukcje sterujące instrukcja warunkowa: if instrukcja wyboru: switch instrukcje iteracyjne: for, while instrukcje przerwania: continue, break,
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d),
Zestaw zadań 2: Ciało liczb zespolonych Układy równań liniowych () Ile działań można określić na zbiorze n-elementowym? Ile z nich to działania przemienne? (2) Zbadaj własności działania różnicy symetrycznej
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
KONSPEKT FUNKCJE cz. 1.
KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź