Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI
|
|
- Sylwia Duda
- 6 lat temu
- Przeglądów:
Transkrypt
1 Poltechka Gdańska Wydzał Elektrotechk Automatyk Katedra Iżyer Systemów Sterowaa MODELOWANIE I PODSAWY IDENYFIKACI Wybrae zagadea z optymalzacj. Materały pomoccze do zajęć ćwczeowych 5 Opracowae: Kazmerz Duzkewcz, dr hab. ż. Mchał Grochowsk, dr ż. Robert Potrowsk, dr ż. Arkadusz Cmńsk, mgr ż.
2 Metody wyzaczaa wartośc estymowaych podstawy optymalzacj Defcja zadaa optymalzacj W celu wyzaczea ajlepszych wartośc estymowaych welkośc ˆ ależy rozwązać zadae, w którym zajduje sę mmum fukcjoału e. Zadae tego typu azywają sę zadaam optymalzacj bez ograczeń. Defcja. Zadae optymalzacj Zadae optymalzacj pozwala a zalezee wektora X R mmalzującej fukcjoał (fukcja kryterala) spełając ograczea w postac rówań g : R R h : R R. k l erówośc Zadae optymalzacj formułuje sę w astępujący sposób: g h m X R (5) Zadae optymalzacj typu m (mmalzacj fukcjoału ) moża przekształcć w zadae optymalzacj maksymalzacj ma poprzez przekształcee: ma m (6) Wybrae krytera podzału zadań optymalzacj W zależośc od stee ograczeń: - zadaa bez ograczeń brak ograczeń; - zadaa z ograczeam steją ograczea rówoścowe lub/ erówoścowe. W zależośc od postac fukcj kryteralej oraz ograczeń zadaa optymalzacj moża podzelć a zadaa: - lowe fukcja kryterala ograczea są fukcjam lowym; - kwadratowe fukcja kryterala przyjmuje postać kwadratową a ograczea są fukcjam lowym; - elowe fukcja kryterala lub/ ograczea są fukcjam elowym. Defcje zwązae z zadaam optymalzacj O optmum w pukce moża mówć wtedy gdy wartość fukcj kryteralej w tym pukce jest ajlepsza z możlwych do osągęca, tz. spełająca ograczea zadaa. Poeważ rozważamy zwykle zadaa mmalzacj fukcj, pukt optymaly będzemy azywać mmum. Fukcja może meć wele ekstremów ale tylko jedo z ch jest rozwązaem zadaa optymalzacj.
3 Defcja. Pukt stacjoary Pukt jest puktem stacjoarym fukcjoału ( gradet fukcjoału)., gdy spełoy jest waruek Defcja 3. Mmum słabe (lokale) Pukt jest mmum słabym (lokalym) fukcjoału, tak że zachodz dla wszystkch takch, że Defcja. Mmum sle (lokale) Pukt jest mmum slym (lokalym) fukcjoału, tak że zachodz dla wszystkch takch, że, jeżel steje skalar., jeżel steje skalar. Defcja 5. Mmum globale Pukt jest ukatowym mmum globalym fukcjoału dla wszystkch. jeżel zachodz Przykład Dla fukcjoału a Rysuku przedstawoo mmum lokale (sle) (, ) maksmum lokale (sle) ( ) oraz mmum globale (, ). Rysuek. Ilustracja mmum lokalego slego oraz globalego maksmum slego 3
4 Przykład Dla fukcjoału 8 3 mmum lokale (sle),;,,55;,55. a Rysuku przedstawoo oraz mmum globale Rysuek 3. Ilustracja rozwązaa do Przykładu 3 Przykład 3,5 a Rysuku 3 przedstawoo mmum Dla fukcjoału lokale słabe wzdłuż prostej. Rysuek. Ilustracja rozwązaa Przykładu 3 Do sprawdzea czy day pukt jest rozwązaem lokalym służą dwa waruk koecze mmum lokalego: Defcja 6. Waruek perwszego rzędu: eżel jest puktem lokalego mmum cągły w otwartym otoczeu, wówczas jest różczkowale w sposób (7)
5 Gradet fukcjoału (jakoba) jest w postac: (8) Defcja 7. Waruek drugego rzędu eżel otoczeu jest puktem lokalego mmum, wówczas jest cągłe w pewym otwartym dla dowolych (9) (),gdze hessa fukcjoału w postac: () Przykład 3 Dla fukcjoału sprawdź waruk mmum perwszego drugego rzędu dla puktów, oraz, Rozwązae akoba fukcjoału jest w postac Dla puktu. 5 3 waruek perwszego rzędu jest postac:, 3
6 Dla puktu, waruek perwszego rzędu jest postac: 3 3 Drug pukt speła waruek perwszego rzędu. Sprawdźmy waruek rzędu 6 Pukt, speła waruk koecze perwszego drugego rzędu dla mmum lokalego. W przypadku, gdy fukcjoał jest tzw. fukcją wypukłą, lokale mmum jest jedocześe mmum globalym. Defcja 8. Zbór wypukły Zbór R X jest wypukły, jeśl dla dowolych dwóch puktów X, każdy odcek łączący te dwa pukty speła waruek: X, :, () Przykładam dwuwymarowych fgur wypukłych są mędzy ym: koło, półkole, elpsa, trójkąt. W przestrze trójwymarowej: kula, rówoległośca, graastosłup, tp.
7 Na Rysuku 5 przedstawoo przykładowe zbory wypukłe ewypukłe. a) b) Rysuek 5. Ilustracja zborów: a) wypukłych b) ewypukłych. Defcja 9. Fukcja wypukła Nech będze fukcją różczkowalą oraz zbór X R będze zborem wypukłym. Fukcja jest wypukła jeśl dla dowolych, X zachodz dowola z poższych zależośc: ;, Fukcja jest wklęsła, jeśl (3a) (3b) jest wypukła odwrote. Defcja. Fukcja wklęsła Nech jest fukcja różczkowalą w całej przestrze wklęsła dla dowolych dwóch puktów, X, gdy: X R. Fukcja ta jest ;, (a) (b) Na Rysuku 6 przedstawoo przykładową fukcje wypukłą, ewypukłą wklęsłą. a) b) c) Rysuek 6. Ilustracja różych fukcj: a) wypukłej, b) ewypukłej c) wklęsłej. 7
8 Przykład 5 Sprawdź czy fukcja, 3. Rozwązae jest wypukła dla przykładowych puktów Fukcja jest wypukła poeważ parametr zawera sę w zakładaym przedzale,. Przykład 6 Sprawdź czy fukcja, 3. Rozwązae jest wklęsła dla przykładowych puktów Fukcja Przykład jest wklęsła. Sprawdź czy fukcja ep, 5. Rozwązae Sprawdźmy waruek wypukłośc fukcj jest wklęsła/wypukła dla przykładowych puktów 5 5 ep 5 ep ep 5 8,,36,36 6 8,. 5 oraz waruek wklęsłośc fukcj 5 5 ep Fukcja ep 5 ep ep 5 8,,36,36 6 8,. 5 jest wypukła. 8
9 Rodzaje zadań optymalzacj metody ch rozwązywaa Na ćwczeach rozważać będzemy klka przypadków ZNK jako zadaa optymalzacj:. lowo kwadratowe zadae optymalzacj bez ograczeń,. ważoe lowo kwadratowe zadae optymalzacj bez ograczeń; 3. ważoe lowo kwadratowe zadae optymalzacj z rówoścowym lowym ograczeam; Lowo kwadratowe ZNK bez ograczeń W detyfkacj, tego typu zadaa rozwązujemy gdy model, dla którego poszukujemy parametrów jest w postac:,gdze t f,u ŷt ˆ h t (5) 3 h - określoy zbór ezależych fukcj bazowych, p.: t,t,t,, 3 st,st,s t,, ept,ept,ep3t,. Stąd