Zmienność wiatru w okresie wieloletnim
|
|
- Helena Orłowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Warsztaty: Prognozowanie produktywności farm wiatrowych PSEW, Warszawa Zmienność wiatru w okresie wieloletnim Dr Marcin Zientara DCAD / Stermedia Sp. z o.o.
2 Zmienność wiatru w różnych skalach czasu Długookresowa zmienność wiatry może być rozważana w dwóch skalach czasu: Zmienność rok do roku związana z fluktuacją dynamiki wiatru na danym obszarze. Skala czasu 20 lat Zmienność związana z długookresowymi zmianami klimatu na danym obszarze. Skala czasu > 20 lat
3 Zmienność wiatru w różnych skalach czasu Długookresowa zmienność wiatry może być rozważana w dwóch skalach czasu: Zmienność rok do roku związana z fluktuacją dynamiki wiatru na danym obszarze. Skala czasu 20 lat Zmienność związana z długookresowymi zmianami klimatu na danym obszarze. Skala czasu > 20 lat Wieloletnie obserwacje wiatru na przestrzeni ok. 150 lat w Północnej Europie nie wykazały istotnych zmian jego parametrów. Nie ma również bezpośrednich dowodów na zmiany wietrzności związane z efektem cieplarnianym.
4 Zmienność wiatru rok do roku Zmienność wiatru wyrażona w standardowych odchyleniach średnich rocznych prędkości wiatru dla różnych regionów ustalona na wieloletnich pomiarach, ok. 25 lat. Wieloletnie pomiary wiatru dla Łeby i Nowego Sącza.
5 Warsztaty: Prognozowanie produktywności farm wiatrowych PSEW, Warszawa Idea analizy P90 / P50 Dr Marcin Zientara DCAD / Stermedia Sp. z o.o.
6 Charakterystyka analizy Analiza P90/P50 jest sposobem oszacowania skali ryzyka / niepewności osiągnięcia średniorocznej produktywności (AEP) na poziomie wartości parametru P50 związanego(ej) z losową naturą źródła energii oraz innymi czynnikami o trudno przewidywalnej zmienności mającymi wpływ na proces generacji. Bazą analizy P90/P50 jest porównanie produktywności AEP wyrażonych wartościami parametrów P50 i P90. Krytycznym czynnikiem analizy P90/P50 jest umiejętność wyznaczenia wiarygodnych wartości AEP odpowiadających P50 i P90. Znajomość wyników analizy P90/P50 umożliwia konstruowanie różnych strategii zabezpieczających przed ponoszeniem konsekwencji niekorzystnych zdarzeń.
7 Podstawowe definicje i interpretacje Matematycznie parametry P50 i P90 są odpowiednio kwantylami rzędu 0.5 i 0.1 rozkładu prawdopodobieństwa wystąpienia danej wartości AEP.
8 Podstawowe definicje i interpretacje Matematycznie parametry P50 i P90 są odpowiednio kwantylami rzędu 0.5 i 0.1 rozkładu prawdopodobieństwa wystąpienia danej wartości AEP. Parametr PXX informuje, że z prawdopodobieństwem XX wyrażonym w % średnioroczna produktywność będzie nie mniejsza niż PXX.
9 Podstawowe definicje i interpretacje Matematycznie parametry P50 i P90 są odpowiednio kwantylami rzędu 0.5 i 0.1 rozkładu prawdopodobieństwa wystąpienia danej wartości AEP. Parametr PXX informuje, że z prawdopodobieństwem XX wyrażonym w % średnioroczna produktywność będzie nie mniejsza niż PXX. Interpretacja: P50 określa oczekiwaną wartość AEP bazującą na analizie i ocenie zdolności produkcyjnych farmy przy danych uwarunkowaniach jej działania. P50 jest podstawowym wynikiem typowych analiz wiatrowych gdyż przeważnie jego wartość pokrywa się z wartością oczekiwaną / średnią. P90 określa prawie pewny próg AEP jaki jest do osiągnięcia przy danych, zmierzonych i przeanalizowanych uwarunkowaniach jej pracy P50 / P90 informuje jaki procent oczekiwanej AEP uzyskamy gdy nie do końca dopisze nam szczęście
10 Źródła niepewności / ryzyka Źródła niepewności można podzielić na trzy rodzaje wynikające z: 1. fizyki wiatru i konwersji energii wiatru na energię elektryczną których nie można wyeliminować ale niektóre można optymalizować chaotyczna / losowa zmienność wiatru w różnych skalach czasu zmienność dynamiki wiatru w czasie złożona dynamika oddziaływania wiatru z rotorem dynamiczna krzywa mocy wzajemne oddziaływanie turbin np. przesłanianie wzajemne turbin
11 Źródła niepewności / ryzyka Źródła niepewności można podzielić na trzy rodzaje wynikające z: 1. fizyki wiatru i konwersji energii wiatru na energię elektryczną których nie można wyeliminować ale niektóre można optymalizować chaotyczna / losowa zmienność wiatru w różnych skalach czasu zmienność dynamiki wiatru w czasie złożona dynamika oddziaływania wiatru z rotorem np. dynamiczna krzywa mocy wzajemne oddziaływanie turbin np. przesłanianie wzajemne turbin 2. dokładności narzędzi i metod pomiaru, analizy i modelowania które można minimalizować poprzez stosowanie coraz doskonalszych / dokładniejszych technik skończona dokładność przyrządów pomiarowych skończona dokładność przestrzenno - czasowa pomiarów pomiar średniej wartości prędkości wiatru v w 10 min. przedziałach czasu zamiast średniej wartości v 3 skończona dokładność modeli matematycznych przeznaczonych do analizy i modelowania warunków meteo oraz konfiguracji farmy
