Zmiana entropii w przemianach odwracalnych
|
|
- Justyna Paluch
- 5 lat temu
- Przeglądów:
Transkrypt
1 Wykład 4 Zmana entrop w przemanach odwracalnych: przemany obegu Carnota, spręŝane gazu półdoskonałego ze schładzanem, zobaryczne wytwarzane przegrzewane pary techncznej rzemany zentropowe gazu doskonałego półdoskonałego przykład: slnk spalnowy (model standardowy z powetrzem) Izentropowe spręŝane pary (na przykładze R-34a) Równana Gbbsa Zmana entrop masy kontrolnej w przemane neodwracalnej Generacja entrop w układze zamknętym Generacja entrop; transfer cepła przy skończonej róŝncy temperatur Zasada wzrostu entrop; II zasada termodynamk Zmany entrop masy kontrolnej w czase; równane knetyczne
2 Zmana entrop w przemanach odwracalnych Nerówność Claususa: staje sę równoścą dla obegów odwracalnych: co prowadz do funkcj stanu S δ Q zwanej entropą. Dla przemany zachodz : S S. odwr W tablcach przyjmuje sę jakś stan odnesena o entrop którą oznaczymy S (np. dla wody S jest na ogół entropą ceczy w punkce potrójnym). onewaŝ: S S S S δ Q ( S S ) δ odwr Q odwr wdać, Ŝe wybór stanu odnesena jest obojętny, przynajmnej dopók nteresują nas róŝnce entrop a ne jej wartośc bezwzględne. moŝemy zatem przyjąć, Ŝe: S n S n S n δ Q jakaś odwr taka właśne jest procedura zastosowana w tablcach termodynamcznych.
3 Zmana entrop w przemanach obegu Carnota Obeg Carnota 3 4 g. Izotermczny pobór cepła ze źródła górnego, g : S S Q δ g g Q g d Adabatyczne rozpręŝane (bez wymany cepła): S3 S a b S Dagram (, S) dla obegu Carnota pole (ba) cepło Q g pobrane z g pole (34ab3) cepło Q d oddane do d pole zacenone (34) praca wykonana, W Q g Q d wydajność, praca, cepła Q g Q d : zmany z temperaturam g d 3 4. Izotermczne wydalane cepła do źródła dolnego, d : S 4 S 3 4 Q δ 3 d adabatyczne zentropowe (stała entropa) 3 d Q 4. Adabatyczne spręŝane (bez wymany cepła): S S4 rzemany 3 4 : odwracalne 3 d 4
4 Zmana entrop spręŝane gazu półdoskonałego ze schładzanem spręŝarka powetrza owetrze jest spręŝane ze stanu początkowego ( ka, 7ºC) do stanu końcowego (6 ka, 57ºC). Oblczyć zmanę entrop powetrza w wynku tego procesu przy po-mocy tablc termodynamcznych. ka, 9 K WZÓR (wykład 3, w kj/kg K): Q 6 ka, 33 K, 6 ka, ka s s ( ) s s R ln Rozwązane (tablca A.7 SBvW): [(6,9646 6,835)kJ/kg K] (,87kJ/kg K) ln(6ka/ka),94,87,798,3848kj/kg K (entropa spada wskutek odpływu cepła z układu (schładzane) Gdyby ne strata cepła, przemana byłaby zentropowa (s s ) wówczas: SpręŜane powetrza; zentropowe ze stratą cepła (schładzanem) S s s + R ln 7,349kJ/kg K co odpowada 8,9 C (w porównanu z 57 C) 4
5 Zmana entrop zobaryczne wytwarzane pary techncznej temperatura, K 6 4 q a b c entropa właścwa s, kj/kg K Dagram (, s) dla procesu wytwarzana pary z ceczy nasyconej ole pod krzywą na dagrame (, s) to cepło przekazane lub oddane 3 Wytwarzane pary przy stałym cśnenu: przemana (cecz nasycona) (para nasycona sucha) Q s s δ dq m m gdze temperatura nasycena (wrzena) : q h h q ds jest polem powerzchn pod krzywą przemany, pole (ba). Dla przemany zobarycznej: q bo, z I zasady: q u u+ dv u u+ h ( v v) ( u+ v) h 5
