Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań

Wielkość: px
Rozpocząć pokaz od strony:

Download "Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań"

Transkrypt

1 ...

2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

3 Wyłączenie odpowiedzialności Prezentowane materiały, będące dodatkiem pomocniczym do wykładów, z konieczności fragmentarycznym i niedopracowanym, należy wykorzystywaćz pełnąświadomościąfaktu, że mogąnie być pozbawione przypadkowych błędów, braków, wypaczeń i przeinaczeń:-) Autor

4 ...

5 Założenia rozmiary opisywanych wektorów/macierzy pozwalają na opisywanych operacje o ile nie powiedziano inaczej średnie są średnimi arytmetycznymi wariancje są wariancjami z populacji odległości są odległościami euklidesowymi układy równań są układami równań liniowych układy współrzędnych są układami współrzędnych kartezjańskich

6 (średnie) Średnia wektora [a, b, c, d] T wynosi s. Ile wynosi średnia wektora [d, c, b, a] T? Średnia wektora xwynosi s. Ile wynosi średnia wektoraax? (a jest dowolnym skalarem)

7 (ko/wariancje) Ile wynosi wariancja wektora x= [1, 2, 3] T? Ile wynosi kowariancja wektorów x= [1, 2, 3] T i y= [1, 2, 3] T? Ile wynosi kowariancja wektorów x= [1, 2, 3] T i y= [3, 2, 1] T? Wariancja wektora [a, b, c, d] T wynosi v. Ile wynosi wariancja wektora [d, c, b, a] T? Wariancja wektora xwynosi v. Ile wynosi wariancja wektoraax? (a jest dowolnym skalarem) Kowariancja wektorów xi ywynosi c. Ile wynosi kowariancja wektorówaxi by? (a i b sądowolnymi skalarami)

8 (iloczyny macierzy) Jaka operacja iloczynu macierzowego (tzn. jakie mnożeniei przez jakąmacierz) wyzerowuje nieparzyste wiersze danej macierzy? podwaja parzyste kolumny danej macierzy? zamienia miejscami pierwszy oraz drugi wiersz danej macierzy? zamienia miejscami kolumny o numerach i oraz j danej macierzy? Jaka (podwójna) operacja iloczynu macierzowego (tzn. jakie mnożeniai przez jakie macierze) sumuje wszystkie elementy danej macierzy? zamienia miejscami dwa pierwsze wiersze i dwie pierwsze kolumny danej macierzy?

9 (macierze przeciw/diagonalne) Jaką macierzą jest iloczyn n (n > 1) macierzy diagonalnych? Jaką macierzą jest n-ta (n > 1) potęga macierzy diagonalnej? Jaką macierzą jest iloczyn dwóch macierzy przeciwdiagonalnych? Jaką macierzą jest iloczyn macierzy diagonalnej iprzeciwdiagonalnej?

10 (wyznaczniki) Ile wynosi wyznacznik macierzy [1, 2; 3 4]? złożonej z samych zer? złożonej z samych jedynek? odwrotnej do [1, 2; 3 4]? diag(1,2,...,n)? Dana jest macierz D=diag(a,b,c) taka, żedet(d) = 0. Co można powiedzieć o wartościach a, b i c?

11 (wyznaczniki) Dana jest macierz A= [a 1; 2 3]taka, żedet(a) = 0. Co można powiedzieć o wartości a? Dana jest macierz A= [a b; 1 2]taka, żedet(a) = 0. Czy jest możliwe, że a = 0 i b = 0? a 0 i b = 0? a = 0 i b 0? a 0 i b 0? Dana jest macierz A= [a b; c d]taka, żedet(a) = 0. Co można powiedzieć o wektorach [a, b] T i [c d] T?

12 (wyznaczniki + układy równań) Ile wyznaczników trzeba obliczyć, aby stwierdzić, czy dowolny układ pięciu równań z pięcioma niewiadomymi jest określony? Ile wyznaczników trzeba obliczyć, aby stwierdzić, czy jednorodny układ pięciu równań z pięcioma niewiadomymi jest określony? Ile wyznaczników trzeba obliczyć, aby stwierdzić, czy jednorodny układ pięciu równańz pięcioma niewiadomymiposiada rozwiązania niezerowe? Ile wyznaczników trzeba obliczyć, aby rozwiązać metodą Crameradowolny określony układ pięciu równańz pięcioma niewiadomymi? Czy metodacrameramoże zostać użyta do znajdowania wektorów własnych macierzy?

13 (układy równań) Czy zawsze istnieją i jakie są rozwiązaniaukładukx= k 1, gdzie k 1 jest pierwsząkolumnąkwadratowej macierzy K o wyznaczniku niezerowym? o wyznaczniku zerowym? Czy zawsze istnieją i jakie są rozwiązaniaukładukx= k 1, gdzie k 1 = 0jest pierwsząkolumnądowolnej (niekoniecznie kwadratowej) macierzy K?

14 (układy równań) Jakie jest rozwiązanie układuwx=w i, gdzie (w i ) T jest i-tym wierszem symetrycznej macierzy W? Jakie jest rozwiązanie układuwx=sw i, gdzie s jest dowolnym skalarem, a (w i ) T jest i-tym wierszem symetrycznej macierzy W? Jakie jest rozwiązanie układuwx=w i +w j, gdzie (w i ) T i (w j ) T są (odpowiednio) wierszami i-tym i j-tym macierzy W? Jakie jest rozwiązanie układuwx=aw i +bw j, gdzie a i b są dowolnymi skalarami, a (w i ) T i (w j ) T są (odpowiednio) wierszami i-tym i j-tym macierzy W?

15 (kombinacje wypukłe) Jakie sąwspółrzędne punktu leżącego w połowie odcinka, którego wierzchołkami są punktyo współrzędnych [1, 3] T i[3, 1] T? Jakie sąwspółrzędne punktów leżących w jednej czwartej i w trzech czwartych odcinka, którego wierzchołkami są punkty o współrzędnych[1, 3] T i[3, 1] T? Jakie sąwspółrzędne środka trójkąta, którego wierzchołkami są punkty o współrzędnych [0, 0] T, [1, 0] T i[0.5, 3 1/2 /2] T? Jakie sąwspółrzędne środka czworościanu, którego wierzchołkami są punkty o współrzędnych [1, 1, 1] T, [ 1, 1, 1] T, [1, 1, 1] T?i [ 1, 1, 1] T?

16 (kombinacje wypukłe/liniowe) Jakąfigurętworzy zbiór wszystkich kombinacji wypukłych/liniowychwektorów [0, 0] T i[1, 1] T? [0, 0] T, [1, 1] T i[2, 2] T? [0, 0, 0] T i[1, 1, 1] T? [0, 0] T, [1, 0] T i[3 1/2 /2, 0] T? [0, 0, 0] T, [1, 1, 1] T i[2, 2, 2] T?

17 (przekształcenia macierzami diagonalnymi) Jaka jest interpretacja geometryczna operacji polegającej na przemnożeniu wektora [x, y] T przez macierz [2 0; 0 2]? Jakie figury nie zmieniąswojego kształtu po transformacji polegającej na przemnożeniu ich wszystkich wektorów składowych przez macierz [2 0; 0 1]? Jakie figury nie zmieniąswojego położenia ani kształtu po transformacji polegającej na przemnożeniu ich wszystkich wektorów składowych przez macierz [1 0; 0 2]? Jaka jest interpretacja geometryczna operacji polegającej na przemnożeniu wektora [x, y] T przez macierz [0 1; 1 0]?

18 (wartości własne) Czy 5 jest wartościąwłasnąmacierzy [22; 31]? Czy jakaś wartość macierzy [3 2; 12] jest jej wartościąwłasną? Jakie sąwartości własne macierzy [31; 22]? [21; 12]? [11; 11]? [30; 02]? [10; 01]? [00; 00]? diag(1,2,...,n) I? O?

19 (wartości własne) Wartościami własnymi pewnej macierzy są liczby 1 i 4 jaki jest rozmiar tej macierzy? jaki jest wyznacznik tej macierzy? jaki jest ślad tej macierzy? jaki jest rząd tej macierzy?

20 (wektory własne) Czym musi się charakteryzować widmo macierzy A aby istniał taki niezerowy wektor x, żeax= x? Jaki niezerowy wektor nie ulega zmianie po przemnożeniu przez macierz [2 1; 1 2]? Jakie sąwektory własne macierzy [3 1; 2 2]? [2 1; 1 2]? [1 1; 1 1]? [3 0; 0 2]? [1 0; 0 1]? [0 0; 0 0]? I? O?

21 (elementy EVD) Wartościami własnymi pewnej macierzy są1 i 3, a odpowiadającymi im wektorami własnymi [1, 1] T i [1, 1] T. Jak przedstawia się rozkład EVD tej macierzy? Wartościami własnymi pewnej macierzy sąa i b, a odpowiadającymi im wektorami własnymi [, ] T i [, ] T. Jak przedstawia się rozkład EVD tej macierzy?

22 (elementy EVD) Jaki jest rozkład EVD macierzy [31; 22]? [21; 12]? [11; 11]? [30; 02]? [10; 01]? I? [00; 00]? O?

23 (iloczyny skalarne) Jaki jest iloczyn skalarny wektorów [12] T i [21] T? [12] T i [ 2 1] T? [ 1 2] T i [ 2 1] T? [12] T i [ 2 1] T? [12] T i [2 1] T? 0i 1?

24 (ortogonalność wektorów) Jaki wektor jest ortogonalny do wektora [1 2] T? [1 1] T? [1 0] T? [ ] T? [ ] T? 0? Dla jakich wartości i beta wektory [ 0] T i [0 ] T są ortogonalne? Czy istnieje wektor jednocześnie ortogonalny do wektorów [0 1] T i [1 0] T? [0 0 1] T i [0 1 0] T? Jaki zbiór tworząwektory ortogonalne do [1 0 0] T?

25 (normy wektorów) Jaka jest norma wektora [3 4] T? Jaka jest unormowana postać wektora [3 4] T? Jaka jest unormowana postać wektora [ 0 0 0] T? dla różnych wartości? Czy wszystkie takie wektory można unormować? Dla jakich wartości i beta wektory [ 0] T i [0 ] T są ortonormalne? Jaki zbiór tworząunormowane wektory ortogonalne do [1 0 0] T? Jaki zbiór tworzą unormowane wektory ortogonalne do 0?

26 (układy współrzędnych) Jakie współrzędne ma wektor [2 2] T (wyrażony w standardowym układzie współrzędnych) w układzie o środku w [0 0] T iwersorach[1 1] T i [1 1] T? Jakie współrzędne w układzie standardowym ma wektoro współrzędnych [2 2] T wyrażonych w układzie współrzędnych o środku w [0 0] T iwersorach [1 1] T i [1 1] T?

27 (elementy PCA) Dana jest macierz X(o rozmiarachmxn) ze współrzędnymi m punktów pewnej figuryoraz macierz kowariancji S X, = X T X/m, której wartości własne wynoszą: 9, 2, 1 i 0 jaka jest liczba oryginalnych zmiennych opisujących punkty tej figury? jaka jest suma wariancji oryginalnych zmiennych opisujących punkty tej figury? jaki jest górny limit wariancji oryginalnych zmiennych opisujących punkty tej figury?

28 (elementy PCA) Dana jest macierz X(o rozmiarachmxn) ze współrzędnymi m punktów pewnej figury oraz macierz kowariancji S X, = X T X/m, której wartości własne wynoszą: 9, 2, 1 i 0, oraz macierz Y= XK, gdzie Kjest macierzą(wszystkich) unormowanych wektorów własnych macierzy S X odpowiadających wymienionym wartościom własnym jaka jest liczba nowych zmiennych opisujących punkty tej figury? jaka jest suma wariancji nowych zmiennych opisujących punkty tej figury? jakie są wariancje nowych zmiennych opisujących punkty tej figury?