suma kwadratów błędów resztkowych w zwartej postac moża przedstawć jako: eˆ eˆ ~ y Hˆ ~ y Hˆ ~ y ~ y ~ y Hˆ ˆ H Hˆ (6) gdze macerz H jest w postac: H h h h h t h t h t h t t h t h t h t t h t h t h t j t h t h t h t m m j j m j m (7) Dla rozważaego zadaa ajmejszych kwadratów w postac (6) waruek koeczy wystarczający mmum moża przedstawć jako: H Hˆ H ~ y (8) H ˆ Hˆ dla dowolych (9) W celu sprawdzea czy spłooe są waruk lokalego mmum ależy sprawdzć czy macerz hesjau H H jest dodato półokreśloa. Określoość macerzy moża zbadać p. poprzez sprawdzee wartośc własych tej macerzy wykorzystując astępujące twerdzea: 9
10 werdzee. Macerz dodato określoa Macerz jest dodato określoa, jeżel wszystke jej wartośc włase są dodate. werdzee. Macerz dodato półokreśloa Macerz jest dodato półokreśloa, jeżel wszystke jej wartośc włase są eujeme. Przykład 8 Zbadaj określoość macerzy w postac: 5 3 A Rozwązae 5, I A Macerz jest dodato określoa Przykład 9 Dla fukcjoału sprawdź waruk lokalego mmum. Rozwązae Waruek puktu stacjoarego jest w postac:,5 Waruek puktu stacjoarego drugego rzędu w postac: Sprawdzee waruków lokalego mmum przy pomocy waruku określoośc macerzy hesjau: Poeważ e moża stwerdzć czy macerz hesjau jest dodato określoa czy dodato póło kreśloa, stad ależy zbadać dodatą półokreśloość macerzy hesjau.
11 I, 6 8 Poeważ wartośc włase macerzy hesjau są eujeme stąd pukt ;, 5 jest lokalym slym mmum fukcjoału. Wykorzystując waruek perwszego rzędu moża wykazać, że wyzaczee ezaych parametrów ZNK sprowadza sę do rozwązaa układu rówań ormalych w postac: H Hˆ H y ~ () Zakładając, że macerz w postac: H H jest eosoblwa otrzymujemy jawe rozwązae ZNK H H H ~ y ˆ () Ważoe lowo kwadratowe ZNK bez ograczeń Rozważmy przypadek, gdy wykoujemy eksperymet polegający detyfkacj parametrów pewego procesu. W tym celu wypożyczylśmy od ej frmy dokłade przyrządy pomarowe (mały błąd pomarowy). Wykoujemy pomary wejść wyjść procesu. W trakce pomarów jedo z urządzeń pomarowych zostało uszkodzoe. Poeważ e możemy przerwać eksperymetu e możemy stracć ceych daych pomarowych o procese, postaawamy zastąpć uszkodzoe urządzee pomarowe ym ale mej dokładym (wększy błąd pomaru). Gdy eksperymet sę skończył dokoujemy detyfkacj parametrów procesu. W przypadku wyżej opsaym ZNK ezacze zme swoja postać. Należy tylko w fukcj kryteralej uwzględć welkość błędów pomarowych poprzez dodae macerzy wag W. Należy założyć, że ważejsze są pomary wykoywae w mejszym błędem (wększa wartość elemetu macerzy wag W ). Zadae to moża przestawć w postac: eˆ Weˆ ~ ~ ~ y Hˆ W y Hˆ y Wy y WHˆ ˆ H WHˆ ~ ~ () Dla rozważaego ZNK w postac () waruek koeczy wystarczający mmum moża przedstawć jako: H WHˆ H W~ y (3) H ˆ WHˆ dla dowolych () W metodze tej oprócz waruk (5) (6) mmum lokalego ależy także sprawdzć czy macerz wag W jest dodato określoa.
