Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia

Wielkość: px
Rozpocząć pokaz od strony:

Download "Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia"

Transkrypt

1 SIWOŃ Cezary 1 Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia WSTĘP Utrzymanie stałej częstotliwości napięcia w sieci energetycznej jest jednym z najważniejszych czynników decydujących o jakości energii. Cel ten osiąga się stosując metody cyfrowe o możliwie małej złożoności obliczeniowej. Najistotniejszym atrybutem tych metod jest możliwie krótki czas pomiaru, aby układy automatyki mogły odpowiednio szybko zareagować na przekroczenie dopuszczalnej odchyłki. Krótki czas pomiaru wymusza stosowanie metod opartych na aproksymacji sygnału napięciowego funkcją harmoniczną. Zawartość szumu i wyższych harmonicznych w sygnale mierzonym wymusza stosowanie filtracji lub metod minimalizujących wpływ szkodliwych czynników. Wiele różnych metod pomiaru częstotliwości sieci energetycznej zostało opisanych w literaturze, wśród których można wyróżnić metody w dziedzinie czasu oparte na aproksymacji przebiegu napięcia [1], [2], [3], [4], [5].Metody pomiarowe powinny spełniać wiele warunków jak np. reakcja na mały dryft częstotliwości, występowanie zakłóceń, odpowiednio mały błąd pomiarowy. Metody cyfrowe charakteryzują się małymi błędami przy braku zakłóceń i zniekształceń pochodzących od elementów nieliniowych w systemie. Stąd ciągłe poszukiwania nowych metod zapewniających odpowiednią jakość pomiaru w obecności zakłóceń i wyższych harmonicznych. Stosunkowo prostą metodą tłumienia szumów i wyższych harmonicznych jest całkowanie sygnału. W pracy przedstawiono metodę opartą na całkowaniu sygnału mierzonego z rosnącym czasem całkowania i wyznaczeniu szukanej częstotliwości na podstawie scałkowanego sygnału. 1 PROPONOWANA METODA Mierzony sygnał sieci energetycznej dany jest w postaci: (1) gdzie: szum zakłócający. Całkując sygnał x(t) od chwili t=0 w rosnącym przedziale całkowania t zgodnie z zależnością: (2) otrzymamy funkcję: (3) 1 Politechnika Świętokrzyska w Kielcach, Wydział Elektrotechniki, Automatyki i Informatyki, Al lecia Państwa Polskiego 7, Kielce, tel , csiwon@tu.kielce.pl 9537

2 Przy założeniu, że sygnałx(τ) (1) jest zakłócany przez sygnał losowy o zerowej wartości oczekiwanej, otrzymany sygnał y(t) (3) dla t nie będzie obciążony zakłóceniem: (4) Pomijając wpływ zakłócenia, postaci dyskretne obu sygnałów można opisać wzorami: (5) (6) Wyznaczając wartości sygnału y w chwili poprzedniej i następnej otrzymamy zależności: (7) (8) Różnica między nimi określona jest wzorem: (9) Wstawiając do równania (9) zależność (5) otrzymamy: (10) Wartości i są opisane następująco: (11) (12) Różnica między powyższymi wartościami dana jest wzorem: (13) Wstawiając do powyższego równania zależność (5) otrzymujemy: (14) 9538