6 Zmana entrop przegrzewane pary techncznej temperatura, K 6 4 a b c entropa właścwa s, kj/kg K 3 q 3 rzemana 3, przegrzewane pary: s 3 s m 3 δ Q Znając stan (np., wemy takŝe Ŝe to para nasycona sucha) stan 3 ( ) moŝemy wyznaczyć zmanę entrop z tablc lub programu ES. Cepło przekazane w trakce przegrzewana: 3 3 q3 ds jest polem powerzchn pod krzywą przemany, czyl polem (3cb). Oblczyć cepło przegrzewana moŝna z I zasady: ( v3 v) h3 q3 u3 u+ h wykorzystując fakt, Ŝe takŝe ta część procesu przygotowana pary techncznej przebega przy stałym cśnenu (zobaryczne). 6
7 rzemany zentropowe gazu doskonałego półdoskonałego GAZ DOSKONAŁY rzypomnene (wykład 3): s s C ln + R ln s s C ln R ln Ze wzorów tych, dla przemany zentropowej (s s ) otrzymamy: C C C C C C co prowadz do wzorów, które otrzymalśmy dla przemany adabatycznej gazu doskonałego w wykładze 6: γ const; γ- const; -γ γ const gdze: γ C C Wzory te otrzymalśmy przy załoŝenu, Ŝe cepła właścwe C C ne zaleŝą od temperatury. GAZ DOSKONAŁY 7
8 dla gazu półdoskonałego musmy uwzględnć zaleŝność C C od temperatury (pojawają sę całk): GAZ ÓŁDOSKONAŁY rzypomnene (wykład 3): Ze wzoru z C, dla przemany zentropowej (s s ) otrzymamy: C s s d+ R ln s s C d R ln ln C C C d d+ d s R R R ( ) s co prowadz do: exp ( ) s s s gdze: ( ) exp r nazywamy cśnenem względnym (relatve pressure). R R s exp R s exp R r r 8
9 Wykorzystując równane stanu gazu doskonałego: v R mamy, dla stanów : v v R R gdze welkość v r / r to objętość właścwa względna (relatve specfc volume), która zaleŝy tylko od temperatury, podobne jak r, jest stablcowana (dla powetrza zobacz tablcę A.7 SBvW). r r r r v v r r. Model standardowy slnków spalnowych Gaz roboczy to powetrze (pomjamy palwo produkty spalana) zakładamy takŝe, Ŝe: ) gaz roboczy pracuje w obegu zamknętym zachowuje sę jak gaz półdoskonały ) wszystke procesy tworzące obeg są odwracalne 3) proces spalana palwa zastępujemy procesem dodawana cepła z zewnętrznego źródła 4) proces usuwana spaln (wydechu) zastępujemy procesem wydalana cepła, który przywraca gazow roboczemu stan początkowy. 9
10 rzykład W slnku samochodowym powetrze jest spręŝane odwracalne adabatyczne. emperatura cśnene początkowe wynoszą 5 C 95 ka. Jeśl stopeń spręŝana / w układze cylnder tłok wynos 8, jaka będze temperatura powetrza po spręŝenu? Jake będze cśnene spręŝana (kompresja)? Rozwązane Zastosujemy wyprowadzone wcześnej wzory dla przemany zentropowej: v v v v r r Dla 98,5 K, wartość v r odczytana z tablc, wynos: 8,88. A zatem v r dla temperatury końcowej (neznanej) wynese: 8,88/8,786. Z tablcy A.7 (SbvW) odczytujemy, Ŝe temperatura końcowa spręŝonego powetrza będze zawarta pomędzy 66 K (3,66) 68 K (,88). Interpolacja lnowa daje 669,6 K (396,5 C). Cśnene ( / ) (v r /v r ) 95 (669,6/98,5) 8 77 ka. Wynk z programu ES: 39,3 C 696 ka
11 rosnąca sła F Izentropowe spręŝane pary (na przykładze R-34a) R-34a para nasycona arę nasyconą R-34a (-5 C) spręŝamy w procese zentropowym (adabatycznym odwracalnym) do cśnena, Ma. Jaka będze temperatura spręŝonego czynnka? Oblcz pracę wykonaną w tym procese. Rozwązane: rogram ES: kalkulator C, R34a. Wprowadzamy dane dla stanu : -5 C, x. Wylczamy, 44.5 ka, v.86 m3/kg, u 6,7 kj/kg, h kj/kg, s,997 kj/kgk, Wprowadzamy stan :, Ma, s s. Wylczamy. Otrzymujemy parę przegrzaną o temp. 44,6 C o energ wewnętrznej u 54,69 kj/kg. raca w 54,69 6,7 8,5 kj/kg temperatura, K Analza: I zasada: w u u II zasada: s s stan stan log(objętość właścwa, m3/kg)