12 Ważoe lowo kwadratowe ZNK z rówoścowym lowym ograczeam Rozważmy te sam eksperymet jak a początku Rozdzału Po eksperymece stwerdzlśmy, że urządzee pomarowe, którym zastąplśmy uszkodzoe ma tak duży błąd pomaru, że błędy dokładych urządzeń jest pomjale mały. Podzelmy lczebość pomarów a dwe kategore: - m pomary mej dokłade; - m pomary dokłade (błąd pomjale mały). Oczywstym jest poczyee dwóch założeń: Załóżmy, że dwa wektory ozaczają: - ~ y~,,y ~,, ~ j y m m m m m ; m (5) (6) y wektor wartośc y merzoych ograczoa dokładoścą; - ~ y y~ ~,,y ~ j,, y wektor wartośc y merzoych dokłade. m Dodatkowo pomary w obrębe wektora y mogą meć zróżcowaa dokładość stąd wprowadza sę macerz wag W. Dla wszystkch przeprowadzoych pomarów określae są macerze wartośc fukcj bazowych, odpowedo H, dla pomarów edokładych H, dla pomarów dokładych. Macerze te są w postac: H h h h t h t h t t h t h t j t h t h t m j m j m ; H h h h t h t h t t h t h t j t h t h t m j m j m (7) Dla perwszej kategor pomarów błędy pomarowe wyjśca jak błąd resztkowy są róże od zera e ~ ; eˆ. Natomast dla drugej kategor pomarów błędy pomaru wyjśca jak błędy resztkowe zakłada sę, że są zerowe e ~ ; eˆ. Przy powyższych założeach rówae obserwacj będze mało postać: ~ y H e ~ y H (8)
13 Mając a uwadze powyższe założea ZNK ależy sformułować astępująco: Zaleźć wektor ˆ ˆ,ˆ,,ˆ,, ˆ resztkowych (resduów) pomarów edokładych:, który mmalzuje sumę kwadratów błędów eˆ Weˆ ~ y ~ W y ~ y WH ~ y H ˆ W ~ y H ˆ ˆ ˆ H W H ˆ (9) spełając ograczea rówoścowe pomarów dokładych: ~ y H ˆ (3) Powyższe zadae optymalzacj moża rozwązać przy pomocy tzw. metody możków Lagrage a. Rozważaa dotyczące tej metody rozpoczemy od podaa twerdzea dotyczącego tej metody. werdzee 3. Zasada Lagrage a Nech dae będą stałe,,,, l R take, że w pukce R fukcja l g ma mmum bez ograczeń. Wtedy pukt dopuszczalym określoym przez ograczea (3) jest mmum fukcj w zborze g dla,, l. Zastosowae zasady Lagrage a spowodowało, że perwoty k - wymarowy problem mmalzacj z ograczeam g został zastąpoy przez k l wymarowy problem mmalzacj zastępczej fukcj (6) bez ograczeń. Dalsze rozważaa prowadza do sformułowaa waruków koeczych wystarczających stea rozwązaa os azwą metody możków Lagrage a. Załóżmy, że jest klasy rówoścowe: C. Zbór dopuszczaly zadaa tworzą ograczea Φ : g,,,l,l k (3) Nech fukcje w której stałe g będą róweż klasy L λ C. Utwórzmy fukcję Lagrage a l, (33) tworzą wektor możków Lagrage a,, 3 g λ.,, l
14 Warukem koeczym stea mmum bezwarukowego fukcj, λ pukce, λ jest: L w L,λ,,,k L,λ (3) L,λ,,,l Przykład Rozwąż zadae optymalzacj typu mmum, złożoe z fukcj kryteralej oraz ograczea g. Rozwązae Należy ajperw sformułować fukcję Lagrage a, która jest w postac: l L, λ g Następe sprawdzamy waruek koeczy L, λ L, λ L, λ L, λ L, λ Otrzymalśmy układ rówań z trzema rówaam trzema ewadomym, który ależy rozwązać ;.5 ;. 5 Wartośc fukcj kryteralej dla puktu.75;.5 wyos Rozwązaem jest pukt.75;.5 mmalą wartość. 5 dla którego fukcja celu przyjmuje.
