Fizyka laboratorium 1
|
|
- Bartosz Drozd
- 9 lat temu
- Przeglądów:
Transkrypt
1 Rozdzia l Fizyka laboratorium.. Elementy analizy matematycznej Funkcje Zmienna y nazywa sie zmienna zależna albo funkcja zmiennej x, jeżeli przyjmuje ona określone wartości dla każdej wartości zmiennej x, w pewnym przedziale zmienności. Zmienna x nazywana jest zmienna niezależna albo argumentem funkcji y. Zwiazek miedzy zmienna zależna y a zmienna niezależna x zapisujemy symbolicznie w postaci: Pochodna funkcji y = fx) Niech dwóm wartościom x i x 2 zmiennej niezależnej odpowiadaja dwie wartości funkcji y oraz y 2. Oznaczmy: x = x 2 x y = y 2 y Przez pochodna funkcji y w punkcie x bedziemy rozumieli granice, do której daży stosunek y x, gdy x d aży do zera, co zapiszemy symbolicznie Szereg Maclaurina ẏ = dy dx = lim y x 0 x Nieskończony szereg pot egowy o n-tym wyrazie równym: a n = f n) 0) x n.)
2 .. Elementy analizy matematycznej gdzie f n) 0) wartość n-tej pochodnej pewnej funkcji fx) dla x = 0. Można wykazać, że jeśli funkcja fx) jest różniczkowalna nieskończenie wiele razy w pewnym otoczeniu x = 0 oraz: lim n gdzie c zawarte jest pomi edzy 0 a x, to: f n) c) x n = 0 fx) = f0) + a n.2) Twierdzenie. Jeżeli istnieje n-ta pochodna funkcji fx) w otoczeniu x = 0, istnieje dok ladnie jeden wielomian V x), stopnia n lub niższego spe lniajacy warunek: V 0) = f0), V 0) = f 0), V 0) = f 0),..., V n) 0) = f n) 0) n= Dowód. Niech V x) = a + bx + cx lx n Wtedy: V x) = b + 2cx nlx n V x) = 2c + 6dx nn )lx n 2... V n) = l Wtedy: V 0) = a V 0) = b V 0) = 2c... V n) 0) = l Wymagamy aby spe lniony by l warunek Czyli: V 0) = f0), V 0) = f 0), V 0) = f 0),..., V n) 0) = f n) 0) a = f0) b = f 0) 2c = f 0)... l = f n) 0) Jedyny wielomian stopnia n lub niższego spe lniajacy te warunki ma postać: f0) + xf 0)! + x2 f 0) 2! + x3f 0) xn f n) 0) 3! 2
3 .2. Zadania tablicowe Szereg Maclaurina jest szczególnym przypadkiem szeregu Taylora: f n) x 0 ) fx) = x x 0 ) n.3) Ponieważ liczymy sume szeregu nieskończonego musimy w pewnym miejscu dokonać obciecia, pope lnimy wiec b l ad obliczeniowy, jeżeli dokonamy sumowania k elementów szeregu b l ad możemy oszacować w nastepuj acy sposób: k ) f n) x 0 fx) = x x 0 ) n + f k+) ε) k + )! x x 0) k+.4) prawa cześć wzoru.4) nazywamy reszta Lagrange a i oznaczamy R n R n = f k+) ε) k + )! x x 0) k+ Przybliżona wartość funkcji można znaleźć liczac kilka k pierwszych wartości. B l ad jest wtedy nie wiekszy niż: ) max x x 0 ) f k+) x 0 )ε x 0 ) k+ ε [x 0,x] k + )!.5).2. Zadania tablicowe. policz sinx) korzystajac z rozwiniecia 2. policz cosx) korzystajac z rozwiniecia 3. policz e x korzystajac z rozwiniecia 4. policz 0 korzystajac z rozwiniecia fx) sinx) cosx) f x) cosx) sinx).2.. Zadanie sinx) sinx) = sin0) + x cos0) x2 sin0) x3 cos0) + x4 sin0) + x5 cos0)... 2! 3! 4! 5! czyli po uproszczeniu korzystamy z faktu sin0) = 0 oraz cos0) = ): sinx) x x3 6 + x5 20 x7.6) 5040 B l ad tego przybliżenia uznajac, że 8-ma pochodna wynosi 0 możemy oszacować: max ε [0,π] π 0) ε 9 cosε) 9! ) = π π9 9! = π Oczywiście uwzgledniaj ac wieksz a liczbe pochodnych otrzymamy dok ladniejsze przybliżenie. 3