12 Równana Gbbsa Równana Gbbsa to dwa waŝne zwązk pomędzy parametram termodynamcznym dla substancj prostej ścślwej: wlot ds ds du+ d dh d obe relacje obowązują dla procesów odwracalnych neodwracalnych, w układach zamknętych otwartych układ zamknęty wylot układ otwarty I relacja (wyprowadzene dla układu zamknętego, dla procesu odwracalnego) I zasada: du+ δw Dla procesu odwracalnego (substancja prosta ścślwa): ds δw d odstawając do I zasady otrzymujemy: II relacja ds du+ d Z defncj entalp: H U+ mamy: dh du+ d+ d odstawając do I relacj otrzymujemy II relację: ds dh d
13 Zmana entrop masy kontrolnej w przemane neodwracalnej Dla obegów neodwracalnych obowązuje nerówność Claususa: <, a odwr. b δ Q a + b a c b, c b neodwr. Odejmując stronam: δ Q c δ + Q a b < c > czyl: < S S c a rocesy: a, b są odwracalne c a proces: jest neodwracalny neodwr lub: < ds odwr 3
14 Generacja entrop w układze zamknętym onewaŝ zmana entrop w procese neodwracalnym jest wększa nŝby to wynkało z wymany cepła układu z otoczenem: neodwr < ds moŝemy przyjąć, Ŝe zachodz generacja entrop w układze (masa kontrolna) w procese wynkająca z jego neodwracalnośc, co moŝna zapsać w forme równana: +δs gen ds gdze: δs gen >. Mamy wówczas: Q Q S ds δ + δsgen δ S gen S + Neodwracalność w układze zwększa entropę: Q S δ S gen S + 4
15 Dla procesów odwracalnych w układach zamknętych: δw d δsgen ds Dla procesów neodwracalnych: dsneodwr + δsgen, wzrost entrop jest wększy nŝby to wynkało z wymany cepła z otoczenem jednocześne: I zasada termodynamk dla układu zamknętego: δw neodwr neodwr du a ponewaŝ, z I równana Gbbsa: ds du+ d mamy: δw neodwr neodwr ds+ d d δs gen Neodwracalność w układze obnŝa pracę: δw d δ neodwr S gen praca stracona 5
16 Dla układu zamknętego (masa kontrolna) neodwracalność procesu zwększa entropę układu generując dodatkową entropę δs gen : ds ± odsumowane +δsgen ; δsgen > natomast wymana cepła z otoczenem moŝe entropę układu podwyŝszyć lub obnŝyć; cepło wpływające do układu zwększa entropę układu, cepło wydalane z układu jego entropę obnŝa. Dla procesu odwracalnego w układze zamknętym: δ S gen ds ± entropa zmena sę wyłączne wskutek wymany cepła z otoczenem, która, tak jak dla procesu neodwracalnego, moŝe entropę układu podwyŝszyć lub obnŝyć. Dla układu zolowanego, ne wymenającego cepła z otoczenem: ds δs gen entropa zmena sę wyłączne wskutek neodwracalnośc procesów zachodzących w układze δs gen > δs gen δs gen < proces neodwracalny proces odwracalny proces nezachodzący 6
17 Generacja entrop; transfer cepła przy skończonej róŝncy temperatur Rozpatrzymy proces odwracalny zachodzący w układze zamknętym (masa kontrolna, temperatura ) pokazanym na rysunku. masa kontrolna, temperatura δw OK W procese odwracalnym układ wykonuje pracę δw przy czym cepło ze zbornka cepła o temperaturze przepływa do układu (masa kontrolna, temperatura ). Zmana entrop układu (objętość kontrolna OK) będze równa: ds ok. odwr. Zmana entrop zbornka wynese: zbornk cepła, temperatura ds zb. odwr. Zmana entrop układu zbornka traktowanych łączne jako jeden układ zolowany (ne wymenający cepła z otoczenem) wynese: dscalk dsok + dszb > wzrost entrop mus być spowodowany neodwracalnoścą; ale czego? przy czym ds calk > nezaleŝne od tego czy > czy < (znak Q) 7