12 Źródła niepewności / ryzyka Źródła niepewności można podzielić na trzy rodzaje wynikające z: 1. fizyki wiatru i konwersji energii wiatru na energię elektryczną których nie można wyeliminować ale niektóre można optymalizować chaotyczna / losowa zmienność wiatru w różnych skalach czasu zmienność dynamiki wiatru w czasie złożona dynamika oddziaływania wiatru z rotorem np. dynamiczna krzywa mocy wzajemne oddziaływanie turbin np. przesłanianie wzajemne turbin 2. dokładności narzędzi i metod pomiaru, analizy i modelowania które można minimalizować poprzez stosowanie coraz doskonalszych / dokładniejszych technik skończona dokładność przyrządów pomiarowych skończona dokładność przestrzenno - czasowa pomiarów pomiar średniej wartości prędkości wiatru v w 10 min. przedziałach czasu zamiast średniej wartości v 3 skończona dokładność modeli matematycznych przeznaczonych do analizy i modelowania warunków meteo oraz konfiguracji farmy 3. zdarzeń losowych można je modelować losowe zdarzenia techniczne ekstremalne zdarzenia meteo
13 Niepewność i jej ilościowa miara Podstawowa miarą niepewności dla wielkości x mogącej przyjmować wartości z danym rozkładem prawdopodobieństwa p(x) jest odchylenie standardowe zmiennej x względem jej wartości średniej μ σ 2 = i (x i μ) 2 p (x i ) sumowanie po możliwych wartościach zmiennej x μ = 0 σ = 1 σ σ
14 Niepewność i jej ilościowa miara Podstawowa miarą niepewności dla wielkości x mogącej przyjmować wartości z danym rozkładem prawdopodobieństwa p(x) jest odchylenie standardowe zmiennej x względem jej wartości średniej μ σ 2 = i (x i μ) 2 p (x i ) sumowanie po możliwych wartościach zmiennej x μ = 0 σ = 1 σ σ Dla zmiennej będącej sumą kilku składników x = Σ xi i prawdopodobieństwie wystąpienia p(x) = p(x1,x2,...pn) odchylenie standardowe można zapisać w postaci σ 2 = i, j ρ i, j σ i σ j sumowanie po składnikach sumy x
15 Niepewność i jej ilościowa miara Podstawowa miarą niepewności dla wielkości x mogącej przyjmować wartości z danym rozkładem prawdopodobieństwa p(x) jest odchylenie standardowe zmiennej x względem jej wartości średniej μ σ 2 = i (x i μ) 2 p (x i ) sumowanie po możliwych wartościach zmiennej x μ = 0 σ = 1 σ σ Dla zmiennej będącej sumą kilku składników x = Σ xi i prawdopodobieństwie wystąpienia p(x) = p(x1,x2,...pn) odchylenie standardowe można zapisać w postaci σ 2 = i, j ρ i, j σ i σ j sumowanie po składnikach sumy x Dla niezależnych statystycznie składników sumy, gdy ρi,j = 0 formuła się upraszcza σ 2 = i σ i 2 sumowanie po składnikach sumy x
16 Niepewność i jej ilościowa miara Skąd biorą się wartości PXX n i=1 N i= n p (x i ) k p(x i ) 1 k μ = 0 σ = 1 I II k XX=100 (k 1) PXX=x n xn k rząd kwantyla; xn wartość kwantyla; p(xi) rozkład prawdopodobieństwa zdarzeń; n indeks zdarzenia granicznego; N liczba wszystkich możliwych zdarzeń
17 Metody szacowania wartości parametrów PXX 1. Na bazie rozkładu normalnego gdzie P50 = μ (wartości średniej, wartości oczekiwanej AEP) a pozostałe wartości PXX są wyliczane na bazie oszacowanego odchylenia standardowego σ i własności rozkładu normalnego. 2. Na bazie rozkładów empirycznych gdzie równość P50 = μ niekoniecznie jest prawdziwa a poszczególne wartości PXX wyliczane są na bazie analizy dystrybuanty (CDF) analizowanego rozkładu 3. Symulacji procesu stochastycznego generacji w oparciu o rozkłady prawdopodobieństwa warunkowego (CPDF) wystąpienia danych zdarzeń meteo. Wynikiem symulacji jest rozkład prawdopodobieństwa wystąpienia danej wartości AEP
18 Zmienność P90 / P50 w skalach czasu prognozy AEP Zmienność PXX AEP dla różnych okresów czasu: 1 rok P90 = 2,35 2,44 2,48 3 lata 6 lat PXX P50 = 2,56 GWh/rok Zmienność stosunku P90 / P50 AEP dla różnych okresów czasu: 1 rok 92% 3 lata 95% 6 lat 97% AEP [GWh/rok]
19 Przykładowe wartości P90/P50
20 Warsztaty: Prognozowanie produktywności farm wiatrowych PSEW, Warszawa Sprawdzalność prognoz Dr Marcin Zientara DCAD / Stermedia Sp. z o.o.
21 Zgodność prognoz P50 z rzeczywistością Dane za EMD International A/S: N = 1806 μ = 99% σ = 8,1% Dane za DNV GL: N 500 μ = 97% σ = 13%
22 Zgodność prognoz P50 z rzeczywistością Australia Hiszpania Dane za Babcock&Brown Wind Partners Niemcy USA
System prognozowania rynków energii
System prognozowania rynków energii STERMEDIA Sp. z o. o. Software Development Grupa IT Kontrakt ul. Ostrowskiego13 Wrocław Poland tel.: 0 71 723 43 22 fax: 0 71 733 64 66 http://www.stermedia.eu Piotr
Bardziej szczegółowoMetody prognozowania produktywności i ich wpływ na wyniki prognozowania. Kamil Beker
Metody prognozowania produktywności i ich wpływ na wyniki prognozowania Kamil Beker Szacowanie zasobów wiatru Faza developmentu Faza eksploatacji Pomiary wiatru Optymalizacja farmy wiatrowej Analiza produktywności
Bardziej szczegółowoPodstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio
Bardziej szczegółowoLABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
Bardziej szczegółowoSposoby opisu i modelowania zakłóceń kanałowych
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń
Bardziej szczegółowoLABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Bardziej szczegółowoKontekstowe wskaźniki efektywności nauczania - warsztaty
Kontekstowe wskaźniki efektywności nauczania - warsztaty Przygotowała: Aleksandra Jasińska (a.jasinska@ibe.edu.pl) wykorzystując materiały Zespołu EWD Czy dobrze uczymy? Metody oceny efektywności nauczania
Bardziej szczegółowoRozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Bardziej szczegółowoPrzygotowanie oferty aukcyjnej dla farmy wiatrowej Kamil Beker Krzysztof Kajetanowicz
Przygotowanie oferty aukcyjnej dla farmy wiatrowej Kamil Beker Krzysztof Kajetanowicz Członek Crowe Horwath International (Zurych) stowarzyszenia niezależnych i o odrębnej osobowości prawnej biegłych rewidentów
Bardziej szczegółowoWykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Bardziej szczegółowoSMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec
SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoTestowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Bardziej szczegółowoWprowadzenie do Warsztatów Prognozowanie produktywności farm wiatrowych- strategie ofertowania w nowym systemie aukcyjnym - wyzwania i ograniczenia
Wprowadzenie do Warsztatów Prognozowanie produktywności farm wiatrowych- strategie ofertowania w nowym systemie aukcyjnym - wyzwania i ograniczenia 5 lutego 2015 Warszawa Agenda Kluczowa rola prognozowania
Bardziej szczegółowoEstymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Bardziej szczegółowoEstymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Bardziej szczegółowoPodstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka Stankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoPodstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów
Bardziej szczegółowoPobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Bardziej szczegółowoAnaliza niepewności pomiarów
Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej
Bardziej szczegółowoPrognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Bardziej szczegółowoMatematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoRozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26
Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych
Bardziej szczegółowo1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Bardziej szczegółowoBiostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoSterowanie wielkością zamówienia w Excelu - cz. 3
Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji
Bardziej szczegółowoRozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości
Bardziej szczegółowoWłasności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Bardziej szczegółowoZad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Bardziej szczegółowoRozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
Bardziej szczegółowoCentralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
Bardziej szczegółowoWeryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoZadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 3
Zestaw 3 Zadanie. 1. Dla zmiennej losowej o rozkładzie normalnym N (100; 10) obliczyć: a) P(X
Bardziej szczegółowoBADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl
Bardziej szczegółowoDokładne i graniczne rozkłady statystyk z próby
Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,
Bardziej szczegółowoDOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności
DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Szacowanie niepewności oznaczania / pomiaru zawartości... metodą... Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Bardziej szczegółowo1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
Bardziej szczegółowoEstymacja przedziałowa. Przedział ufności
Estymacja przedziałowa Przedział ufności Estymacja przedziałowa jest to szacowanie wartości danego parametru populacji, ρ za pomocą tak zwanego przedziału ufności. Przedziałem ufności nazywamy taki przedział
Bardziej szczegółowoStatystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Bardziej szczegółowoKomputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Bardziej szczegółowoPODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM PRZYPOMNIENIE ROZKŁAD NORMALNY http://www.zarz.agh.edu.pl/bsolinsk/statystyka.html
Bardziej szczegółowo1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Bardziej szczegółowoStatystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Bardziej szczegółowoSpis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Bardziej szczegółowoMetody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Bardziej szczegółowoEstymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
Bardziej szczegółowog) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.
TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności
Bardziej szczegółowoWYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowoProcedura szacowania niepewności
DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Stron 7 Załączniki Nr 1 Nr Nr 3 Stron Symbol procedury PN//xyz Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
Bardziej szczegółowoOkreślanie niepewności pomiaru
Określanie niepewności pomiaru (Materiały do ćwiczeń laboratoryjnych z przedmiotu Materiałoznawstwo na wydziale Górnictwa i Geoinżynierii) 1. Wprowadzenie Pomiar jest to zbiór czynności mających na celu
Bardziej szczegółowo... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...
4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem
Bardziej szczegółowoWstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
Bardziej szczegółowoZadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
Bardziej szczegółowoWSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Bardziej szczegółowoMetody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Bardziej szczegółowoSprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich
Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa
Bardziej szczegółowoBADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul Jana Pawła II 24 60-965 POZNAŃ budynek Centrum Mechatroniki, iomechaniki i Nanoinżynierii) wwwzmispmtputpoznanpl tel +48
Bardziej szczegółowoPrawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy
Bardziej szczegółowo3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Bardziej szczegółowoTestowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
Bardziej szczegółowoKomputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Bardziej szczegółowoWykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Bardziej szczegółowoStatystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa 1999. [2] A. Zięba, Analiza
Bardziej szczegółowo2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Bardziej szczegółowoNa A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)
MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości
Bardziej szczegółowoInteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
Bardziej szczegółowoĆwiczenia Zarządzanie Ryzykiem. dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1
Ćwiczenia Zarządzanie Ryzykiem 1 VaR to strata wartości instrumentu (portfela) taka, że prawdopodobieństwo osiągnięcia jej lub przekroczenia w określonym przedziale czasowym jest równe zadanemu poziomowi
Bardziej szczegółowoHISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Bardziej szczegółowoZmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Bardziej szczegółowoKwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Bardziej szczegółowoTemat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH
Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać
Bardziej szczegółowoMatematyka 2. dr inż. Rajmund Stasiewicz
Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia
Bardziej szczegółowoStatystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Bardziej szczegółowoRozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Bardziej szczegółowoTestowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
Bardziej szczegółowoProjektowanie systemów pomiarowych. 02 Dokładność pomiarów
Projektowanie systemów pomiarowych 02 Dokładność pomiarów 1 www.technidyneblog.com 2 Jak dokładnie wykonaliśmy pomiar? Czy duża / wysoka dokładność jest zawsze konieczna? www.sparkfun.com 3 Błąd pomiaru.
Bardziej szczegółowoWeryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Bardziej szczegółowoStatystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Bardziej szczegółowoStatystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Bardziej szczegółowoRozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Bardziej szczegółowoWykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Bardziej szczegółowoNiepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru
iepewność pomiaru dokładność pomiaru Wynik pomiaru X jest znany z możliwa do określenia niepewnością X p X X X X X jest bledem bezwzględnym pomiaru [ X, X X ] p Przedział p p nazywany jest przedziałem
Bardziej szczegółowoTeoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
Bardziej szczegółowoStatystyka w przykładach
w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie
Bardziej szczegółowoTestowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Bardziej szczegółowoWnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Bardziej szczegółowoWykład 3. Rozkład normalny
Funkcje gęstości Rozkład normalny Reguła 68-95-99.7 % Wykład 3 Rozkład normalny Standardowy rozkład normalny Prawdopodobieństwa i kwantyle dla rozkładu normalnego Funkcja gęstości Frakcja studentów z vocabulary
Bardziej szczegółowoStatystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Bardziej szczegółowoODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną
Bardziej szczegółowoTestowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Bardziej szczegółowoOszacowanie i rozkład t
Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie
Bardziej szczegółowo