SYMULACJA NUMERYCZNA OPŁYWU MODELI BUDYNKÓW METODĄ DEKOMPOZYCJI POLA PRĘDKOŚCI
|
|
- Stefan Podgórski
- 6 lat temu
- Przeglądów:
Transkrypt
1 MODELOWANIE INŻYNIERSKIE ISSN X 4, s. 8-86, Glwce 20 SYMULACJA NUMERYCZNA OPŁYWU MODELI BUDYNKÓW METODĄ DEKOMPOZYCJI POLA PRĘDKOŚCI ZBIGNIEW KOSMA, PRZEMYSŁAW MOTYL Istytut Mechak Stosowae Eergetyk, Poltechka Radomska e-mal: Streszczee. Do symulac umerycze płaskego opływu model budyków wykorzystao metodę dekompozyc pola prędkośc z zamplemetowaym własym algorytmam oblczeowym. Naperw wykoao oblczea testowe ruchu ceczy lepke w kaale z uskokem ede ścak, a astępe symulace umerycze opływów model: budyku odosoboego dwóch budyków usytuowaych blsko sebe. Otrzymae rozkłady składowych prędkośc porówao z ch aalogczym rozkładam oblczoym za pomocą programu Fluet.. WSTĘP Sposób zabudowy kofguraca otwartych przestrze może w różym stopu wpływać a komfort watrowy przechodów. Jest to szczególe stote w obszarach o wysoke zabudowe oraz dużym zagęszczeu budyków, w których tworzą sę lokale waruk mkroklmatycze spowodowae występowaem strume powetrza o duże tesywośc. Zwększoa prędkość watru w blskm sąsedztwe budyków est ekorzystą cechą mus być aalzowaa a etape proektu zabudowy. W tym celu ezbędy est zestaw daych aerodyamczych określaących obszary o zwększoych prędkoścach watru, który moża uzyskać a drodze badań modelowych w tuelach aerodyamczych oraz metodam CFD. Podstawowym wadam badań eksperymetalych są ch wysok koszt oraz czasochłoość. Alteratywą są aalzy umerycze CFD umożlwaące wykoywae welokrotych oblczeń dla różorodego zakresu daych weścowych w całym badaym obszarze, a e tylko w wybraych puktach pomarowych. W badaach modelowych opływu budyków spełee kryterum rówośc lczby Reyoldsa ma zaczee drugorzęde [], gdyż w przypadku przekroów z ostrym krawędzam pukty oderwaa strug powetrza ustaloe są przez kształty ch przekroów, a współczyk aerodyamcze w dużym zakrese Re e zależą od ch wartośc. Ze względu a ezbyt duże prędkośc watru powetrze traktowae est ako pły lepk eścślwy (cecz lepka). Jako rówaa wyścowe opsuące opływ model budyków przyęto węc układ rówań składaący sę z rówaa cągłośc rówaa Navera-Stokesa, zapsay w zachowawcze postac bezwymarowe. Jedą z metod umożlwaących oblczae opływów model budyków est metoda dekompozyc pola prędkośc, często wykorzystywaa do symulac umerycze zagadeń dyamk ceczy lepke w szerokm zakrese lczb Reyoldsa.