18 Dodatkowa entropa ne jest generowana an w układze an w zbornku. No to gdze? Mus być generowana poza zbornkem poza układem wskutek przepływu cepła przy skończonej róŝncy temperatur: δsgen > masa kontrolna, temperatura zbornk cepła, temperatura δw OK Rozpatrzymy objętość kontrolną OK obejmującą obszar, przez który przepływa cepło ze zbornka do objętośc kontrolnej OK. rzepływ cepła ne zmena stanu czynnka (czymkolwek by był) w OK. Zatem: dsok. Z drugej strony entropa w OK zmena sę wskutek przepływów cepła: dsok +δsgen gdze δs gen jest entropą generowaną w objętośc kontrolnej OK przez neodwracalność w procese zachodzącym w OK. Mamy zatem nterpretację źródła generacj entrop bo: δs gen > jest to neodwracalność przepływu cepła przy skończonej róŝncy temperatur. Neodwracalność zewnętrzna względem układu zbornka. 8
19 Zasada wzrostu entrop; II zasada termodynamk Neodwracalny przepływ cepła pomędzy róŝnym częścam dowolnego układu przy skończonej róŝncy temperatur to jedno ze źródeł entrop generowanej w układze. W układze zolowanym, w którym zachodzą róŝne procesy, np. wymany cepła, pracy tp. pomędzy róŝnym częścam układu (stąd róŝne temperatury ): S zol Q odwr. + j S gen,j neodwr. Q przy czym: j S gen,j. Dla neodwracalnych transferów cepła w układze: Q < Sgen,j>. j Jeśl wszystke procesy w układze są odwracalne to: Q Sgen,j. j W układze zolowanym zachodzć mogą tylko te procesy, dla których entropa całego układu rośne lub sę ne zmena; alternatywne sformułowane II zasady termodynamk. Zgodne z tą zasadą, o le Wszechśwat jest układem zolowanym to jego entropa jest welkoścą fzyczną, której zmany wyznaczają kerunek przebegu wszystkch procesów w nm 9 zachodzących.
20 Zmany entrop masy kontrolnej w czase; równane knetyczne Dla dowolnej przemany masy kontrolnej (układ zamknęty, ujęce masy kontrolnej, jedna temperatura w danej chwl czasu w układze): ds OK + δs onewaŝ stan układu moŝe sę zmenać w wynku przemany, węc oba wyrazy: j gen,j ds Q& Dzeląc przez δt przechodząc do grancy otrzymamy: OK + S& gen,j. dt. j ds odwr δ Q ds dt odwr Q& mogą, ale ne muszą być równe zero, ale jakakolwek neodwracalność w układze powoduje, Ŝe pojawa sę dodatna entropa wygenerowana przez neodwracalność: S& neodwr S& gen,j> j.
Termodynamika Techniczna dla MWT, Rozdział 14. AJ Wojtowicz IF UMK. 5.2. Generacja entropii; transfer ciepła przy skończonej róŝnicy temperatur
ermodynamka echnczna dla MW, Rozdzał 4. AJ Wojtowcz IF UMK Rozdzał 4. Zmana entrop w przemanach odwracalnych.. rzemany obegu Carnota.. SpręŜane gazu półdoskonałego ze schładzanem.3. Izobaryczne wytwarzane
Bardziej szczegółowoWykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
Bardziej szczegółowoPodstawy termodynamiki
Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6
Bardziej szczegółowoPAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.