3 Dzielenie równania (14) przez (10) prowadzi do wzoru: (15) Z powyższej zależności poszukiwana częstotliwość f może być wyznaczona z równania: (16) Ze względu na fakt, iż w praktyce całkowanie odbywa się dla skończonego czasu, co implikuje występowanie stłumionych zakłóceń, zastosowanie wzoru (16) do wyznaczania częstotliwości nie prowadzi do oczekiwanych wyników. Trudno także wyznaczyć częstotliwość w sytuacji, gdy v(n) przyjmuje wartości bliskie zeru. Aby możliwe było wyznaczenie częstotliwości z zależności (16) należy zastosować rekurencyjny algorytm najmniejszej sumy kwadratów RLS do oszacowania na podstawie sygnału y(n) wartości licznika i mianownika sygnału. Jest to rozwiązanie szeroko opisane w literaturze [1], [3], [4]. Licznik i mianownik wyznaczane są osobno algorytmem RLS, przyjmując w obu przypadkach jako wektor wejściowy zmierzony sygnał x(n), zaś wektorami pożądanymi na wyjściu są odpowiednio i. Wynikiem działania algorytmu RLS są estymaty: licznika i mianownika, które po wstawieniu do wzoru (16) pozwalają na obliczenie szukanej częstotliwości. Osobnym problemem jest zastosowanie we wzorze funkcji arccos, która jest znaczniej bardziej złożona obliczeniowo, powodując wydłużenie czasu obliczeń i uniemożliwiając wyznaczanie częstotliwości w trybie online. Ze względu na to, iż w literaturze problem ten jest dobrze opisany i istnieje kilka stosowanych rozwiązań jak np. rozwinięcie funkcji arccos w szereg Taylora lub eliminacja funkcji arccos przez zastosowanie przyrostów częstotliwości [1], w pracy problem ten został pominięty, a w badaniach symulacyjnych zastosowano zaimplementowaną w pakiecie SciLab funkcję acos. 2 BADANIA SYMULACYJNE Badania przeprowadzono symulując przebieg cyfrowy funkcji harmonicznej o częstotliwości nominalnej 50 Hz spróbkowany z częstotliwością 1 KHz. Do przebiegu dodano szum gaussowski o zerowej wartości średniej. Symulowany sygnał cyfrowy całkowano metodą trapezów, zgodnie z wzorem rekurencyjnym: (18) Zastosowano algorytm RLS o poniższej postaci: wartości początkowe (19) wartości dla kolejnych n=2, 3, (20) 9539

4 gdzie: zmierzony sygnał wejściowy żądany sygnał wyjściowy otrzymany na podstawie scałkowanego sygnału. Do wyznaczenia licznika zastosowano, a do wyznaczenia mianownika. Do pracy algorytmu RLS przyjęto standardowe wartości parametrów: δ=0,01i λ=0,98. Badania symulacyjne przeprowadzono badając trzy przypadki, opisane w kolejnych podrozdziałach 1. Pomiar stałej częstotliwości w zależności od poziomu szumu zakłócającego 2. Pomiar liniowo zmieniającej się częstotliwości dla zawartości szumu o SNR 40dB 3. Pomiar sygnału zawierającego wyższe harmoniczne 2.1 Błąd pomiaru stałej częstotliwości w zależności od poziomu szumu zakłócającego Do symulowanego przebiegu x(n) o częstotliwości 50Hzdodawano szum gaussowski o zerowej wartości średniej, którego stosunek do sygnału, określony parametrem SNR, zmieniano w zakresie od 20 do 60 db. Błąd estymacji częstotliwości wyznaczano za pomocą błędu średniokwadratowego MSE: gdzie: zadana częstotliwość symulowanego przebiegu estymata częstotliwości w chwili Wyniki symulacji przedstawiono na wykresie, na którym zestawiono błędy estymacji proponowaną metodą RLS z całkowaniem jak i algorytmem RLS opisanym w pracy [1], w którym sygnałem wejściowym jest x(n) a wyjściowym x(n-1) +x(n+1). (19) Rys. 1. Wykres zmian błędów proponowanej metody w funkcji poziomu szumu. 9540

5 Z wykresu wynika, że proponowana metodą zapewnia znacząco mniejsze błędy estymacji częstotliwości w obecności znaczących szumów. Dla szumu o SNR 20 db RLS z całkowaniem zapewnia ponad 10-krotnie mniejszy błąd w stosunku do tradycyjnego algorytmu RLS. Wynika to z właściwości operacji całkowania, która w funkcji rosnącego czasu całkowania coraz silniej tłumi szum o zerowej wartości średniej. 2.2 Pomiar liniowo zmieniającej się częstotliwości dla zawartości szumu SNR 40dB Skuteczność proponowanego algorytmu zbadano także dla liniowej zmiany częstotliwości. Częstotliwość sygnału mierzonego zmieniano od 50 Hz do 50,5 Hz w czasie 0,1 s. Sygnał zawierał szum o zerowej wartości oczekiwanej, którego SNR wynosił 40 db. Do zadowalającej estymacji częstotliwości proponowany algorytm potrzebuje około 0,02 s, co stanowi jeden okres sygnału mierzonego 50 Hz, podobnie jak tradycyjna estymacja RLS. Z przedstawionego na rysunku 2 przebiegu wynika, że oba algorytmy estymują z coraz większym błędem w miarę wzrostu częstotliwości, wykazując istnienie błędu dynamicznego. Błąd algorytmu RLS z całkowaniem jest wyraźnie mniejszy. Proponowany algorytm wykazuje także szybszy powrót do akceptowalnego błędu po ustabilizowaniu się częstotliwości, czyli po zaniknięciu błędu dynamicznego. Rys. 2. Przebieg wartości estymowanej częstotliwości dla zmieniającej się liniowo częstotliwości zadanej. Na rysunku 3 przedstawiono przebieg względnych błędów estymacji częstotliwości obiema metodami w funkcji czasu pomiaru. Błąd dynamiczny proponowaną metoda jest mniejszy, choć potwierdza się fakt wzrostu błędu w miarę wzrostu czasu liniowej zmiany częstotliwości. Główną przyczyną występowania błędu dynamicznego jest nieadekwatność wartości chwilowych mierzonego sygnału w chwilach poprzednich i następnych do wyznaczanej częstotliwości w chwili bieżącej. W chwili t i bieżącą częstotliwością sygnału jest f i, którą estymuje się na podstawie próbek w chwilach t i- 1, t i+1, w których to częstotliwość sygnału wynosi odpowiednio f i-1 i f i