15 Przykład Rozwąż zadae optymalzacj typu mmum, złożoe z fukcj kryteralej oraz ograczeń 3 ; 3 5. g Rozwązae Należy ajperw sformułować fukcję Lagrage a, która jest w postac: g l L, λ g Następe sprawdzamy waruek koeczy L, λ 3 L, λ 3 L, λ L, λ L, λ 3 L, λ 3 5 Otrzymalśmy układ rówań z czterema rówaam czterema ewadomym, który ależy rozwązać ,5;,63 ; λ,5;.58 Wartośc fukcj kryteralej dla puktu,5;,63 wyos.,5,63,5,63, 59 Rozwązaem jest pukt,5;,63 mmalą wartość, 59. dla którego fukcja celu przyjmuje 5
Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
Bardziej szczegółowoEKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.
Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,
Bardziej szczegółowo1. Relacja preferencji
dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
Bardziej szczegółowoFUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Bardziej szczegółowo5. OPTYMALIZACJA NIELINIOWA
5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe
Bardziej szczegółowoTeoria i metody optymalizacji
Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f( : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:
Bardziej szczegółowon R ZałóŜmy, Ŝe istnieje d, dla którego: Metody optymalizacji Dr inŝ. Ewa Szlachcic otwarte otoczenie R n punktu x, Ŝe
Sforułowae owae zaaa otyalzacj elowej bez ograczeń: Fukcja celu f() : Zaae otyalzacj olega a zalezeu wektora zeych ecyzyjych aleŝącego o zboru rozwązań ouszczalych R takego Ŝe la R Co jest rówozacze zasow:
Bardziej szczegółowof f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu
METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu
Bardziej szczegółowoRegresja REGRESJA
Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu
Bardziej szczegółowoOBLICZANIE NIEPEWNOŚCI METODĄ TYPU B
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość
Bardziej szczegółowoPodprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
Bardziej szczegółowo3. OPTYMALIZACJA NIELINIOWA
Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz
Bardziej szczegółowoPodstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
Bardziej szczegółowoSTATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
Bardziej szczegółowoMATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ
MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wykład Układy rówań metody aaltycze Metody umerycze rozwązywaa rówań lczbowych Prof. Ato Kozoł, Wydzał Chemczy Poltechk Wrocławskej ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ
Bardziej szczegółowoMatematyka dyskretna. 10. Funkcja Möbiusa
Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1
Bardziej szczegółowoN ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Bardziej szczegółowoteorii optymalizacji
Poltechka Gdańska Wydzał Oceaotechk Okrętowctwa St. II stop. se. I Podstawy teor optyalzac wykład 7 M. H. Ghae Ma 5 Podstawy teor optyalzac Oceaotechka II stop. se. I 5 Podstawy teor optyalzac Oceaotechka
Bardziej szczegółowoPermutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
Bardziej szczegółowoKONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny
KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych
Bardziej szczegółowoPlanowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
Bardziej szczegółowo... MATHCAD - PRACA 1/A
Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.
Bardziej szczegółowoProjekt 2 2. Wielomiany interpolujące
Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa
Bardziej szczegółowo( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min
Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego
Bardziej szczegółowoMETODY KOMPUTEROWE 1
MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc
Bardziej szczegółowo8.1 Zbieżność ciągu i szeregu funkcyjnego
Rozdzał 8 Cąg szereg fukcyje 8.1 Zbeżość cągu szeregu fukcyjego Dla skrócea zapsu przyjmjmy pewe ozaczee. Defcja. Nech X, Y. Przez Y X ozaczamy zbór wszystkch fukcj określoych a zborze X o wartoścach w
Bardziej szczegółowoIV. ZMIENNE LOSOWE DWUWYMIAROWE
IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję
Bardziej szczegółowoBadania operacyjne. Algorytm simpleks. Organizacja zajęć. Zaliczenie. Literatura. Program zajęć
Algorytm smpleks adaa operacyje Wykład adaa operacyje dr hab. ż. Joaa Józefowska, prof.pp Istytut Iformatyk Orgazacja zajęć 5 godz wykładów dr hab. ż. J. Józefowska, prof. PP Obecość a laboratorach jest
Bardziej szczegółowoPRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH
PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH Z PRZEDMIOTU EWOLUCYJNE METODY OPTYMALIZACJI. Rozwązać zadae zadaa załaduku (plecakowego z ograczeam a dopuszczale wymary oraz cężar []: a algorytmem symulowaego wyżarzaa.