29 (elementy PCA) Dana jest macierz X ze współrzędnymi... (c.d.) w ilu wymiarach faktycznie rezyduje figura złożona z punktów opisanych w macierzy X? (czyli: do ilu wymiarów można zredukować przestrzeńjej opisu bez żadnej straty na wariancji?) jaki procent wariancji tracimy redukując trzy nowe zmienne (czyli kolumny macierzy Y) i które trzy zmienne należy wtedy usunąć? ile nowych zmiennych (czyli kolumn macierzy Y) można zredukować ze stratą na wariancji nie przekraczającą 20%?

30 (elementy PCA) Dana jest macierz X ze współrzędnymi... (c.d.) czy można przedstawić punkty z macierzy X na wykresie rozrzutu trójwymiarowym bez strat na wariancji? (a jeżeli nie, to z jaką stratą należy się liczyć?) dwuwymiarowym bez strat na wariancji? (a jeżeli nie, to z jaką stratą należy się liczyć?) jednowymiarowym bez strat na wariancji? (a jeżeli nie, to z jaką stratą należy się liczyć?)

31 (elementy PCA) Dana jest macierz ortogonalna K, której kolumny reprezentują wersory pewnego układu współrzędnych jak znajdować współrzędne wektora x(zadanego w układzie standardowym) w układzie o środku w 0i wersorach z macierzy K? jak znajdować współrzędne wektorów reprezentowanych przez wiersze macierzy X (zadanych w układzie standardowym) w układzie o środku w 0i wersorach z macierzy K?

32 (elementy PCA) Dana jest macierz (oryginalnych zmiennych) Xoraz jej macierz kowariancji S X, dla której uruchomiono procedurępca, generując macierz (nowych zmiennych) Yoraz macierze L i K. Jakie są związki/zależności między macierzami X i Y macierzami Y i L macierzami S X i L

33 (elementy SVD) Jaki jest rozkład SVD macierzy [21; 12]? [30; 02]? [10; 01]? [01; 10]? I? [00; 00]? O?

34 (odległości) Jaka jest odległośćw przestrzeni 3-wymiarowej pomiędzy punktami o współrzędnych wyrażonych przez elementy wektorów x T = [1, 2, 3] i y T = [1, 2, 3]? x T = [1, 2, 3] i y T = [3, 2, 1]? Jaka jest odległośćw przestrzeni n-wymiarowej pomiędzy punktami o współrzędnych wyrażonych przez elementy wektorów x T = 1 T i y T = 1 T? x T = 0 T i y T = 1 T? x T = 0 T i y T = n 1 T? x T = 1 T i y T = n 1 T?

35 (macierze odległości) Dana jest macierz Xo rozmiarach mxn z opisami obiektów (dane w wierszach) oraz macierz odległości Dmiędzy tymi obiektami jakie są rozmiary macierzy D? jakie są podstawowe właściwości macierzy D?

36 (elementy MDS+ EVD) Dana jest macierz odległości D pomiędzy pewnymi obiektami jak przedstawia sięprocedura tworzenia wykresu rozrzutu dla tych obiektów? jakie macierze są generowane w ramach tej procedury? jakie wskaźniki pozwalają ocenić jakość utworzonego wykresu? dla jakich macierzy D jakość ta będzie idealna?

37 (norma Frobeniusa) Jaka jest wartość normy Frobeniusa macierzy [3 1; 2 2]? [10; 01]? O o rozmiarach mxn? I o rozmiarach mxm? 11 T o rozmiarach mxn? Dla jakich macierzy Xwartość normy Frobeniusa macierzy X X jest zerowa? O X jest zerowa? X I jest zerowa?

38 (elementy MDS+ PNL) Dana jest macierz odległości D o rozmiarach mxm pomiędzy pewnymi obiektami jak przedstawia sięprzykładowy problem programowania nieliniowego pozwalający na utworzenie wykresu rozrzutu dla tych obiektów? jakie są podstawowe parametry tego problemu (liczba zmiennych, liczba ograniczeń)? jaki wskaźnik pozwala ocenić jakość utworzonego wykresu? dla jakich macierzy D jakość ta będzie idealna?

39 (elementy PCA + MDS + EVD + SVD) Czy SVD może być wykorzystany na jakimś etapie procedury PCA, a jeżeli tak, to w jaki sposób? Czy SVD może być wykorzystany na jakimś etapie procedury MDS (wersja z EVD), a jeżeli tak, to w jaki sposób?