2 82 Z. KOSMA, P. MOTYL 2. METODA DEKOMPOZYCJI POLA PRĘDKOŚCI Ogóla dea algorytmu metody dekompozyc pola prędkośc [2, 3] polega a wykoywau oblczeń a każde, owe warstwe czasowe w dwóch etapach. W perwszym etape oblczeń - w przedzale czasu od t do t - rozwązywae est zagadee początkowo-brzegowe dla pomocczego pola prędkośc V, określoego uproszczoym rówaam Navera-Stokesa dla zaego gradetu cśea oblczeowego p V p + V V = + V t Re () - przy założeu, że a gracach obszaru Ω w chwl czasowe pomoccze est detycze z polem prędkośc fzycze: t = t pole prędkośc V = V, V = V Ω Ω. (2) W drugm etape oblczeń - dla każdego kroku czasowego Δ t = t + t w przedzale czasu od + t do t - korygowae są wartośc składowe prędkośc pomoccze z zależośc V + + Δ t p = V 2 p otrzymaych po scałkowau rówań sprzęgaących pola prędkośc fzycze pomoccze z gradetem cśea oblczeowego - po uprzedm rozwązau zagadea Neumaa dla cśea oblczeowego + p a warstwe czasowe t, + p = p 2 V + Δ t (3) z edorodym warukam brzegowym. 3. WYNIKI SYMULACJI NUMERYCZNYCH Do rozwązywaa zagadea () w perwszym etape oblczeń zastosowao metodę prostych, polegaącą a ego sprowadzeu do układu rówań różczkowych zwyczaych, przy zachowau czasu ako zmee ezależe cągłe. Pochode względem zmeych przestrzeych aproksymowao klasyczym, trzypuktowym lorazam różcowym drugego rzędu dokładośc. Zagadea początkowe całkowao metodą Heua drugego rzędu. Do rozwązaa zagadea Neumaa dla rówaa Possoa (3) zastosowao metodę różc skończoych z aproksymacą pochodych względem zmeych przestrzeych klasyczym lorazam różcowym drugego rzędu dokładośc. Otrzymae układy algebraczych rówań lowych rozwązywao metodą Gaussa-Sedela. Opsae algorytmy umerycze szczegółowo aalzowao w pracach [4, 5].
3 SYMULACJA NUMERYCZNA OPŁYWU MODELI BUDYNKÓW 83 Metodą dekompozyc pola prędkośc z wykorzystaem propoowaych algorytmów umeryczych wykoao aperw oblczea ruchu ceczy lepke w kaale z uskokem ede ścak (rys. a), które są często wykoywae w celu weryfkac algorytmów oblczeowych [6 8]. Otrzymae wyk symulac umeryczych dla Re = 800 (rys. 2) porówao z rezultatam oblczeń prezetowaym w pracy [7]. Uzyskao bardzo dobrą zgodość rozkładów składowe prędkośc u w wybraych przekroach (rys. 3). Po weryfkac kodu oblczeowego wyzaczoo opływ modelu poedyczego budyku (rys. b). Uzyskao rozwązaa stacoare w zakrese Re 2000 a satce rówomere o kroku h = / 00 (rys. 4 6). Oblczea powtórzoo dla zagadea opływu model dwóch budyków usytuowaych blsko sebe (rys. c) - przymuąc, że model drugego budyku est dwukrote wyższy od modelu budyku perwszego. W tym przypadku uzyskae rozwązań stacoarych okazało sę możlwe w meszym zakrese Re 400 (rys. 8 0). Na rysukach 7 dokoao porówań rozkładów składowe prędkośc u w trzech wybraych przekroach z rozwązaam uzyskaym za pomocą paketu Fluet - rozkłady te są detycze. a) b) c) Rys.. Zagadea oblczeowe: a) kaał z uskokem ede ścak, b) kaał z modelem edego budyku, c) kaał z modelam dwóch budyków Rys. 2. Le prądu w kaale z uskokem ede ścak: Re = 800, satka Rys. 3. Rozkłady składowe prędkośc u a lach x = 7 x = 5 w kaale z uskokem ede ścak: Re = 800, satka
4 84 Z. KOSMA, P. MOTYL Rys. 4. Le prądu w kaale z modelem edego budyku: Re = 2000, h = /00, L = 0, L =, W = 0., H = 0. Rys. 5. Le prądu w kaale z modelem edego budyku: Re = 2000, h = /00, L = 0, L =, W = 0., H = 0. Rys. 6. Rozkład cśea w kaale z modelem edego budyku: Re = 2000, h = /00, L = 0, L =, W = 0., H = 0. Rys. 7. Porówae rozkładów prędkośc w kaale z modelem edego budyku w przekroach x =, 5, 0: Re = 2000, h = /00, L = 0, L =, W = 0., H = 0.
5 SYMULACJA NUMERYCZNA OPŁYWU MODELI BUDYNKÓW 85 Rys. 8. Le prądu w kaale z modelam dwóch budyków: Re = 400, h = /00, L = 0, L =, L 2 = 2, W = 0., W 2 = 0., H = 0., H 2 = 0.2 Rys. 9. Le prądu w kaale z modelam dwóch budyków: Re = 400, h = /00, L = 0, L =, L 2 = 2, W = 0., W 2 = 0., H = 0., H 2 = 0.2 Rys. 0. Rozkład cśea w kaale z modelam dwóch budyków: Re = 400, h = /00, L = 0, L =, L 2 = 2, W = 0., W 2 = 0., H = 0., H 2 = 0.2 Rys.. Porówae rozkładów prędkośc w kaale z modelam dwóch budyków w przekroach x =, 2, 0: Re = 2000, h = /00, L = 0, L =, L 2 = 2, W = 0., W 2 = 0., H = 0., H 2 = 0.2
6 86 Z. KOSMA, P. MOTYL 4. PODSUMOWANIE I WNIOSKI Stwerdzoo bardzo dobrą zgodość obrazów l prądu z wykam aalogczych oblczeń prezetowaym w publkacach [9, 0]. Główą zaletą opracowaych algorytmów est ch prostota łatwość mplemetac komputerowe, połączoa z możlwoścą osągęca wysoke dokładośc rozwązań. Przetestowae algorytmy oblczeowe mogą być wykorzystae do wyzaczaa opływów ych kofgurac model budyków - zarówo płaskch, ak przestrzeych. LITERATURA. Flaga A.: Iżyera watrowa - podstawy zastosowaa. Warszawa : Wyd. Arkady, Chor A.J.: Numercal soluto of the Naver-Stokes equatos. Math. Comput. 968, Vol. 22, 04, p Huser A.D., Brge S.: Calculato of two-dmesoal shear-drve cavty flows at hgh Reyolds umbers. It. J. Numer. Meth. Fluds 992, Vol. 4, p Kosma Z., Motyl P.: Optymalzaca algorytmów wyzaczaa ruchu ceczy lepke metodą dekompozyc pola prędkośc. Modelowae Iżyerske 2008, r 36, t. 5, s Kosma Z., Motyl P.: Szybke algorytmy wyzaczaa ruchu ceczy lepke. Moografe. WPR, Radom, 30/ Armaly B.F., Durst F., Perera J.C.F., Schöug B.: Expermetal ad theoretcal vestgato of backward-facg step. J. Flud Mech. 983, 27,, p Gartlg D.K.: A test problem for outflow boudary codtos-flow over a backwardfacg step. It. J. Numer. Meth. Fluds 990, Vol., p Keskar J., Ly D.A.: Computatos of lamar backward-facg step flow at Re = 800 wth a spectral doma decomposto method. It. J. Numer. Meth. Fluds 999, 2, p Fragos V.P., Psychoudak S.P., Malamatars N.A.: Computer-aded aalyss of flow past a surface-mouted obstacle. It. J. Numer. Meth. Fluds 997, 25, p So E.S.P., Cha A.T.Y., Wog A.Y.T.: Large-eddy smulatos of wd flow ad pollutat dsperso a street cayo. Atmospherc Evromet 2005, Vol. 39, p NUMERICAL SIMULATION OF FLOWS OVER MODELS OF BUILDINGS USING A VELOCITY CORRECTION METHOD Summary. I ths work, smulatos of flows over models of buldgs are based o the umercal soluto of the goverg flud flow equatos by meas of a velocty correcto method whch ovel mproved algorthms have bee adopted. Test calculatos were frstly carred out for vscous lqud plae flow over the backward-facg geometry. The, umercal smulatos of flow over oe solated model of buldg ad models of two buldgs located close to each other were performed.
OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ DEKOMPOZYCJI POLA PRĘDKOŚCI
MODELOWANIE INśYNIERSKIE ISSN 896-77X 36, s. 8-86, Glwce 2008 OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ DEKOMPOZYCJI POLA PRĘDKOŚCI ZBIGNIEW KOSMA, PRZEMYSŁAW MOTYL Istytut Mechak
WYZNACZANIE NIESTACJONARNEGO RUCHU CIECZY LEPKIEJ W DWU- I TRÓJWYMIAROWYCH ZAGŁĘBIENIACH Z JEDNĄ PORUSZAJĄCĄ SIĘ ŚCIANKĄ
KOSMA Zbgew KALBARCZYK Rafał 2 PIECHNIK Bartosz 3 Rówaa Navera-Stokesa, estacoary ruch ceczy lepke, metoda sztucze ścślwośc, satk kartezańske, metoda prostych, zagłębea z edą poruszaącą sę ścaką WYZNACZANIE
OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI
MODELOWANIE INśYNIERSKIE ISSN 1896-771X 36, s. 187-192, Glwce 2008 OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI ZBIGNIEW KOSMA, BOGDAN NOGA Instytut Mechank Stosowane,
f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu
METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu
METODY KOMPUTEROWE 1
MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc
Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych
dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
ma rozkład normalny z nieznaną wartością oczekiwaną m
Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee
Modelowanie i Analiza Danych Przestrzennych
Modelowae Aalza Daych Przestrzeych Wykład 8 Adrze Leśak Katedra Geoformatyk Iformatyk Stosowae Akadema Górczo-Hutcza w Krakowe Jaką postać ma warogram daych z tredem? Moża o wylczyć teoretycze prostego
Metoda Monte-Carlo i inne zagadnienia 1
Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów
Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej
Dr hab. ż. Ato Śwć, prof. adzw. Istytut Techologczych ystemów Iformacyych oltechka Lubelska ul. Nadbystrzycka 36, 2-68 Lubl e-mal: a.swc@pollub.pl Dr ż. Lech Mazurek aństwowa Wyższa zkoła Zawodowa w Chełme
SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM
ACTA UNIVERSITATIS WRATISLAVIENSIS No 37 PRZEGLĄD PRAWA I ADMINISTRACJI LXXX WROCŁAW 009 ANNA ĆWIĄKAŁA-MAŁYS WIOLETTA NOWAK Uwersytet Wrocławsk SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest
MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ
MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wykład Układy rówań metody aaltycze Metody umerycze rozwązywaa rówań lczbowych Prof. Ato Kozoł, Wydzał Chemczy Poltechk Wrocławskej ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ
KALIBRACJA NIE ZAWSZE PROSTA
KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min
Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego
UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie
B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety
WYKŁAD XII METODY NUMERYCZNE W MODELOWANIU PROCESÓW
WYKŁAD XII METODY NUMERYCZNE W MODELOWANIU PROCESÓW Część I WPROWADZENIE Aaltycze metody poszkwaa rozwązań zagadeń mechak ośrodków cągłych wymagaą ak to zostało przedstawoe w rozdzale VII VIII zalezea
Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.
Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór
WYZNACZANIE STRAT CIEPŁA DO ŚCIANKI PRZY SPALANIU MIESZANKI GAZOWEJ PROPAN POWIETRZE W WIRUJĄCEJ KOMORZE SPALANIA
WYZNACZANIE STRAT CIEPŁA DO ŚCIANKI PRZY SPALANIU MIESZANKI GAZOWEJ PROPAN POWIETRZE W WIRUJĄCEJ KOMORZE SPALANIA Adrzej Gorczakowsk. Poltechka Łódzka, Katedra Techk Ceplej Chłodctwa, Wydzał Mechaczy.
Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; }
Idea: Wyzaczamy ameszy elemet w cągu tablcy zameamy go mescam z elemetem perwszym, astępe z pozostałego cągu wyberamy elemet ameszy ustawamy go a druge mesce tablcy zmeamy, td. Realzaca w C++ vod seleca
Analiza niestacjonarnego pola temperatury elektrycznego grzejnika podłogowego z wykorzystaniem procesora karty graficznej
Jarosław FORENC Poltechka Bałostocka, Wydzał Elektryczy do:0.599/48.05.09.69 Aalza estacjoarego pola temperatury elektryczego grzejka podłogowego z wykorzystaem procesora karty grafczej Streszczee. W artykule
Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.
Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
Planowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84
Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,
METODY ROZWIĄZYWANIA DUŻYCH UKŁADÓW RÓWNAŃ LINIOWYCH
DODATEK NR 2. METODY ROZWIĄZYWANIA DUŻYCH UKŁADÓW RÓWNAŃ LINIOWYCH Układy rówań występujące w etodze eleetów skończoych charakteryzują sę duży rzadk dodato określoy acerza. Metody rozwązywaa układów rówań
Podprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
Pomiary parametrów napięć i prądów przemiennych
Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach
PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI
Adrzej POWNUK *) PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI. Wprowadzee Mechaka lowa staow jak dotąd podstawowy obszar zateresowań żyerskch. Isteje jedak
Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem
Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )
Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI
Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze
. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
ALGORYTM OBLICZANIA JEDNORODNEGO PODŁOŻA GRUNTOWEGO O KSZTAŁCIE WYPUKŁYM
Bdowctwo 7 Rszard Hlbo LGORYTM OBLICZNI JDNORODNGO PODŁOŻ GRUNTOWGO O KSZTŁCI WYPUKŁYM Wprowadzee W cel zmeszea przekroowch wartośc sł wewętrzch ław fdametowe ależ zapewć take rozwązae, ab acsk a grt pod
ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7)
PROCES ZARZĄDZANIA PORTFELEM PAPIERÓW WARTOŚCIOWYCH WSPOMAGANY PRZEZ ŚRODOWISKO AUTOMATÓW KOMÓRKOWYCH Ageszka ULFIK Streszczee: W pracy przedstawoo sposób zarządzaa portfelem paperów wartoścowych wspomagay
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Matematyczny opis ryzyka
Aalza ryzyka kosztowego robót remotowo-budowlaych w warukach epełe formac Mgr ż Mchał Bętkowsk dr ż Adrze Powuk Wydzał Budowctwa Poltechka Śląska w Glwcach MchalBetkowsk@polslpl AdrzePowuk@polslpl Streszczee
Funkcja wiarogodności
Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza
Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?
Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)
Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta
Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów
WYZNACZANIE RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI NA SIATKACH NAKŁADAJĄCYCH SIĘ
MODELOWANIE INŻYNIERSKIE ISNN 896-77X 3, s. 67-7, Gliwice 006 WYZNACZANIE RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI NA SIATKACH NAKŁADAJĄCYCH SIĘ ZBIGNIEW KOSMA BOGDAN NOGA PRZEMYSŁAW MOTYL Instytut
Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INSTYTUT FIZYKI UJ BIOLOGIA 2016
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INTYTUT FIZYKI UJ BIOLOGIA 06 CEL ĆWICZEŃ. Obserwacja zjawsk efektów fzyczych. Doskoalee umejętośc
TMM-2 Analiza kinematyki manipulatora metodą analityczną
Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu
MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW
1. WSTĘP MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW mgr inż. Michał FOLUSIAK Instytut Lotnictwa W artykule przedstawiono wyniki dwu- i trójwymiarowych symulacji numerycznych opływu budynków wykonanych
Podstawy opracowania wyników pomiarowych, analiza błędów
Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego
WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI
WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI GIEŁDOWYCH PRZY UŻYCIU ALGORYTMÓW GENETYCZNYCH mgr ż. Marc Klmek Katedra Iformatyk Państwowa Wyższa Szkoła Zawodowa m. Papeża Jaa Pawła II w Bałej Podlaskej Streszczee:
W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ
9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego
Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń
Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym
TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA
Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).
TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu
( ) ( ) ( ) ( ) ( ) ( )
,,, ~ B, β ( β β ( ( Γ( β Γ + f ( Γ ( + ( + β + ( + β Γ + β Γ + Γ + β Γ + + β E Γ Γ β Γ Γ + + β Γ + Γ β + β β β Γ + β Γ + Γ + β Γ + + β E ( Γ Γ β Γ Γ + + β Γ + Γ β β + β Metoda mometów polega a przyrówau
... MATHCAD - PRACA 1/A
Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.
Matematyka II. x 3 jest funkcja
Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F
L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5
L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk
AKADEMIA MORSKA W SZCZECINIE
AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych
ĆWICZENIE 5 TESTY STATYSTYCZNE
ĆWICZENIE 5 TESTY STATYSTYCZNE Cel Przedstawee wybraych testów statystyczych zasad wyboru właścwego testu przeprowadzea go oraz terpretac wyów. Wprowadzee teoretycze Testem statystyczym azywamy metodę
PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH
PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH Z PRZEDMIOTU EWOLUCYJNE METODY OPTYMALIZACJI. Rozwązać zadae zadaa załaduku (plecakowego z ograczeam a dopuszczale wymary oraz cężar []: a algorytmem symulowaego wyżarzaa.
ĆWICZENIE 10 OPTYMALIZACJA STRUKTURY CZUJKI TEMPERATURY W ASPEKCIE NIEZWODNOŚCI
ĆWICZENIE 0 OPTYMALIZACJA STUKTUY CZUJKI TEMPEATUY W ASPEKCIE NIEZWODNOŚCI Cel ćwczea: zapozae z metodam optymalzac wewętrze struktury mozakowe czuk temperatury stosowae w systemach sygalzac pożaru; wyzaczee
Projekt 2 2. Wielomiany interpolujące
Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa
ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera)
Wyład 4 Blas rówań teor srężystośc Dooamy zestawea wszystch rówań teor srężystośc Gra rówań. Różczowe rówaa rówowag (war Navera Lczba rówań Lczba ewadomych X 6 (. Zwąz geometrycze (rówaa Cachy ego ( 6
Politechnika Poznańska
Aradusz Atcza Poltecha Pozańsa Wydzał Budowy Maszy Zarządzaa N u m e r y c z e w e r y f o w a e r o z w ą - z a e r ó w a a r u c h u o j e d y m s t o p u s w o b o d y Autor: Aradusz Atcza Promotor:
GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE
GEODEZJ INŻNIERJN SEMESTR 6 STUDI NIESTCJONRNE CZNNIKI WPŁWJĄCE N GEOMETRIĘ UDNKU/OIEKTU Zmaę geometr budyku mogą powodować m.: czyk atmosferycze, erówomere osadae płyty fudametowej mogące skutkować wychyleem
WYKŁAD IV. - gałąź opadajaca poniżej pkt. Kw (Q w > Q) dh dt gdzie: Q W zmienny odpływ wyrównany ze zbiornika Q zmienny dopływ do zbiornika
WYKŁAD IV Aalza przejśca fal powodzowej Odpływ ze zborka może być: - kotroloway: regulacja wydatku urządzeń zrzutowych a stały przepływ sekudowy (Q odp =cost.) przy pomocy zamkęć ruchomych. - ekotroloway:
będą niezależnymi zmiennymi losowymi z rozkładu o gęstości
Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc
1. Relacja preferencji
dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x
Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych
Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Zagadnienia optymalizacji kosztów w projektowaniu gazowych sieci rozdzielczych
Zagadea optymalzacj kosztów w projektowau gazowych sec rozdzelczych Autorzy: dr Ŝ. ech Dobrowolsk, m Ŝ. Wtold Maryka ( Ryek Eerg 6/200) Słowa kluczowe: rozdzelcza seć gazowa, stacje gazowe redukcyje, gazocąg
Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