6 Rys. 3. Błędy dynamiczne w funkcji czasu pomiaru przy liniowej zmianie częstotliwości 2.3 Pomiar sygnału zawierającego wyższe harmoniczne W ostatnim przypadku zbadano skuteczność metody w sytuacji, gdy w sygnale mierzonym występują wyższe harmoniczne. Do sygnału o częstotliwości podstawowej 50 Hz dodano 10% trzeciej harmonicznej, 5% piątej harmonicznej i 3% siódmej harmonicznej. Do sygnału dodano także szum o zerowej wartości średniej i SNR 40 db. Sygnał pomiarowy poddano filtracji dolnoprzepustowej filtrem Butterworth a piątego rzędu o częstotliwości granicznej 100 Hz. Sygnał scałkowany uzyskano na podstawie sygnału po filtracji. Przebieg estymacji częstotliwości metodą RSL z całkowaniem i samą RLS przedstawiono na wykresie. Rys. 4. Przebieg estymowanych częstotliwości w funkcji czasu pomiaru sygnału zawierającego wyższe harmoniczne. Z wykresu wynika, że proponowana metoda zapewnia szybszą estymację częstotliwości z błędem poniżej 1% (około 0,02 s),a praktycznie po około 0,04 s, czyli po pomiarze dwu okresów, błąd estymacji nie przekracza 0,2%. Estymacja algorytmem RLS na podstawie sygnału po filtracji, potrzebuje około 0,05 s, aby osiągnąć błąd pomiaru poniżej 1%, a dopiero po około 0,1 s błąd rzędu 0,2 %. Z przedstawionych symulacji wynika, że algorytm RLS z całkowaniem jest 2,5 szybszy od 9542