Bardziej szczegółowoWykład 8. Silnik Stirlinga (R. Stirling, 1816)
Wykład 8 Maszyny ceplne c.d. Rozkład Maxwella -wstęp Entalpa Entalpa reakcj chemcznych Entalpa przeman azowych Procesy odwracalne neodwracalne Entropa W. Domnk Wydzał Fzyk UW Termodynamka 018/019 1/6 Slnk
Bardziej szczegółowoV. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
Bardziej szczegółowoDr inż. Andrzej Tatarek. Siłownie cieplne
Dr nż. Andrzej Tatarek Słowne ceplne Wykład 2 Podstawowe przemany energetyczne Jednostkowe zużyce cepła energ chemcznej palwa w elektrown parowej 2 Podstawowe przemany Proces przetwarzana energ elektrycznej
Bardziej szczegółowo2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie
RAKTYCZNA REALIZACJA RZEMIANY ADIABATYCZNEJ. Wprowadzene rzeana jest adabatyczna, jeśl dla każdych dwóch stanów l, leżących na tej przeane Q - 0. Z tej defncj wynka, że aby zrealzować wyżej wyenony proces,
Bardziej szczegółowoWykład Mikroskopowa interpretacja ciepła i pracy Entropia
Wykład 7 5.13 Mkroskopowa nterpretacja cepła pracy. 5.14 Entropa 5.15 Funkcja rozdzału 6 II zasada termodynamk 6.1 Sformułowane Claususa oraz Kelvna-Plancka II zasady termodynamk 6.2 Procesy odwracalne
Bardziej szczegółowoWykład 9. Silnik Stirlinga (R. Stirling, 1816)
Wykład 9 Maszyny celne c.d. Entala Entala reakcj chemcznych Entala rzeman azowych Procesy odwracalne neodwracalne Entroa ykl arnot W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0 Slnk Strlnga (R. Strlng,
Bardziej szczegółowoZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco
ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos
Bardziej szczegółowoModel IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak
Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach
Bardziej szczegółowoELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany
Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na
Bardziej szczegółowoGAZY DOSKONAŁE I PÓŁDOSKONAŁE
TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene
Bardziej szczegółowoWykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem
Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego
Bardziej szczegółowoWykłady z termodynamiki i fizyki statystycznej. Semestr letni 2009/2010 Ewa Gudowska-Nowak, IFUJ, p.441 a
Wykłady z termodynamk fzyk statystycznej. Semestr letn 2009/2010 Ewa Gudowska-Nowak, IFUJ, p.441 a gudowska@th.f.uj.edu.pl Zalecane podręcznk: 1.Termodynamka R. Hołyst, A. Ponewersk, A. Cach 2. Podstay
Bardziej szczegółowoWykład 10 Teoria kinetyczna i termodynamika
Wykład 0 Teora knetyczna termodynamka Prawa gazów doskonałych Z dośwadczeń wynka, że przy dostateczne małych gęstoścach, wszystke gazy, nezależne od składu chemcznego wykazują podobne zachowana: w stałej
Bardziej szczegółowoKwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
Bardziej szczegółowoCzęść III: Termodynamika układów biologicznych
Część III: Termodynamka układów bologcznych MATERIAŁY POMOCNICZE DO WYKŁADÓW Z PODSTAW BIOFIZYKI IIIr. Botechnolog prof. dr hab. nż. Jan Mazersk TERMODYNAMIKA UKŁADÓW BIOLOGICZNYCH Nezwykle cenną metodą
Bardziej szczegółowoWykład Temperatura termodynamiczna 6.4 Nierówno
ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu
Bardziej szczegółowoI. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Bardziej szczegółowoRUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Bardziej szczegółowoPłyny nienewtonowskie i zjawisko tiksotropii
Płyny nenewtonowske zjawsko tksotrop ) Krzywa newtonowska, lnowa proporcjonalność pomędzy szybkoścą ścnana a naprężenem 2) Płyny zagęszczane ścnanem, naprężene wzrasta bardzej nż proporcjonalne do wzrostu
Bardziej szczegółowoTERMODYNAMIKA. Andrzej Syrwid. Kraków 2011 r.
ERMODYNAMIKA Andrzej Syrwd Kraków 011 r. Sps treśc 1 Podstawowe pojęca 5 Zasady termodynamk 6 3 Podstawowe skale temperatur 6 4 Podstawowe zależnośc pomędzy parametram opsującym układ 7 5 Gaz doskonały
Bardziej szczegółowoTadeusz Hofman, WYKŁADY Z CHEMII FIZYCZNEJ I dla chemików
T. Hofman, Wykłady z Chem fzycznej I, Wydzał Chemczny PW, kerunek: Technologa chemczna, sem.3 2016/2017 Tadeusz Hofman, WYKŁADY Z CHEMII FIZYCZNEJ I dla chemków Adres nternetowy: http://hof.ch.pw.edu.pl/chf1.htm,
Bardziej szczegółowoTERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Bardziej szczegółowoTERMODYNAMIKA TECHNICZNA I CHEMICZNA
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny
Bardziej szczegółowotermodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
Bardziej szczegółowoModel ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)
Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu
Bardziej szczegółowoMECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Bardziej szczegółowo3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. 1. Wprowadzenie
3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. Wprowadzene Sprężarka jet podtawowym przykładem otwartego układu termodynamcznego. Jej zadanem jet medzy nnym podwyżzene cśnena gazu w celu: uzykane czynnka napędowego
Bardziej szczegółowoRys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej lub lodowej.
Bardziej szczegółowoObiegi gazowe w maszynach cieplnych
OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost
Bardziej szczegółowoW praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Bardziej szczegółowoZADANIE METEO ANALIZA PARAMETRÓW METEOROLOGICZNYCH
ZADANIE ETEO ANALIZA PARAETRÓW ETEOROLOGICZNYCH Cele ćwczena jest analza zennośc czasowej podstawowych paraetrów eteorologcznych takch jak teperatura powetrza, cśnene atosferyczne czy wlgotność względna,
Bardziej szczegółowoModele wzrostu kryształów stałych
Materały do wykładu Modele wzrostu kryształów stałych Marek Izdebsk Instytut Fzyk PŁ 2016 Sps treśc Temat 1. Termodynamczne podstawy równowag fazowej krystalzacj....1 1.1. Równowaga quas-równowaga...1
Bardziej szczegółowoAUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID
ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena
Bardziej szczegółowoWspółczynnik przenikania ciepła U v. 4.00
Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury
Bardziej szczegółowoDiagnostyka układów kombinacyjnych
Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane
Bardziej szczegółowoWykład 13. Rozkład kanoniczny Boltzmanna Rozkład Maxwella-Boltzmanna III Zasada Termodynamiki. Rozkład Boltzmanna!!!
Wykład 13 Rozkład kanonczny Boltzmanna Rozkład Maxwella-Boltzmanna III Zasada Termodynamk W. Domnk Wydzał Fzyk UW Termodynamka 2018/2019 1/30 Rozkład Boltzmanna!!! termostat T E n układ P n exp E n Z warunku
Bardziej szczegółowoRównowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny
Równowag fazowe Zakład Chem Medycznej Pomorsk Unwersytet Medyczny Równowaga termodynamczna Przemanom fazowym towarzyszą procesy, podczas których ne zmena sę skład chemczny układu, polegają one na zmane
Bardziej szczegółowoWykład 7. Podstawy termodynamiki i kinetyki procesowej - wykład 7. Anna Ptaszek. 21 maja Katedra Inżynierii i Aparatury Przemysłu Spożywczego
Wykład 7 knetyk knetyk procesowej - Katedra Inżyner Aparatury Przemysłu Spożywczego 21 maja 2018 1 / 31 Układ weloskładnkowy dwufazowy knetyk P woda 1 atm lód woda cek a woda + substancja nelotna para
Bardziej szczegółowoWykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )
Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) ZaleŜność stosunku R od temperatury dla gazu doskonałego
Bardziej szczegółowoDoświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie
Perwsza zasada termodynamk 2.2.. Dośwadczene Joule a jego konsekwencje 2.2.2. eło, ojemność celna sens oblczane 2.2.3. Praca sens oblczane 2.2.4. Energa wewnętrzna oraz entala 2.2.5. Konsekwencje I zasady
Bardziej szczegółowo1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ
Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz
Bardziej szczegółowoZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
Bardziej szczegółowoPara wodna najczęściej jest produkowana w warunkach stałego ciśnienia.
PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym
Bardziej szczegółowoZaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
Bardziej szczegółowoTermochemia Prawo Hessa Równania termochemiczne Obliczanie efektów cieplnych Prawo Kirchoffa
ermchema.3.. Praw essa.3.. Równana termchemczne.3.3. Oblczane efektów ceplnych.3.4. Praw Krchffa ermchema praw essa ERMOCEMIA CIEPŁO REAKCJI - PRAWO ESSA W warunkach zchrycznych termchema zajmuje sę pmarem
Bardziej szczegółowoWykład 15 Elektrostatyka
Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.