Analiza wyniku finansowego - analiza wstępna
Aalza wyku fasowego - aalza wstępa dr Potr Ls Welkość wyku fasowego determuje: etowość przedsęborstwa Welkość podatku dochodowego Welkość kaptałów własych Welkość dywded 1 Aalza wyku fasowego ma szczególe
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI
Poltechka Gdańska Wydzał Elektrotechk Automatyk Katedra Iżyer Systemów Sterowaa MODELOWANIE I PODSAWY IDENYFIKACI Wybrae zagadea z optymalzacj. Materały pomoccze do zajęć ćwczeowych 5 Opracowae: Kazmerz
Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki
tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga
OPERATOROWO-DYSTRYBUCYJNA METODA PARAMETRÓW BRZEGOWYCH Z WYKORZYSTANIEM S FUNKCJI DO OBLICZEŃ DRGAŃ GIĘTNYCH KADŁUBA STATKU
Zbgew Powerza Akadema Morska w Gdy OPERATOROWO-DYSTRYBUCYJNA METODA PARAMETRÓW BRZEGOWYCH Z WYKORZYSTANIEM S FUNKCJI DO OBLICZEŃ DRGAŃ GIĘTNYCH KADŁUBA STATKU W artykule przedstawoo aaltyczą metodę oblczaa
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta
KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny
KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych
System finansowy gospodarki
System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym
Kazimierz Myślecki. Metoda elementów brzegowych w statyce dźwigarów powierzchniowych
Kazmerz Myśleck Metoda elemetów brzegowych w statyce dźwgarów powerzchowych Ofcya Wydawcza Poltechk Wrocławskej Wrocław 4 Recezec Potr KONDERLA Ryszard SYGULSKI Opracowae redakcyje Aleksadra WAWRZYNKOWSKA
J. Wyrwał, Wykłady z mechaniki materiałów METODA SIŁ Wprowadzenie
J. Wyrwał Wykłady z mechak materałów.. ETODA SIŁ... Wprowadzee etoda sł est prostą metodą rozwązywaa (obczaa reakc podporowych oraz wyzaczaa sł przekroowych) statycze ewyzaczaych (zewętrze wewętrze) układów
Projekt 3 Analiza masowa
Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga
Wyrażanie niepewności pomiaru
Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway
Twierdzeie Closa Problem: Jak duże musi być m, aby trzysekcye pole Closa ν(m,, r) )było ieblokowale w wąskim sesie? Twierdzeie Closa: Dwustroe trzysek
Sieci i Systemy z Itegracą Usług Trzysekcye pole Closa m r r m Własości kombiatorycze pól komutacyych Prof. dr hab. iż. Wociech Kabaciński r m Pole Closa est edozaczie defiiowae przez trókę m,, r i ozaczae
PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej
PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,
dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?
Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość
06 Model planowania sieci dostaw 1Po_1Pr_KT+KM
Nr Tytuł: Autor: 06 Model plaowaa sec dostaw 1Po_1Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:
5. OPTYMALIZACJA NIELINIOWA
5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH
L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Marzec 07 PODRĘCZNIKI Wstęp do aalzy błędu pomarowego Joh R. Taylor Wydawctwo Naukowe PWN Warszawa 999
Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym
Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego
JEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:
Liniowe relacje między zmiennymi
Lowe relacje mędzy zmeym Marta Zalewska Zakład Proflaktyk ZagrożeńŚrodowskowych Alergolog Ocea lowych relacj mędzy zmeym Metoda korelacj - określee rodzaju sły zależośc mędzy cecham. Metoda regresj 1 Uwaga