7 tradycyjnego algorytmu RLS, pomimo zastosowania filtracji, która powinna zminimalizować wpływ nie tylko wyższych harmonicznych, ale także szumu. WNIOSKI W pracy zaproponowano uzyskanie sygnału pomiarowego metodą całkowania o rosnącym czasie całkowania dzięki czemu możliwe jest zmniejszenie wpływu zakłóceń w postaci szumu o zerowej wartości oczekiwanej. Przy znanej funkcji całkowanego sygnału możliwe jest wyznaczenie funkcji po scałkowaniu a następnie jej aproksymowanie scałkowanym przebiegiem pomiarowym. Scałkowany przebieg pomiarowy charakteryzuje się mniejszą zawartością szumu o zerowej wartości oczekiwanej pozwalając na aproksymację z mniejszym błędem. W artykule wyznaczono scałkowaną postać sygnału sieci energetycznej, zaproponowano metodę wyznaczenia częstotliwości na podstawie sygnału scałkowanego oraz przedstawiono zastosowanie algorytmu RLS do uzyskania estymat czynników równania[17] umożliwiającego obliczenie częstotliwości. Wyniki badań symulacyjnych wykazują, że proponowana metoda wykazuje ponad 10-krotnie mniejszy błąd estymacji w obecności szumu o SNR w zakresie od 20 do 30 db. Uzyskanie podobnych rezultatów przez tradycyjną metodę RLS wymaga użycia filtru o odpowiedniej częstotliwości. Dla zawartości szumu o SNR 40 db algorytm RLS z całkowaniem estymuje częstotliwość z 2-3 krotnie mniejszym błędem w stosunku do tradycyjnego algorytmu. Błędy dynamiczne obu metod są podobne, przy niewielkiej przewadze proponowanej metody. Przy zawartości wyższych harmonicznych w sygnale sieci energetycznej konieczna jest filtracja. W badaniach symulacyjnych zastosowano filtrację dolnoprzepustową w odniesieniu do obu porównywanych metod. Proponowana metoda wykazała się znacznie krótszym czasem pomiaru w stosunku do algorytmu RLS operującego na samym sygnale sieci, uzyskując estymatę częstotliwości z błędem 0,2 % w czasie ponad 2,5 razy krótszym. Zaproponowana metoda minimalizacji wpływu szumu pozwala na uzyskanie mniejszych błędów estymacji oraz skrócenie jej czasu. Dodatkowym atutem w porównaniu z filtracją jest mała złożoność obliczeniowa całkowania numerycznego, brak ograniczeń dla spektrum częstotliwości usuwanego szumu. Kosztem proponowanej metody jest dwukrotna estymacja algorytmem RLS w jednym kroku obliczeniowym, niezbędna do wyznaczenia licznika i mianownika równania na poszukiwaną częstotliwość. Streszczenie Wyznaczanie częstotliwości napięcia sieci energetycznej wymaga krótkiego czasu pomiaru. Na estymowaną wartość częstotliwości ma wpływ szum i zakłócenia sygnału, stąd jednym z najważniejszych zadań pomiaru jest minimalizacja wpływu tych czynników na pomiar. W artykule zaproponowano operację całkowania sygnału mierzonego w celu minimalizacji wpływu szumu i wyższych harmonicznych. Sygnał scałkowany, który ma taką samą częstotliwość jak sygnał mierzony, jest aproksymowany metodą RLS. W pracy przedstawiono wyniki symulowanych pomiarów prezentowaną metodą w porównaniu z wybranymi metodami przedstawionymi w literaturze. Power system frequency estimation based on integration of voltage signal Abstract Estimation of the power system frequency needs a short measurement time. Estimated value of the frequency is affected by noise and interference. One of the most important tasks of the measurement is to minimize the impact of these factors. This paper proposes the integration of the measured signal in order to minimize the impact of noise and harmonics. Integrated signal, that has the same frequency as the measured signal, is approximated by the RLS algorithm. Results of simulated measurements by presented method and comparison with different methods reported in the literature was presented. 9543

8 BIBLIOGRAFIA 1. Augustyn J., Analgorithm for frequency estimation of sinusoidal signal, Metrology and Measurement Systems, vol IX, no 4/2002, p Liangliang Li, WeiXia, DongyuanShi and Jianzhuang Li, Frequency estimation on power system using recursive-least-squares approach, Proceedings of the 2012 International Conference on Information Technology and Software Engineering Lecture Notes in Electrical Engineering Volume 211, 2013, pp Lobos T., Rezmer J., Real-time determination of power system frequency. IEEE Trans. on Instrumentation and Measurement, vo. 46, no. 4, pp , Aug Pradhan AK., Routray A., Basak A., Power system frequency estimation using least mean square technique, IEEE Trans. Power Delivery 20: Sachdev M. S., Giray M. M., A least error squares technique for determining power system frequency, IEEE Trans. on Power Apparatus and Systems, Feb vol. PAS-104, no. 2, pp Seyedi H., Sanaye-Pasand M., A new time-domain based power system frequency estimation algorithm, Euro. Trans. Electr. Power (2011),2012, pp

POMIAR CZĘSTOTLIWOŚCI NAPIĘCIA W URZĄDZENIACH AUTOMATYKI ELEKTROENERGETYCZNEJ

POMIAR CZĘSTOTLIWOŚCI NAPIĘCIA W URZĄDZENIACH AUTOMATYKI ELEKTROENERGETYCZNEJ Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 63 Politechniki Wrocławskiej Nr 63 Studia i Materiały Nr 9 9 Piotr NIKLAS* pomiar częstotliwości, składowe harmoniczne, automatyka elektroenergetyczna

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Estymacja wektora stanu w prostym układzie elektroenergetycznym

Estymacja wektora stanu w prostym układzie elektroenergetycznym Zakład Sieci i Systemów Elektroenergetycznych LABORATORIUM INFORMATYCZNE SYSTEMY WSPOMAGANIA DYSPOZYTORÓW Estymacja wektora stanu w prostym układzie elektroenergetycznym Autorzy: dr inż. Zbigniew Zdun

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Filtr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz

Filtr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Filtr Kalmana Struktury i Algorytmy Sterowania Wykład 1-2 prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Politechnika Gdańska, Wydział Elektortechniki i Automatyki 2013-10-09, Gdańsk Założenia

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 5 - Identyfikacja Instytut Automatyki i Robotyki (IAiR), Politechnika Warszawska Warszawa, 2015 Koncepcje estymacji modelu Standardowe drogi poszukiwania modeli parametrycznych M1: Analityczne określenie

Bardziej szczegółowo

Przekształcenia sygnałów losowych w układach

Przekształcenia sygnałów losowych w układach INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Sygnały i kodowanie Przekształcenia sygnałów losowych w układach Warszawa 010r. 1. Cel ćwiczenia: Ocena wpływu charakterystyk

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 00/009 sem.. grupa II Termin: 10 III 009 Nr. ćwiczenia: 1 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta: 6 Nr. albumu: 15101

Bardziej szczegółowo

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Elektroniczne przyrządy i techniki pomiarowe POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Grupa Nr

Bardziej szczegółowo

Porównanie wyników symulacji wpływu kształtu i amplitudy zakłóceń na jakość sterowania piecem oporowym w układzie z regulatorem PID lub rozmytym

Porównanie wyników symulacji wpływu kształtu i amplitudy zakłóceń na jakość sterowania piecem oporowym w układzie z regulatorem PID lub rozmytym ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 15 Special Issue 4/2015 133 138 28/4 Porównanie wyników

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Sygnały stochastyczne, parametry w dziedzinie

Bardziej szczegółowo

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

WZORCOWANIE MOSTKÓW DO POMIARU BŁĘDÓW PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH ZA POMOCĄ SYSTEMU PRÓBKUJĄCEGO

WZORCOWANIE MOSTKÓW DO POMIARU BŁĘDÓW PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH ZA POMOCĄ SYSTEMU PRÓBKUJĄCEGO PROBLEMS AD PROGRESS METROLOGY PPM 18 Conference Digest Grzegorz SADKOWSK Główny rząd Miar Samodzielne Laboratorium Elektryczności i Magnetyzmu WZORCOWAE MOSTKÓW DO POMAR BŁĘDÓW PRZEKŁADKÓW PRĄDOWYCH APĘCOWYCH

Bardziej szczegółowo

Analiza wpływu parametrów systemu pomiarowego na błędy estymacji napięcia w systemach pomiaru napięcia przez pomiar pola elektrycznego

Analiza wpływu parametrów systemu pomiarowego na błędy estymacji napięcia w systemach pomiaru napięcia przez pomiar pola elektrycznego Analiza wpływu parametrów systemu pomiarowego na błędy estymacji napięcia w systemach pomiaru napięcia przez pomiar pola elektrycznego Artur Boroń Akademia Górniczo - Hutnicza Streszczenie W artykule przedstawiono

Bardziej szczegółowo

A3 : Wzmacniacze operacyjne w układach liniowych

A3 : Wzmacniacze operacyjne w układach liniowych A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.

Bardziej szczegółowo

Badanie właściwości tłumienia zakłóceń woltomierza z przetwornikiem A/C z dwukrotnym całkowaniem

Badanie właściwości tłumienia zakłóceń woltomierza z przetwornikiem A/C z dwukrotnym całkowaniem Ćwiczenie 7 Badanie właściwości tłumienia zakłóceń woltomierza z przetwornikiem A/C z dwukrotnym całkowaniem PODSAWY EOREYCZNE PRZEWORNIK ANALOGOWO CYFROWEGO Z DWKRONYM CAŁKOWANIEM. SCHEMA BLOKOWY I ZASADA

Bardziej szczegółowo

Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości

Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości W Filtracja adaptacyjna w dziedzinie częstotliwości Blokowy algorytm LMS (BLMS) N f n+n = f n + α x n+i e(n + i), i= N L Slide e(n + i) =d(n + i) f T n x n+i (i =,,N ) Wprowadźmy nowy indeks: n = kn (

Bardziej szczegółowo

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Przetworniki A/C Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Parametry przetworników analogowo cyfrowych Podstawowe parametry przetworników wpływające na ich dokładność

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 2 Badanie algorytmów adaptacyjnych LMS i RLS 1. CEL ĆWICZENIA Celem ćwiczenia jest samodzielna implementacja przez studentów dwóch podstawowych