4 .2. Zadania tablicowe.2.2. Zadanie 2 cosx) cosx) = cos0) x sin0) x2 cos0) + x3 sin0) + x4 cos0) x5 sin0) x6 cos0) ! 3! 4! 5! 6!.7) czyli po uproszczeniu korzystamy z faktu sin0) = 0 oraz cos0) = ): cosx) x2 2! + x4 4! x6 6! + x8 8!.8) B l ad tego przybliżenia uznajac, że 9-ma pochodna wynosi 0 możemy oszacować: ) max π 0) ε 0 cosε) ε [0,π] 0! = π π0 0! = π Oczywiście uwzgledniaj ac wieksz a liczbe pochodnych otrzymamy dok ladniejsze przybliżenie Zadanie 3 e x czyli e x = + e 0 x + e0 x 2 2! + e0 x 3 3! e x + x + x2 2! + x3 3! + x4 4! + x5 5! ).0).2.4. Zadanie 4. 0 Pare faktów: x n ) = nx n.) ) x = 2 x.2) Wzór.2) możemy otrzymać w nastepuj acy sposób: x = x 2.3) czyli: x ) 2 = 2 x 2 = 2 x 2 = 2 x.4) Znana jest wartość 9 = 3 Możemy wi ec skorzystać z rozwini ecia w szereg i zapisać: f n) 9)0 9) n 0 = = f n) 9) k f n) 9) 4
5 .3. Zadania programistyczne czyli liczac kolejne pochodne pierwiastka: ) ) x = 2 = x 2 x Czyli rozwini ecie możemy zapisać: x ) = 2 x ) 2 ) x = 4 x 3 = 4 x 2 = 4 x 3 2 = 4 x) 3 ) = 3 8 x ! 2 9 2! 4 9) ! 8 9) 5 = b l ad jest nie wiekszy niż: ) max 0 9) 5 ε [9,0] 4! 6 9) 7.3. Zadania programistyczne = Napisać program liczacy funkcje sinx), cosx), e x z parametrem określajacym d lugość rozwiniecia szeregu. 2. Porównać wyniki otrzymane z obliczenia funkcji poprzez rozwiniecie w szereg z wynikami funkcji z biblioteki matematycznej c++ 3. Zapisać dane z poprzedniego punktu do pliku i sporzadzić wykresy funkcji oraz oszacowania b l edu..4. Środowisko programistyczne Programy w trakcie ćwiczeń pisane bed a w jezyku C++ z wykorzystaniem dostarczonych przez prowadzacych szkieletów, szkieletów realizujacych podstawowe zadania zwiazane z graficzna prezentacja danych. Zadaniem studenta bedzie dobranie odpowiednich równań zgodnie z prezentowanym zagadnieniem, rozwiazanie tych równań stosujac metody numeryczne, oraz uzupe lnienie dostarczonego kodu odpowiednimi instrukcjami. Instrukcjami. Istnieje możliwość wyboru innego jezyka programowania jednak w tym przypadku Student musi napisać ca lość we w lasnym zakresie. Do celów graficznej prezentacji stosowana bedzie biblioteka OpenGL, w zasadzie nie jest wymagana od studentów znajomość tej biblioteki podstawowe zagadnienia zwiazane z OpenGL zostana przedstawione w trakcie zajeć) Studenci PJWSTK maja dostep do kompilatora C++ firmy Microsoft Visual Studio 2005, można również skorzystać z darmowych środowisk programistycznych: MinGW Developer Studio 2.05 Dev-C++ 5
6 .4. Środowisko programistyczne Dostarczone kody wykorzystuja dodatkowa biblioteke o nazwie GLUT The OpenGL Utility Toolkit. Do poprawnej kompilacji potrzebny jest plik nag lówkowy glut.h, który należy umieścić najlepiej w folderze include/gl wybranego kompilatora, oraz w przypadku kompilatorów opartych na gcc biblioteka glutlib32.a do umieszczenia w folderze lib kompilatora, natomiast w przypadku środowiska Visual Studio biblioteka glut32.lib. Skompilowana wersja dla systemu windows jest do pobrania z nastepuj acego adresu: nate/glut/glut bin.zip W przypadku środowiska windows do poprawnego wykonania programu potrzebna jest biblioteka dynamiczna glut32.dll, która powinna być umieszczona w katalogu widocznym w zmiennej środowiskowej PATH lub bezpośrednio w miejscu gdzie znajduje sie skompilowany plik exe. Biblioteka GLUT jest do pobrania w postaci kodów źród lowych nate/glut/glut src.zip do samodzielnej kompilacji w przypadku innego systemu operacyjnego. Do poprawnej konsolidacji programu niezbedne jest do l aczenie nastepuj acych bibliotek: glut32, opengl32, glu Korzystanie z biblioteki Proste środowisko, które umożliwi graficzna prezentacje wyników, animacje zostanie dostarczone w celu usprawnienia pisania kodu. Dla osoby piszacej program ważna jest klasa SceneObject z którj powinny być wyprowadzane wszystkie klasy na podstawie, których budowane bed a obiekty wizualne: class SceneObject{ public: SceneObject); virtual SceneObject) {}; virtual void draw)=0; virtual void drawshadow) shadow=; draw); shadow=0; virtual void dostep) {}; virtual void drawcontrolint id, int w, int h) {} virtual bool getcastsshadowsvoid) const { return false; } protected: int shadow; }; Klasa pochodna musi przedefiniować wirtualna metode draw) oraz dostep). Metoda draw) wywo lywana jest przez środowisko, kiedy zachodzi potrzeba namalowania obiektu, natomiast dostep) kiedy dokonywane sa obliczenia dla kolejnego kroku czasowego. Oczywiście w celu umieszczenia obiektów statycznych, które maja mieć tylko wizualna reprezentacje metoda dostep) może być pusta. Program wykorzystujacy biblioteke wyglada nastepuj aco: 6
7 .4. Środowisko programistyczne #include "soleng.h" int mainint argc, char *argv[]){ CWorld *world; world = CWorld::getWorldInstanceargc, argv); world->scenemanager->addsceneobjectnew Pendulum)); world->mainloop); return 0; } Dodatkowa przydana klasa jest DisplayControl realizujac okienko powiazane z obiektem sceny w momencie kiedy zachodzi konieczność namalowania okienka wysy la ono komunikat do swojego w laściciela drawcontrolint id, int w, int h). 7
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.
Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami
Laboratorium 1 Temat: Przygotowanie środowiska programistycznego. Poznanie edytora. Kompilacja i uruchomienie prostych programów przykładowych.
Laboratorium 1 Temat: Przygotowanie środowiska programistycznego. Poznanie edytora. Kompilacja i uruchomienie prostych programów przykładowych. 1. Przygotowanie środowiska programistycznego. Zajęcia będą
Ekonomia matematyczna i dynamiczna optymalizacja
Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać
ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x
ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1 Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji f n : [, [ x nx + x nx + 1, Rozwi azanie: Mówi siȩ, że ci ag funkcji f n zd aży punktowo
Wstęp do Programowania, laboratorium 02
Wstęp do Programowania, laboratorium 02 Zadanie 1. Napisać program pobierający dwie liczby całkowite i wypisujący na ekran największą z nich. Zadanie 2. Napisać program pobierający trzy liczby całkowite
Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu
Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:
1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.
Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. 1. Identyfikator funkcji,
Techniki programowania INP001002Wl rok akademicki 2017/18 semestr letni. Wykład 7. Karol Tarnowski A-1 p.
Techniki programowania INP001002Wl rok akademicki 2017/18 semestr letni Wykład 7 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Praca z repozytorium kodu Na podstawie: https://www.gnu.org/software/gsl/doc/html/index.html
Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o
Opracowanie: mgr Jerzy Pietraszko
Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)
Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22
Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 1 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Informacje wstępne Wykład 2h Laboratorium
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Proste algorytmy w języku C
Proste algorytmy w języku C Michał Rad AGH Laboratorium Maszyn Elektrycznych 2014-10-17 Outline Język C i Matlab Zadanie pierwsze - obliczanie miejsc zerowych wielomianu Zadanie drugie - znajdywanie największego
Wstęp do programowania
Wstęp do programowania Przemysław Gawroński D-10, p. 234 Wykład 1 8 października 2018 (Wykład 1) Wstęp do programowania 8 października 2018 1 / 12 Outline 1 Literatura 2 Programowanie? 3 Hello World (Wykład
Wykład VII. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik
Wykład VII Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Kompilacja Kompilator C program do tłumaczenia kodu źródłowego na język maszynowy. Preprocesor
Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle.
Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle. Sub Hasla1() Dim wzor_hasla As String Dim haslo As String Dim adres
y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.
Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile
Proste algorytmy w języku C
Proste algorytmy w języku C Michał Rad AGH Laboratorium Maszyn Elektrycznych 2016-12-01 Outline Język C Zadanie pierwsze - obliczanie miejsc zerowych wielomianu Zadanie drugie - znajdowanie największego
Podstawy języka C++ Maciej Trzebiński. Instytut Fizyki Jądrowej Polskiej Akademii Nauk. Praktyki studenckie na LHC IVedycja,2016r.
M. Trzebiński C++ 1/14 Podstawy języka C++ Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauk Praktyki studenckie na LHC IVedycja,2016r. IFJ PAN Przygotowanie środowiska pracy Niniejsza
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Szereg Taylora Javier de Lucas. f k) (x 0 ) (x x 0 ) k + R n (x, x 0 ), k! (x x 0 ) k k!
Szereg Taylora Javier de Lucas Zadanie 1. Wyka»,»e e x > 1 + x dla ka»dego x 0. Rozwiazanie: Funkcja f : x R e x R jest niesko«czenie wiele razy ró»niczkowalna w R. Z tego powodu, dla ka»dych x, x 0 R
Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe
Functionalization. Jeszcze o funkcjach i strukturze projektu. Marcin Makowski. 3 grudnia Zak lad Chemii Teoretycznej UJ
Jeszcze o funkcjach i strukturze projektu Zak lad Chemii Teoretycznej UJ 3 grudnia 2008 1 2 3 4 5 typedef Plan typedef specyfikator typu nazwa S luży do stworzenia nowej nazwy dla jakiegoś typu. Nazwa
Zadania o liczbach zespolonych
Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i
Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika
Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n
Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.
Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
Wykład I. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik
Wykład I I Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Zaliczenie przedmiotu Na laboratorium można zdobyć 100 punktów. Do zaliczenia niezbędne jest
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1
Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Wprowadzenie Procesory graficzne GPU (Graphics Processing Units) stosowane są w kartach graficznych do przetwarzania grafiki komputerowej
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
KLASA UCZEN Uczen imię, nazwisko, średnia konstruktor konstruktor Ustaw Wyswietl Lepszy Promowany
KLASA UCZEN Napisz deklarację klasy Uczen, w której przechowujemy następujące informacje o uczniu: imię, nazwisko, średnia (pola prywatne), poza tym klasa zawiera metody: konstruktor bezparametrowy (nie
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie
Programowanie II. Lista 3. Modyfikatory dostępu plik TKLientBanku.h
Programowanie II Lista 3 Modyfikatory dostępu plik TKLientBanku.h plik z funkcją main Przyjaźń Dziedziczenie Dziedziczenie to nic innego jak definiowanie nowych klas w oparciu o już istniejące. Jest to
c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume
Szeregi Laurenta, punkty osobliwe izolowane, klasyfikacja funkcji ze wzgl edu na osobliwości Dane s dwa szeregi postaci c n (z z 0 ) n i c n (z z 0 ) n. (1) n=1 1 Pierwszy z tych szeregów jest zbieżny
Wyk lad 3 Wyznaczniki
1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1
Podstawy języka C++ Maciej Trzebiński. Praktyki studenckie na LHC IFJ PAN. Instytut Fizyki Jądrowej Polskiej Akademii Nauk. M. Trzebiński C++ 1/16
M. Trzebiński C++ 1/16 Podstawy języka C++ Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauk Praktyki studenckie na LHC IFJ PAN 6lipca2015 Uruchomienie maszyny w CC1 M. Trzebiński C++ 2/16
Programowanie Obiektowo Zorientowane w języku c++ Przestrzenie nazw
Programowanie Obiektowo Zorientowane w języku c++ Przestrzenie nazw Mirosław Głowacki 1 1 Akademia Górniczo-Hutnicza im. Stanisława Staszica w Ktrakowie Wydział Inżynierii Metali i Informatyki Stosowanej
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
3 Przygotował: mgr inż. Maciej Lasota
Laboratorium nr 3 1/8 Język C Instrukcja laboratoryjna Temat: Instrukcje warunkowe, pętle. 3 Przygotował: mgr inż. Maciej Lasota 1) Instrukcje warunkowe. Instrukcje warunkowe pozwalają zdefiniować warianty
Programowanie mikrokontrolerów AVR
Programowanie mikrokontrolerów AVR Czym jest mikrokontroler? Mikrokontroler jest małym komputerem podłączanym do układów elektronicznych. Pamięć RAM/ROM CPU wykonuje program Układy I/O Komunikacje ze światem
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =
Pochodne. Zbigniew Koza. Wydział Fizyki i Astronomii
Pochodne Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 MOTYWACJA Rozpatrzmy gładką funkcję np. y x = x 2 w okolicach punktu (1,1) x 0 = 1, y 0 = f x 0 = 1 powiększmy wykres wokół (x 0, f(x 0
Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223
Analiza numeryczna Kurs INP002009W Wykład 8 Interpolacja wielomianowa Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Wielomian interpolujący Wzór interpolacyjny Newtona Wzór interpolacyjny
Pochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
C++ - dziedziczenie. C++ - dziedziczenie. C++ - dziedziczenie. C++ - dziedziczenie. C++ - dziedziczenie C++ - DZIEDZICZENIE.
C++ - DZIEDZICZENIE Do najważniejszych cech języka C++ należy możliwość wielokrotnego wykorzystywania kodu Prymitywnym, ale skutecznym sposobem jest kompozycja: deklarowanie obiektów wewnątrz innych klas,
Informacje wstępne #include <nazwa> - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char
Programowanie C++ Informacje wstępne #include - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char = -128 do 127, unsigned char = od
Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 2001 ROKU. Czas trwania egzaminu: 180 min.
Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 001 ROKU Czas trwania egzaminu: 180 min Liczba zadań: 30 Każde zadanie sk lada sie z trzech cześci Odpowiedź do
Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej
Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja
ZASTOSOWANIA POCHODNEJ FUNKCJI
Wykłady z matematyki inżynierskiej ZASTOSOWANIA POCHODNEJ FUNKCJI IMiF UTP 04 JJ (IMiF UTP) ZASTOSOWANIA POCHODNEJ FUNKCJI 04 1 / 13 Reguła de L Hospitala TWIERDZENIE (Reguła de L Hospitala). Załóżmy,
Podczas dziedziczenia obiekt klasy pochodnej może być wskazywany przez wskaźnik typu klasy bazowej.
Polimorfizm jest filarem programowania obiektowego, nie tylko jeżeli chodzi o język C++. Daje on programiście dużą elastyczność podczas pisania programu. Polimorfizm jest ściśle związany z metodami wirtualnymi.
Składnia C++ Programowanie Obiektowe Mateusz Cicheński
Składnia C++ Programowanie Obiektowe Mateusz Cicheński Klasy i modyfikatory dostępu Przesłanianie metod Polimorfizm Wskaźniki Metody wirtualne Metody abstrakcyjne i interfejsy Konstruktory i destruktory
Egzamin z Metod Numerycznych ZSI, Grupa: A
Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa
Paradygmaty programowania
Paradygmaty programowania Programowanie generyczne w C++ Dr inż. Andrzej Grosser Cz estochowa, 2016 2 Spis treści 1. Zadanie 3 5 1.1. Wprowadzenie.................................. 5 1.2. Obiekty funkcyjne................................
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
Utworzenie pliku. Dowiesz się:
Dowiesz się: 1. Jak rozpocząć pisanie programu 2. Jak wygląda szkielet programu, co to są biblioteki i funkcja main() 3. Jak wyświetlić ciąg znaków w programie 4. Jak uruchamiać (kompilować) napisany program
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Język ludzki kod maszynowy
Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Przedmioty kierunkowe
Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje w roku akademickim 01/013 Kierunek studiów: Informatyka Forma studiów: Stacjonarne Profil:
Podstawy analizy matematycznej II
Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań
1. Wartość, jaką odczytuje się z obszaru przydzielonego obiektowi to: a) I - wartość b) definicja obiektu c) typ oboektu d) p - wartość
1. Wartość, jaką odczytuje się z obszaru przydzielonego obiektowi to: a) I - wartość b) definicja obiektu c) typ oboektu d) p - wartość 2. Poprawna definicja wskażnika b to: a) float *a, **b = &a; b) float
Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n
V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Elementy logiki. Zdania proste i złożone
Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie
Jak napisać program obliczający pola powierzchni różnych figur płaskich?
Część IX C++ Jak napisać program obliczający pola powierzchni różnych figur płaskich? Na początku, przed stworzeniem właściwego kodu programu zaprojektujemy naszą aplikację i stworzymy schemat blokowy
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia
Programowanie I C / C++ laboratorium 01 Organizacja zajęć
Programowanie I C / C++ laboratorium 01 Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-02-12 Program zajęć Zasady zaliczenia Program operacje wejścia i wyjścia instrukcje
Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych
Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE. Strona 1
KURS SZEREGI Lekcja 1 Szeregi Fouriera ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zaznacz poprawną odpowiedź: a) Szereg Fouriera
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 01/013 Wydział Fizyki, Matematyki i Informatyki Kierunek studiów: Informatyka
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
5. Obliczanie pochodnych funkcji jednej zmiennej
Kiedy może być potrzebne numeryczne wyznaczenie pierwszej lub wyższej pochodnej funkcji jednej zmiennej? mamy f(x), nie potrafimy znaleźć analitycznie jej pochodnej, nie znamy postaci f(x), mamy stablicowane
PARADYGMATY PROGRAMOWANIA Wykład 4
PARADYGMATY PROGRAMOWANIA Wykład 4 Metody wirtualne i polimorfizm Metoda wirualna - metoda używana w identyczny sposób w całej hierarchii klas. Wybór funkcji, którą należy wykonać po wywołaniu metody wirtualnej
Techniki programowania INP001002Wl rok akademicki 2018/19 semestr letni. Wykład 8. Karol Tarnowski A-1 p.
Techniki programowania INP001002Wl rok akademicki 2018/19 semestr letni Wykład 8 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Biblioteka GSL Na podstawie: https://www.gnu.org/software/gsl/doc/html/index.html
Lista 1 - Funkcje elementarne
Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Politechnika Gdańska Katedra Optoelektroniki i Systemów Elektronicznych
Laboratorium OiOSE. Programowanie w środowisku MS Visual C++ 1 Politechnika Gdańska Katedra Optoelektroniki i Systemów Elektronicznych Organizacja i Oprogramowanie Systemów Elektronicznych Michał Kowalewski
Wykład 9: Polimorfizm i klasy wirtualne
Programowanie obiektowe Wykład 9: i klasy wirtualne 1 dr Artur Bartoszewski - Programowanie obiektowe, sem. 1I- WYKŁAD Programowanie obiektowe i metody wirtualne 2 W programowaniu obiektowym polimorfizm
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj
Podstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład Funkcje Krzysztof Banaś Podstawy programowania 1 Programowanie proceduralne Pojęcie procedury (funkcji) programowanie proceduralne realizacja określonego zadania specyfikacja
Funkcje matematyczne w C. Programowanie w C Marek Pudełko
Funkcje matematyczne w C Programowanie w C Marek Pudełko Używanie funkcji matematycznych W standardowym ANSI C jest możliwe skorzystanie z 22 funkcji matematycznych. By to zrobić, do programu należy włączyć