40 (układy barycentryczne) Dany jest trójkąt równoboczny o boku długości a jaka jest macierz odległości pomiędzy wierzchołkami tego trójkąta? jaka jest długość wysokości tego trójkąta? punkty o jakich przykładowych współrzędnych stanowią wierzchołki takiego trójkąta? jaka jest suma odległości środka trójkąta od jego boków? jaka jest suma odległości dowolnego punktu trójkąta od jego boków?

41 (układy barycentryczne) Jakie są reprezentacje w trójwymiarowym układzie barycentrycznym wektorów o współrzędnych [1, 0, 0] T? [1/2, 1/2, 0] T? [1/3, 1/3, 1/3] T? [1/6, 2/6, 3/6] T?

42 (układy barycentryczne) W jakim układzie barycentrycznym można zareprezentować wektory o współrzędnych [0, 1] T? [1/4, 3/4] T? [1/2, 1/2] T? [3/4, 1/4] T? [1, 0] T?

43 (układy barycentryczne) Dane sąwektory x 0,y 0i z 0spełniające x+ y+ z = n 1 (gdzie n > 0) jak przeliczyć trójki wartości tych wektorów na pary współrzędnych (pewnych) punktów na płaszczyźnie? czy wynikająca z powyższego przekształcenia redukcja wymiarowości wektorów (z trzech do dwóch) wiąże się z utratą wariancji?(a jeżeli tak, to z jak wielką?)

44 (elementy FA) (pominięte)

45 (elementy CA) (pominięte)

46 (elementy t-sne) (pominięte)

47 ... 47

Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań

Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań ... Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 Wyłączenie odpowiedzialności

Bardziej szczegółowo

Materiały wykładowe (fragmenty)

Materiały wykładowe (fragmenty) Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

Bardziej szczegółowo

Teoria Informacji i Metody Kompresji Danych

Teoria Informacji i Metody Kompresji Danych Teoria Informacji i Metody Kompresji Danych 1 Przykładowe zadania (dodatkowe materiały wykładowe) 2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Geometria Lista 0 Zadanie 1

Geometria Lista 0 Zadanie 1 Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

Teoria Informacji i Metody Kompresji Danych

Teoria Informacji i Metody Kompresji Danych Teoria Informacji i Metody Kompresji Danych 1 Materiały wykładowe (fragmenty) 2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Analiza głównych składowych- redukcja wymiaru, wykł. 12

Analiza głównych składowych- redukcja wymiaru, wykł. 12 Analiza głównych składowych- redukcja wymiaru, wykł. 12 Joanna Jędrzejowicz Instytut Informatyki Konieczność redukcji wymiaru w eksploracji danych bazy danych spotykane w zadaniach eksploracji danych mają

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012.

Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012. Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012 Spis treści Przedmowa 9 CZĘŚĆ I. WSTĘP DO MATEMATYKI 11 Wykład 1. Rachunek

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia

Bardziej szczegółowo

Analiza składowych głównych

Analiza składowych głównych Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X

Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

Metody dekompozycji macierzy stosowane w automatyce

Metody dekompozycji macierzy stosowane w automatyce Metody dekompozycji macierzy stosowane w automatyce Grzegorz Mzyk Politechnika Wrocławska, WydziałElektroniki 23 lutego 2015 Plan wykładu 1 Wprowadzenie 2 Rozkład LU 3 Rozkład spektralny 4 Rozkład Cholesky

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY

PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Reprezentacje sygnału Jak reprezentujemy sygnał: wybieramy sygnały wzorcowe (bazę) rozwijamy sygnał w wybranej

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25 Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem

Bardziej szczegółowo

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY

PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY Copyright by Nowa Era Sp. z o.o. Warszawa 2019 LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych

1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY

PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8]. Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

10. Redukcja wymiaru - metoda PCA

10. Redukcja wymiaru - metoda PCA Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

Algebra macierzy

Algebra macierzy Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Funkcja liniowa - podsumowanie

Funkcja liniowa - podsumowanie Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo