Optymalizacja wypukªa: wybrane zagadnienia i zastosowania
|
|
- Danuta Markowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Optymalizacja wypukªa: wybrane zagadnienia i zastosowania 21 wrze±nia 2010 r.
2 Ogólne Wypukªe Sto»kowe Zadania sprowadzalne do SOCP/SDP
3 Ogólne Wypukªe Sto»kowe Zadania sprowadzalne do SOCP/SDP Ogólne zadanie optymalizacji minimalizuj f 0 (x) p. o. f i (x) 0, i = 1,..., m, h i (x) = 0, i = 1,..., p; x wektor zmiennych decyzyjnych, f 0 funkcja celu, funkcje f i oraz h i ograniczenia nierówno±ciowe i równo±ciowe.
4 Ogólne Wypukªe Sto»kowe Zadania sprowadzalne do SOCP/SDP Pewne klasy zada«optymalizacji Rozwi zuj c takie zadania natraamy na szereg trudno±ci, dlatego wolimy analizowa ich szczególne postacie: zadania programowania liniowego wszystkie funkcje s aniczne, zadania programowania wypukªego ograniczenia równo±ciowe s aniczne, pozostaªe funkcje s wypukªe. Wszystkie te problemy mo»na (wydajnie) rozwi zywa metod punktu wewn trznego.
5 Ogólne Wypukªe Sto»kowe Zadania sprowadzalne do SOCP/SDP Sto»kowe zadania programowania liniowego minimalizuj f T x p. o. Ax + b K 0 K ustalony sto»ek dodatni w R m (tj. generuj cy porz dek K ), wypukªa f R n, A R m n oraz b R m ustalone parametry zadania. Szczególne przypadki to: programowanie sto»kowe drugiego stopnia (SOCP), programowanie póªokre±lone (SDP).
6 Ogólne Wypukªe Sto»kowe Zadania sprowadzalne do SOCP/SDP Zadania SOCP minimalizuj f T x p. o. A i x + b i c T i x + d i, i = 1, 2,..., N; f R n, A i R (n 1 1) n, b i R n i 1, c i R n oraz d i R ustalone parametry zadania. Ograniczenia te okre±laj sto»ek drugiego stopnia, bowiem nierówno± A i x + b i c T i jest speªniona wtedy i tylko wtedy, gdy [ A i c T i x + d i ] x + [ b i d i ] C ni, gdzie C ni sto»ek drugiego stopnia wymiaru n i.
7 Zadania SDP Przegl d Ogólne Wypukªe Sto»kowe Zadania sprowadzalne do SOCP/SDP Niech F (x) = F 0 + m x i F i, i=1 gdzie F 0, F 1,..., F m ustalone macierze symetryczne. minimalizuj wektor x = (x 1, x 2,..., x m ) T c T x p. o. F (x) 0 zmienna decyzyjna, macierze F i oraz wektor c parametry zadania, warunek dodatniej póªokre±lono±ci macierzy F (x) ograniczenie (LMI).
8 Ogólne Wypukªe Sto»kowe Zadania sprowadzalne do SOCP/SDP Do postaci SOCP lub SDP mo»emy sprowadzi m. in.: zadania programowania geometrycznego, QCQP, (krzepkie) zadania programowania liniowego, krzepkie zadania najmniejszych kwadratów, zadania minimalizacji normy.
9 W pracy omówiono zastosowania w: rozpoznawaniu obrazów, projektowaniu ukªadów anten, robotyce, teorii portfela, regresji z ograniczeniami, projektowaniu ltrów cyfrowych.
10 Sformuªowanie problemu i motywacja Szukamy funkcji C(q), która jest (na prawej póªosi): nieujemna, niemalej ca, wkl sªo-wypukª. Chcemy, aby przybli»aªa ona pewne punkty empiryczne (c k, q k ).
11 Zadanie optymalizacji wypukªej minimalizuj K k=1 (c k (aq 3 k + bq2 k + cq k + d)) 2 p. o. a 0, b 0, c 0, d 0, b 2 3ac.
12 Wyniki (1) Przegl d Rozwa»ono 20 punktów empirycznych. Rysunek przedstawia wykresy funkcji trzeciego stopnia dopasowanych bez i z ograniczeniami.
13 Wyniki (2) Przegl d Analogiczne wyniki uzyskano dla 40 punktów empirycznych. Do oblicze«wykorzystano pakiet YALMIP pod MATLABem.
14 Przegl d ltry, które przetwarzaj dyskretne sygnaªy. Mog by m. in.: dolnoprzepustowe, górnoprzepustowe, o bardziej zªo»onej charakterystyce. Filtry takie s jednoznacznie okre±lone przez ci g n wspóªczynników h k zale»no±ci : n 1 jωt y(t) = e h k e jωk. k=0 Nazywamy je ltrami o sko«czonej odpowiedzi impulsowej.
15 Projektowanie ltrów cyfrowych Warto wymieni dwa podej±cia do projektowania ltrów i ich konsekwencje: mo»na zada minimaln warto± tªumienia w pa±mie zaporowym, mo»na zada transmitancj w caªym pa±mie. Kryterium jako±ci jest bª d (najcz ±ciej l lub l 2 ) przybli»enia po» danej charakterystyki przez zaprojektowan. Czasem mamy dodatkowe oczekiwania takie jak: równofalowo±, staªo± opó¹nienia grupowego (w pa±mie przenoszenia). Mo»liwo± ich speªnienia zale»y od wybranej metody projektowania.
16 Podej±cie SDP Sformuªowanie problemu Po» dana charakterystyka cz stotliwo±ciowa: H aim e j42ω dla 0 ω 0.45π, (ω) = 0 dla 0.5π ω π. Mo»na problem zaprojektowania takiego ltru sformuªowa jako: minimalizuj max ω Ω H(ejω ) H aim (ω). Jest to zbli»one do rozpatrzywania problemu: minimalizuj t p. o. H(e jω ) H aim (ω) 2 t, ω Ω. Jest to problem ci gªy, dlatego poddano go dyskretyzacji dla N = 300 cz stotliwo±ci próbnych. Rozwa»any b dzie ltr dªugo±ci ltru n = 85.
17 Po przeksztaªceniach, przyjmuj c oznaczenia: n 1 α 1 (ω i ) = w(ω i )[ k=0 h k c k (ω i ) H real n 1 i ], α 2 (ω i ) = w(ω i )[ h k s k (ω i )+H im i ], k=0 t α 1 (ω i ) α 2 (ω i ) oraz D i = α 1 (ω i ) 1 0 α 2 (ω i ) 0 1 stwierdzamy,»e D i 0 t α 2 1 (ω i) α 2 2 (ω i) 0. Š cz c N = 300 takich warunków do F (x) = diag(d 1, D 2,..., D N ) mo»emy sformuªowa ostateczny problem: minimalizuj t p. o. F (x) 0, gdzie x = (t, h 0, h 1,..., h n 1 ) T wektor zmiennych decyzyjnych.
18 Wyniki Przegl d Zaprojektowany ltr: jest równofalowy, ma staªe opó¹nienie grupowe.
19 Wyniki (2) Przegl d Zaprojektowany ltr: ma tak sam charakterystyk cz stotliwo±ciow jak ltr otrzymany przez Antoniou i Lu.
20 Podsumowanie Podstawowe przesªanki za stosowaniem optymalizacji wypukªej: wiele zada«mo»na przeksztaªci do takiej postaci zastosowania w licznych dziedzinach, wydajne algorytmy rozwi zywania zada«. Zastosowanie metod optymalizacji wypukªej w przypadku problemu regresji z ograniczeniami zagwarantowaªo uzyskanie poprawnego merytorycznie wyniku. W przypadku ltrów cyfrowych otrzymany ltr, pomimo wy»szych nakªadów obliczeniowych, ma lepsz charakterystyk ni» zaprojektowany klasycznymi metodami.
Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria
Liniowe zadania najmniejszych kwadratów
Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e
Przeksztaªcenia liniowe
Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Optymalizacja wypukła: wybrane zagadnienia
Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Informatyki Rok akademicki 2008/2009 Praca Dyplomowa Inżynierska Michał Przyłuski Optymalizacja wypukła: wybrane zagadnienia
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Nieujemna faktoryzacja macierzy i tensorów
Rafał Zdunek Nieujemna faktoryzacja macierzy i tensorów Zastosowanie do klasyfikacji i przetwarzania sygnałów Oficyna Wydawnicza Politechniki Wrocławskiej Wrocław 2014 Recenzenci Andrzej CICHOCKI Ewaryst
LZNK. Rozkªad QR. Metoda Householdera
Rozdziaª 10 LZNK. Rozªad QR. Metoda Householdera W tym rozdziale zajmiemy si liniowym zadaniem najmniejszych wadratów (LZNK). Dla danej macierzy A wymiaru M N i wetora b wymiaru M chcemy znale¹ wetor x
Rozwiazywanie układów równań liniowych. Ax = b
Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym
I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x
I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x
Opis matematyczny ukªadów liniowych
Rozdziaª 1 Opis matematyczny ukªadów liniowych Autorzy: Alicja Golnik 1.1 Formy opisu ukªadów dynamicznych 1.1.1 Liniowe równanie ró»niczkowe Podstawow metod przedstawienia procesu dynamicznego jest zbiór
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Ukªady równa«liniowych - rozkªady typu LU i LL'
Rozdziaª 9 Ukªady równa«liniowych - rozkªady typu LU i LL' W tym rozdziale zapoznamy si z metodami sªu» cych do rozwi zywania ukªadów równa«liniowych przy pomocy uzyskiwaniu odpowiednich rozkªadów macierzy
Prawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
Aproksymacja funkcji metod najmniejszych kwadratów
Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone
Statystyka i eksploracja danych
Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja
PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:
Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
Rozdzia 5. Uog lniona metoda najmniejszych kwadrat w : ::::::::::::: Podstawy uog lnionej metody najmniejszych kwadrat w :::::: Zastos
Spis tre ci PRZEDMOWA :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 CZ I. Wprowadzenie do modelowania ekonometrycznego ::::::::::: 13 Rozdzia 1. Modelowanie ekonometryczne ::::::::::::::::::::::::::::::
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
Filtracja. Krzysztof Patan
Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Ukªady równa«liniowych PWSZ Gªogów, 2009 Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zada«redukuje si do problemu rozwi zania ukªadu
Rozdziaª 2. Analiza spektralna
Rozdziaª 2. Analiza spektralna MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 2) Analiza spektralna 1 / 18 Widmo szeregu czasowego W analizie spektralnej szereg {y t : t = 1, 2,..., T } postrzegany
Numeryczne zadanie wªasne
Rozdziaª 11 Numeryczne zadanie wªasne W tym rozdziale zajmiemy si symetrycznym zadaniem wªasnym, tzn. zadaniem znajdowania warto±ci i/lub wektorów wªasnych dla macierzy symetrycznej A = A T. W zadaniach
Funkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
Spis tre±ci. Plan. 1 Pochodna cz stkowa. 1.1 Denicja Przykªady Wªasno±ci Pochodne wy»szych rz dów... 3
Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 2 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych
Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski
Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej
Programowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
Materiaªy do Repetytorium z matematyki
Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (
2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)
Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla
Elementy geometrii w przestrzeni R 3
Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi
Problemy optymalizacyjne - zastosowania
Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd.
Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2010-11-23
Koªo Naukowe Robotyków KoNaR. Plan prezentacji. Wst p Rezystory Potencjomerty Kondensatory Podsumowanie
Plan prezentacji Wst p Rezystory Potencjomerty Kondensatory Podsumowanie Wst p Motto W teorii nie ma ró»nicy mi dzy praktyk a teori. W praktyce jest. Rezystory Najwa»niejsze parametry rezystorów Rezystancja
Wzmacniacz Operacyjny
Wzmacniacz Operacyjny Marcin Polkowski marcin@polkowski.eu 18 grudnia 2007 SPIS TRE CI SPIS RYSUNKÓW Spis tre±ci 1 Wprowadzenie 5 1.1 Ukªad µa741................................................. 5 2 Wzmacniacz
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Stabilno± ukªadów liniowych
Rozdziaª 1 Stabilno± ukªadów liniowych Autorzy: Bartªomiej Fajdek 1.1 Poj cia podstawowe Jednym z podstawowych wymogów stawianych ukªadom automatyki jest stabilno±. Istnieje wiele denicji stabilno±ci ukªadów
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
Rozdziaª 13. Przykªadowe projekty zaliczeniowe
Rozdziaª 13 Przykªadowe projekty zaliczeniowe W tej cz ±ci skryptu przedstawimy przykªady projektów na zaliczenia zaj z laboratorium komputerowego z matematyki obliczeniowej. Projekty mo»na potraktowa
Funkcje wielu zmiennych
Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl
Stacjonarne szeregi czasowe
e-mail:e.kozlovski@pollub.pl Spis tre±ci 1 Denicja 1 Szereg {x t } 1 t N nazywamy ±ci±le stacjonarnym (stacjonarnym w w»szym sensie), je»eli dla dowolnych m, t 1, t 2,..., t m, τ ª czny rozkªad prawdopodobie«stwa
Proste modele o zªo»onej dynamice
Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj
SVM: Maszyny Wektorów Podpieraja cych
SVM 1 / 24 SVM: Maszyny Wektorów Podpieraja cych Nguyen Hung Son Outline SVM 2 / 24 1 Wprowadzenie 2 Brak liniowej separowalności danych Nieznaczna nieseparowalność Zmiana przetrzeń atrybutów 3 Implementacja
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Rachunek ró»niczkowy funkcji jednej zmiennej
Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =
XVII Warmi«sko-Mazurskie Zawody Matematyczne
1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych
01.Wprowadzenie do pakietu MATLAB
01.Wprowadzenie do pakietu MATLAB 1. Typy i formaty danych: Informacje o typach danych dost pnych w MATLABie uzyskuje si m: help datatypes, a sposoby ich wy±wietlania m help format. Do podstawowych typów
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Pojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Wykład 2; rok akademicki 2016/2017 Zależności funkcyjne w naukach przyrodniczych Rozwój algebry
Zbiory ograniczone i kresy zbiorów
Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Lokalne transformacje obrazów
Laboratorium: Cyfrowe przetwarzanie obrazów i sygnaªów Lokalne transformacje obrazów 1 Cel i zakres wiczenia Celem wiczenia jest zapoznanie si z wªasno±ciami lokalnych transformacji obrazu i ich wykorzystaniem
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Podstawowe czªony dynamiczne. Odpowied¹ impulsowa. odpowied¹ na pobudzenie delt Diraca δ(t) przy zerowych warunkach pocz tkowych, { dla t = 0
CHARAKTERYSTYKI W DZIEDZINIE CZASU I CZ STOTLIWO CI Podstawowe czªony dynamiczne Opis w dziedzinie czasu: Odpowied¹ impulsowa g(t) = L 1 [G(s)] odpowied¹ na pobudzenie delt Diraca δ(t) przy zerowych warunkach
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej
PROGRAMOWANIE NIELINIOWE
PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
x(n) x(n-1) x(n-2) D x(n-n+1) h N-1
Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
1.1 Klasyczny Model Regresji Liniowej
1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Metody Numeryczne Optymalizacja. Wojciech Szewczuk
Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne
Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy
Formy kwadratowe. Rozdział 10
Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Standardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12
Algorytm simplex i dualność
Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1
Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Jednowarstwowe Sieci Neuronowe jako. klasykatory do wielu klas. (c) Marcin Sydow
Plan dyskretny perceptron i jego ograniczenia inne funkcje aktywacji wielo-klasykacja przy pomocy jedno-warstwowe sieci neuronowej ograniczenia jedno-warstwowej sieci neuronowej miary ewaluacyjne dla klasykacji
Przetwarzanie sygnałów dyskretnych
Przetwarzanie sygnałów dyskretnych System dyskretny p[ n ] r[ n] Przykłady: [ ] = [ ] + [ ] r n a p n a p n [ ] r n = 2 [ + ] + p[ n ] p n 2 r[ n] = a p[ n] + b n [ ] = [ ] r n a p n n [ ] = [ + ] r n
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Szybkie metody projektowania filtrów aktywnych
Szybkie metody projektowania filtrów aktywnych Aby szybko rozpocząć projektowanie układów filtrów aktywnych należy znać: Wartości dostępnych źródeł zasilania: zasilanie plus/minus (symetryczne) czy tylko
Uczenie Wielowarstwowych Sieci Neuronów o
Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =
04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,