Bardziej szczegółowo2. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ
. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ. Wroadzene Przemana jest adabatyczna, jeśl dla każdych dóch stanó l, leżących na tej rzemane Q - 0. Z tej defncj ynka, że aby zrealzoać yżej ymenony roces,
Bardziej szczegółowoα i = n i /n β i = V i /V α i = β i γ i = m i /m
Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena
Bardziej szczegółowoINDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.
INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.
Bardziej szczegółowoTermodynamika Techniczna dla MWT, wykład 7. AJ Wojtowicz IF UMK
Wykład 7. Entalpia układu termodynamicznego.. Entalpia; odwracalne izobaryczne rozpręŝanie gazu.2. Entalpia; adiabatyczne dławienie gazu dla przepływu ustalonego.3. Entalpia; nieodwracalne napełnianie
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
Bardziej szczegółowoPodstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
Bardziej szczegółowoEnergia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Bardziej szczegółowo3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO
3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.
Bardziej szczegółowoWspółczynniki aktywności w roztworach elektrolitów. W.a. w roztworach elektrolitów (2) W.a. w roztworach elektrolitów (3) 1 r. Przypomnienie!
Współczynnk aktywnośc w roztworach elektroltów Ag(s) ½ (s) Ag (aq) (aq) Standardowa molowa entalpa takej reakcj jest dana wzorem: H H H r Przypomnene! tw, Ag ( aq) tw, ( aq) Jest ona merzalna ma sens fzyczny.
Bardziej szczegółowoBlok 7: Zasada zachowania energii mechanicznej. Zderzenia
Blok 7 Zaada zachowana energ echancznej. Zderzena I. Sły zachowawcze nezachowawcze Słą zachowawczą nazyway łę która wzdłuż dowolnego zaknętego toru wykonuje pracę równą zeru. Słą zachowawczą nazyway łę
Bardziej szczegółowoTermodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK
Wykład 6. Ciepło właściwe substancji prostych. Ciepło właściwe gazów doskonałych.. Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )... ZaleŜność ciepła właściwego C od temperatury.. Molowe
Bardziej szczegółowoProjekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Bardziej szczegółowoModele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
Bardziej szczegółowof(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 +
Różnczkowalność pocodne Ćwczene. Znaleźć pocodne cz astkowe funkcj f(x, y) = arctg x y. Rozw azane: Wdać, że funkcj f można napsać jako f(u(x, y)) gdze f(u) = arctg(u), u(x, y) = x y. Korzystaj ac z reg
Bardziej szczegółowoZachowanie energii. W Y K Ł A D VI. 7-1 Zasada zachowania energii mechanicznej.
Wykład z zyk. Potr Posmykewcz 56 W Y K Ł A D VI Zachowane energ. Energę potencjalną układu moŝna zdenować w następujący sposób: praca wykonana nad układem przez wewnętrzne sły zachowawcze jest równa zmnejszenu
Bardziej szczegółowoSprawozdanie powinno zawierać:
Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,
Bardziej szczegółowoXLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Bardziej szczegółowoProces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Bardziej szczegółowoBada zaleŝno. nie zaleŝą. od ilości substancji. Funkcja stanu to taka wielkość. a mały y 10 cm, to: = F2 F 1 = 0,01 F 2.
Zagadnena. Parametry stanu. Cśnene, słua ceczy (gazu) o wysokośc. Prawo rcmedesa.. emeratura. 4. Knetyczna teora w zastosowanu do gazu doskonałego.. Równane gazu doskonałego, zasady termodynamk (zerowa,
Bardziej szczegółowoRegulamin promocji zimowa piętnastka
zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna
Bardziej szczegółowoWykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
Bardziej szczegółowoTermodynamiczne modelowanie procesów spalania, wybuchu i detonacji nieidealnych układów wysokoenergetycznych
BIULETYN WAT VOL. LIX, NR 3, 2010 Termodynamczne modelowane procesów spalana, wybuchu detonacj nedealnych układów wysokoenergetycznych SEBASTIAN GRYS, WALDEMAR A. TRZCIŃSKI Wojskowa Akadema Technczna,
Bardziej szczegółowoRegulamin promocji 14 wiosna
promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30
Bardziej szczegółowoPrzykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Bardziej szczegółowo2012-10-11. Definicje ogólne
0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj
Bardziej szczegółowoWspółczynniki aktywności w roztworach elektrolitów
Współczynnk aktywnośc w roztworach elektroltów Ag(s) + ½ 2 (s) = Ag + (aq) + (aq) Standardowa molowa entalpa takej reakcj jest dana wzorem: H r Przypomnene! = H tw, Ag + + ( aq) Jest ona merzalna ma sens
Bardziej szczegółowo1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością
Bardziej szczegółowoWykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Bardziej szczegółowoINTERPRETACJA PIERWSZEJ ZASADY TERMODYNAMIKI DLA UKŁADÓW ZAMKNIĘTYCH I OTWARTYCH
Polka Problemy Nauk Stoowanych, 05, Tom 3, 33 44 Szczecn Prof WSTE dr hab nż Benedykt LITKE Wyżza Szkoła Technczno-Ekonomczna w Szczecne, Wydzał Tranortu Samochodowego Hgher School of Technology and Economc
Bardziej szczegółowoMATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
Bardziej szczegółowoWykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów
Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z
Bardziej szczegółowoRys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej
Bardziej szczegółowoPortfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego
Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa
Bardziej szczegółowoRegulamin promocji fiber xmas 2015
fber xmas 2015 strona 1/5 Regulamn promocj fber xmas 2015 1. Organzatorem promocj fber xmas 2015, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna 2015
Bardziej szczegółowoPOLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w
POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.
Bardziej szczegółowoTermodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,
Bardziej szczegółowo100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077
. Jak określa się ilość substancji? Ile kilogramów substancji zawiera mol wody?. Zbiornik zawiera 5 kmoli CO. Ile kilogramów CO znajduje się w zbiorniku? 3. Jaka jest definicja I zasady termodynamiki dla
Bardziej szczegółowoBADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Bardziej szczegółowoProjekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Bardziej szczegółowoPrąd elektryczny U R I =
Prąd elektryczny porządkowany ruch ładunków elektrycznych (nośnków prądu). Do scharakteryzowana welkośc prądu służy natężene prądu określające welkość ładunku przepływającego przez poprzeczny przekrój
Bardziej szczegółowo7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH
WYKŁAD 7 7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH 7.8.. Ogólne równane rucu Rucem zmennym w korytac otwartyc nazywamy tak przepływ, w którym parametry rucu take jak prędkość średna w przekroju
Bardziej szczegółowoLABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE
Bardziej szczegółowoPodstawowe równania podsumowanie (1)
odstawowe równana podsumowane () u = q + w f = u Ts du = dq + dw df = du Tds sdt dla procesu odwracalnego : Tds = dq a z kole (dla procesu odwracalnego) : zatem : df = du dq sdt du dq = dw ( ) dw ( ) 0
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać
Bardziej szczegółowoD. II ZASADA TERMODYNAMIKI
. Hofman, Wykłady z Chem fzycznej I, Wydzał Chemczny PW, kerunek: echnologa chemczna, sem. 2017/2018 WYKŁAD D,E D. II zasada termodynamk E. Konsekwencje zasad termodynamk D. II ZAADA ERMODYNAMIKI D.1.
Bardziej szczegółowoWykład Efekt Joule a Thomsona
Wykład 5 4.5 Efekt Joule a Thomsona Rozpatrzmy następujący proces rozprężana sę gazu. Rozprężane gazu następuje w warunkach zolacj termcznej, (dq=0) od stanu początkowego p,v,t,, do stanu końcowego p f,
Bardziej szczegółowoKryteria samorzutności procesów fizyko-chemicznych
Kytea samozutnośc ocesów fzyko-chemcznych 2.5.1. Samozutność ównowaga 2.5.2. Sens ojęce ental swobodnej 2.5.3. Sens ojęce eneg swobodnej 2.5.4. Oblczane zman ental oaz eneg swobodnych KRYERIA SAMORZUNOŚCI
Bardziej szczegółowoPrzykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania
Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w
Bardziej szczegółowo