Bardziej szczegółowoFunkcja wiarogodności
Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza
Bardziej szczegółowoAnaliza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Bardziej szczegółowoopisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
Bardziej szczegółowoW zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Bardziej szczegółowoPŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej
PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
Bardziej szczegółowoPRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI
Adrzej POWNUK *) PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI. Wprowadzee Mechaka lowa staow jak dotąd podstawowy obszar zateresowań żyerskch. Isteje jedak
Bardziej szczegółowoTablica Galtona. Mechaniczny model rozkładu normalnego (M10)
Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,
Bardziej szczegółowoWyrażanie niepewności pomiaru
Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway
Bardziej szczegółowoIndukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
Bardziej szczegółowoTMM-2 Analiza kinematyki manipulatora metodą analityczną
Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu
Bardziej szczegółowoPOPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
Bardziej szczegółowoModelowanie i Analiza Danych Przestrzennych
Modelowae Aalza Daych Przestrzeych Wykład 8 Adrze Leśak Katedra Geoformatyk Iformatyk Stosowae Akadema Górczo-Hutcza w Krakowe Jaką postać ma warogram daych z tredem? Moża o wylczyć teoretycze prostego
Bardziej szczegółowoMh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem
Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )
Bardziej szczegółowoMatematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył.
Wkład. Całka podwója. Zamaa a całkę terowaą. Oblczae pól obszarów objętośc brł.. Całka podwója w prostokące. Jak pamętam, całka ozaczoa z cągłej fukcj jedej zmeej wprowadzoa bła w celu oblczaa pola powerzch
Bardziej szczegółowoPortfel złożony z wielu papierów wartościowych
Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe
Bardziej szczegółowoPomiary parametrów napięć i prądów przemiennych
Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach
Bardziej szczegółowoL.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5
L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
Bardziej szczegółowoStatystyczne charakterystyki liczbowe szeregu
Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc
Bardziej szczegółowoStatystyka Opisowa 2014 część 3. Katarzyna Lubnauer
Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t
Bardziej szczegółowoi = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
Bardziej szczegółowoWYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU
Fzyka cała stałeo WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU 1. Ops teoretyczy do ćwczea zameszczoy jest a stroe www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomaroweo
Bardziej szczegółowoBadania Maszyn CNC. Nr 2
Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,
Bardziej szczegółowoW zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Bardziej szczegółowoMatematyczny opis ryzyka
Aalza ryzyka kosztowego robót remotowo-budowlaych w warukach epełe formac Mgr ż Mchał Bętkowsk dr ż Adrze Powuk Wydzał Budowctwa Poltechka Śląska w Glwcach MchalBetkowsk@polslpl AdrzePowuk@polslpl Streszczee
Bardziej szczegółowodr Michał Konopczyński Ekonomia matematyczna ćwiczenia
dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom
Bardziej szczegółowoWSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX. min. min
WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORAORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX Probley prograowae celowego lorazowego to probley prograowae ateatyczego elowego, który oża sktecze zlearyzować
Bardziej szczegółowoWnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE
AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych
Bardziej szczegółowoMODELE OBIEKTÓW W 3-D3 część
WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego
Bardziej szczegółowoWyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.
Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór
Bardziej szczegółowo. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
Bardziej szczegółowo08 Model planowania sieci dostaw 1Po_2Pr_KT+KM
Nr Tytuł: Autor: 08 Model plaowaa sec dostaw 1Po_2Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:
Bardziej szczegółowoMiary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej
Bardziej szczegółowoANALIZA INPUT - OUTPUT
Aalza put - output Notatk S Dorosewcz J Staseńko Stroa z 28 SŁAWOMIR DOROSIEWICZ JUSTYNA STASIEŃKO ANALIZA INPUT - OUTPUT NOTATKI Istytut Ekoometr SGH Aalza put - output Notatk S Dorosewcz J Staseńko Stroa
Bardziej szczegółowoSystem finansowy gospodarki
System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym
Bardziej szczegółowoPodstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki
tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga
Bardziej szczegółowoPERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X
PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac
Bardziej szczegółowoLaboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej
Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.
Bardziej szczegółowoGEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE
GEODEZJ INŻNIERJN SEMESTR 6 STUDI NIESTCJONRNE CZNNIKI WPŁWJĄCE N GEOMETRIĘ UDNKU/OIEKTU Zmaę geometr budyku mogą powodować m.: czyk atmosferycze, erówomere osadae płyty fudametowej mogące skutkować wychyleem
Bardziej szczegółowoPodstawy opracowania wyników pomiarowych, analiza błędów
Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego
Bardziej szczegółowoTESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).
TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu
Bardziej szczegółowoELEMENTY TEORII MOŻLIWOŚCI
ELEMENTY TEORII MOŻLIWOŚCI Opracował: M. Kweselewcz Zadeh (978) wprowadzł pojęce rozkładu możlwośc jako rozmyte ograczee, kóre odzaływuje w sposób elastyczy a wartośc przypsae daej zmeej. Defcja. Nech
Bardziej szczegółowoMateriały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
Bardziej szczegółowoVI. TWIERDZENIA GRANICZNE
VI. TWIERDZENIA GRANICZNE 6.. Wprowadzee Twerdzea gracze dotyczą własośc graczych cągów zmeych losowych dzelą sę a:! twerdzea lokale opsują zbeżośc cągu fukcj prawdopodobeństwa w przypadku cągu {X } zmeych
Bardziej szczegółowoJego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.
Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.
Bardziej szczegółowoOKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)
Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały
Bardziej szczegółowodev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?
Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne
TATYTYKA MATEMATYCZNA WYKŁAD Wadomośc wstępe tatystyka to dyscypla aukowa, której zadaem jest wykrywae, aalza ops prawdłowośc występujących w procesach masowych. Populacja to zborowość podlegająca badau
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest
Bardziej szczegółowoZmiana bazy i macierz przejścia
Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce
Bardziej szczegółowo11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD:
//4 Gry o sue zero - gry rozgrywae w strategach eszaych STRATEGIE IESZANE - OTYWACJA. ROZWAśY PRZYKŁAD: 5 DEFINICJA..6 Strategą eszaą π gracza P azyway kaŝdy rozkład prawdopodobeństwa określoy a zborze
Bardziej szczegółowoZestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
Bardziej szczegółowoWYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ
9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego
Bardziej szczegółowoL.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH
L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze
Bardziej szczegółowoUOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie
B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety
Bardziej szczegółowoMonika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu
Bardziej szczegółowoStatystyka Inżynierska
Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe
Bardziej szczegółowoProjekt 3 Analiza masowa
Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga
Bardziej szczegółowobędą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka
Bardziej szczegółowoMETODY ANALIZY DANYCH DOŚWIADCZALNYCH
POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych
Bardziej szczegółowoBadania Operacyjne (dualnośc w programowaniu liniowym)
Badaa Operacye (dualośc w programowau lowym) Zadae programowaa lowego (PL) w postac stadardowe a maksmum () c x = max, podczas gdy spełoe są erówośc () ax = b ( m ), x 0 ( ) Zadae programowaa lowego (PL)
Bardziej szczegółowoModele wartości pieniądza w czasie
Joaa Ceślak, Paula Bawej Modele wartośc peądza w czase Podstawowe pojęca ozaczea Kaptał (ag. prcpal), kaptał początkowy, wartośd początkowa westycj - peądze jake zostały wpłacoe a początku westycj (a początku
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Zajęcia 5
Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Marzec 07 PODRĘCZNIKI Wstęp do aalzy błędu pomarowego Joh R. Taylor Wydawctwo Naukowe PWN Warszawa 999
Bardziej szczegółowoTARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA
Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej
Bardziej szczegółowoZaawansowane metody numeryczne
Zaawasowae metod umercze Programowae lowe (problem dual, program low w lczbach całkowtch) Dualość est kluczowm poęcem programowaa lowego. Pozwala a udowodee że otrzmwae rozwązaa są optmale. Zagadee duale
Bardziej szczegółowo