Bardziej szczegółowo

Tranzystor bipolarny LABORATORIUM 5 i 6

Tranzystor bipolarny LABORATORIUM 5 i 6 Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7

Bardziej szczegółowo

[d(i) y(i)] 2. Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) i=1. λ n i [d(i) y(i)] 2 λ (0, 1]

[d(i) y(i)] 2. Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) i=1. λ n i [d(i) y(i)] 2 λ (0, 1] Algorytm RLS Recursive Least Squares Ogólna postać kryterium LS: J = i e 2 (i) = i [d(i) y(i)] 2 Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) Zmodyfikowane kryterium

Bardziej szczegółowo

LABORATORIUM PODSTAW TELEKOMUNIKACJI

LABORATORIUM PODSTAW TELEKOMUNIKACJI WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE

SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Piotr FRĄCZAK* SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA METOD POMIARU IMPEDANCJI PĘTLI ZWARCIOWEJ PRZY ZASTOSOWANIU PRZETWORNIKÓW ANALOGOWYCH

ANALIZA PORÓWNAWCZA METOD POMIARU IMPEDANCJI PĘTLI ZWARCIOWEJ PRZY ZASTOSOWANIU PRZETWORNIKÓW ANALOGOWYCH Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 54 Politechniki Wrocławskiej Nr 54 Studia i Materiały Nr 23 2003 Andrzej STAFINIAK * metody pomiarowe,impedancje pętli zwarciowej impedancja

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

Narzędzia matematyczne zastosowane w systemie biomonitoringu wody

Narzędzia matematyczne zastosowane w systemie biomonitoringu wody Narzędzia matematyczne zastosowane w systemie biomonitoringu wody Piotr Przymus Krzysztof Rykaczewski Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika Toruń 1 of 24 18 marca 2009 Cel referatu

Bardziej szczegółowo

WOLTOMIERZ CYFROWY. Metoda czasowa prosta. gdzie: stała całkowania integratora. stąd: Ponieważ z. int

WOLTOMIERZ CYFROWY. Metoda czasowa prosta. gdzie: stała całkowania integratora. stąd: Ponieważ z. int WOLOMIEZ CYFOWY Metoda czasowa prosta int o t gdzie: stała całkowania integratora o we stąd: o we Ponieważ z f z więc N w f z f z a stąd: N f o z we Wpływ zakłóceń na pracę woltomierza cyfrowego realizującego

Bardziej szczegółowo

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008 Detektor Fazowy Marcin Polkowski marcin@polkowski.eu 23 stycznia 2008 Streszczenie Raport z ćwiczenia, którego celem było zapoznanie się z działaniem detektora fazowego umożliwiającego pomiar słabych i

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA. Autor: Daniel Słowik

Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA. Autor: Daniel Słowik Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA Autor: Daniel Słowik Promotor: Dr inż. Daniel Kopiec Wrocław 016 Plan prezentacji Założenia i cel

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej. Laboratorium cyfrowej techniki pomiarowej. Ćwiczenie 3

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej. Laboratorium cyfrowej techniki pomiarowej. Ćwiczenie 3 Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium cyfrowej techniki pomiarowej Ćwiczenie 3 Przetwarzanie danych pomiarowych w programie LabVIEW 1. Generator harmonicznych Jako

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 2 Badanie algorytmów adaptacyjnych LMS i RLS 1. CEL ĆWICZENIA Celem ćwiczenia jest samodzielna implementacja przez studentów dwóch podstawowych

Bardziej szczegółowo

WYBÓR PUNKTÓW POMIAROWYCH

WYBÓR PUNKTÓW POMIAROWYCH Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Zastosowania liniowe wzmacniaczy operacyjnych

Zastosowania liniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania liniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Imię i nazwisko (e mail) Grupa:

Imię i nazwisko (e mail) Grupa: Wydział: EAIiE Kierunek: Imię i nazwisko (e mail) Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 12: Przetworniki analogowo cyfrowe i cyfrowo analogowe budowa i zastosowanie. Ocena: Podpis

Bardziej szczegółowo

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS AKUSTYCZNY

ĆWICZENIE 3 REZONANS AKUSTYCZNY ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej P. OTOMAŃSKI Politechnika Poznańska P. ZAZULA Okręgowy Urząd Miar w Poznaniu Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej Seminarium SMART GRID 08 marca

Bardziej szczegółowo

WPŁYW ADDYTYWNYCH ZAKŁÓCEŃ TYPU SINUSOIDALNEGO SYGNAŁÓW WEJŚCIOWYCH REGULATORÓW PI W UKŁADZIE FOC Z SILNIKIEM INDUKCYJNYM NA PRĘDKOŚĆ OBROTOWĄ

WPŁYW ADDYTYWNYCH ZAKŁÓCEŃ TYPU SINUSOIDALNEGO SYGNAŁÓW WEJŚCIOWYCH REGULATORÓW PI W UKŁADZIE FOC Z SILNIKIEM INDUKCYJNYM NA PRĘDKOŚĆ OBROTOWĄ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 2015 Wiktor HUDY* Kazimierz JARACZ* WPŁYW ADDYTYWNYCH ZAKŁÓCEŃ TYPU SINUSOIDALNEGO SYGNAŁÓW WEJŚCIOWYCH REGULATORÓW PI

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D)

Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D) Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D) Metody pośrednie Metody bezpośrednie czasowa częstotliwościowa kompensacyjna bezpośredniego porównania prosta z podwójnym całkowaniem z potrójnym

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 17 III 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła

Bardziej szczegółowo

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia Pomiar napięć stałych 1 POMIA NAPIĘCIA STAŁEGO PZYZĄDAMI ANALOGOWYMI I CYFOWYMI Cel ćwiczenia Celem ćwiczenia jest poznanie: - parametrów typowych woltomierzy prądu stałego oraz z warunków poprawnej ich

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

WZMACNIACZE OPERACYJNE

WZMACNIACZE OPERACYJNE WZMACNIACZE OPERACYJNE Indywidualna Pracownia Elektroniczna Michał Dąbrowski asystent: Krzysztof Piasecki 25 XI 2010 1 Streszczenie Celem wykonywanego ćwiczenia jest zbudowanie i zapoznanie się z zasadą

Bardziej szczegółowo

Projektowanie systemów pomiarowych. 02 Dokładność pomiarów

Projektowanie systemów pomiarowych. 02 Dokładność pomiarów Projektowanie systemów pomiarowych 02 Dokładność pomiarów 1 www.technidyneblog.com 2 Jak dokładnie wykonaliśmy pomiar? Czy duża / wysoka dokładność jest zawsze konieczna? www.sparkfun.com 3 Błąd pomiaru.

Bardziej szczegółowo

Wpływ kwantowania na dokładność estymacji momentów sygnałów o rozkładach normalnych

Wpływ kwantowania na dokładność estymacji momentów sygnałów o rozkładach normalnych Wpływ kwantowania na dokładność estymacji momentów sygnałów o rozkładach normalnych Elżbieta Kawecka Jadwiga Lal-Jadziak * Przedstawiono twierdzenia Widrowa i warunki odtwarzalności dla kwantowania w zastosowaniu

Bardziej szczegółowo

NIEPEWNOŚĆ POMIARÓW POZIOMU MOCY AKUSTYCZNEJ WEDŁUG ZNOWELIZOWANEJ SERII NORM PN-EN ISO 3740

NIEPEWNOŚĆ POMIARÓW POZIOMU MOCY AKUSTYCZNEJ WEDŁUG ZNOWELIZOWANEJ SERII NORM PN-EN ISO 3740 PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK BUILDING RESEARCH INSTITUTE - QUARTERLY 2 (162) 2012 ARTYKUŁY - REPORTS Anna Iżewska* NIEPEWNOŚĆ POMIARÓW POZIOMU MOCY AKUSTYCZNEJ WEDŁUG ZNOWELIZOWANEJ

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH Gliwice, wrzesień 2005 Pomiar napięcia przemiennego Cel ćwiczenia Celem ćwiczenia jest zbadanie dokładności woltomierza cyfrowego dla

Bardziej szczegółowo

Promotor: dr Marek Pawełczyk. Marcin Picz

Promotor: dr Marek Pawełczyk. Marcin Picz Promotor: dr Marek Pawełczyk Marcin Picz Stosowane metody: - Grupa metod odejmowania widm (subtractive( subtractive-typetype algorithms); - Filtracja Wienera; - Neural networks & Fuzzy logic (sieci neuronowe

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej. Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

Uśrednianie napięć zakłóconych

Uśrednianie napięć zakłóconych Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.

Bardziej szczegółowo

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wejściowych Paweł Fotowicz * Przedstawiono ścisłą metodę obliczania niepewności rozszerzonej, polegającą na wyznaczeniu

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ Laboratorium Podstaw Telekomunikacji Ćw. 4 WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ 1. Zapoznać się z zestawem do demonstracji wpływu zakłóceń na transmisję sygnałów cyfrowych. 2. Przy użyciu oscyloskopu cyfrowego

Bardziej szczegółowo

Analiza korelacyjna i regresyjna

Analiza korelacyjna i regresyjna Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Wpływ szumu na kluczowanie fazy (BPSK)

Wpływ szumu na kluczowanie fazy (BPSK) Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.9 Wpływ szumu na kluczowanie fazy () . Wpływ szumu na kluczowanie fazy () Ćwiczenie ma na celu wyjaśnienie wpływu

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Studia niestacjonarne Estymacja parametrów modeli, metoda najmniejszych kwadratów.

Bardziej szczegółowo

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ ELEKTRYKA 014 Zeszyt 1 (9) Rok LX Krzysztof SZTYMELSKI, Marian PASKO Politechnika Śląska w Gliwicach MATEMATYCZNY MODEL PĘTLI ISTEREZY MAGNETYCZNEJ Streszczenie. W artykule został zaprezentowany matematyczny

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia:

Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia: Technika analogowa Problematyka ćwiczenia: Pomiędzy urządzeniem nadawczym oraz odbiorczym przesyłany jest sygnał użyteczny w paśmie 10Hz 50kHz. W trakcie odbioru sygnału po stronie odbiorczej stwierdzono

Bardziej szczegółowo

PROPOZYCJA ZASTOSOWANIA WYMIARU PUDEŁKOWEGO DO OCENY ODKSZTAŁCEŃ PRZEBIEGÓW ELEKTROENERGETYCZNYCH

PROPOZYCJA ZASTOSOWANIA WYMIARU PUDEŁKOWEGO DO OCENY ODKSZTAŁCEŃ PRZEBIEGÓW ELEKTROENERGETYCZNYCH Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 56 Politechniki Wrocławskiej Nr 56 Studia i Materiały Nr 24 2004 Krzysztof PODLEJSKI *, Sławomir KUPRAS wymiar fraktalny, jakość energii

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze

Bardziej szczegółowo

Laboratorium Telewizji Cyfrowej

Laboratorium Telewizji Cyfrowej Laboratorium Telewizji Cyfrowej Badanie wybranych elementów sieci TV kablowej Jarosław Marek Gliwiński Robert Sadowski Przemysław Szczerbicki Paweł Urbanek 14 maja 2009 1 Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki. Automatyka i Robotyka Systemy Sterowania i Wspomagania Decyzji

Politechnika Gdańska Wydział Elektrotechniki i Automatyki. Automatyka i Robotyka Systemy Sterowania i Wspomagania Decyzji Monitorowanie i Diagnostyka w Systemach Sterowania (MiDwSS) Podstawowe sposoby opisu niepewności, wybrane zagadnienia zastosowania estymacji rekursywnej dla potrzeb monitorowania i diagnostyki w systemach

Bardziej szczegółowo

Regulacja dwupołożeniowa.

Regulacja dwupołożeniowa. Politechnika Krakowska Wydział Inżynierii Elektrycznej i Komputerowej Zakład eorii Sterowania Regulacja dwupołożeniowa. Kraków Zakład eorii Sterowania (E ) Regulacja dwupołożeniowa opis ćwiczenia.. Opis

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

A6: Wzmacniacze operacyjne w układach nieliniowych (diody)

A6: Wzmacniacze operacyjne w układach nieliniowych (diody) A6: Wzmacniacze operacyjne w układach nieliniowych (diody) Jacek Grela, Radosław Strzałka 17 maja 9 1 Wstęp Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1. Charakterystyka

Bardziej szczegółowo

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem 1 Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem Znaczenie symboli: Tab 1 Wyniki i błędy pomiarów Lp X [mm] U

Bardziej szczegółowo

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:

Bardziej szczegółowo

FILTR RC SYGNAŁÓW PRĄDOWYCH W UKŁADACH KONDYCJONOWANIA SYSTEMÓW POMIAROWYCH

FILTR RC SYGNAŁÓW PRĄDOWYCH W UKŁADACH KONDYCJONOWANIA SYSTEMÓW POMIAROWYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 91 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.91.0009 Dariusz PROKOP* FILTR RC SYGNAŁÓW PRĄDOWYCH W UKŁADACH KONDYCJONOWANIA SYSTEMÓW

Bardziej szczegółowo

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m. Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo