1.1 Klasyczny Model Regresji Liniowej
|
|
- Karolina Witkowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między wybraną zmienną (nazywaną zmienną zależną lub objaśnianą) i jedną lub wieloma zmiennymi nazywanymi zmiennymi niezależnymi lub objaśniającymi. Termin regresja została zaproponowany przez Francisa Galtona, który zajmował się genetyką i eugeniką. Badając zależność między wzrostem dzieci a wzrostem rodziców stwierdził, że wysocy rodzice mają wysokie dzieci, niscy rodzice niskie, ale istnieje tendencja zbieżności wzrostu do średniej wartości. Tę tendencję nazwał żegresją do przeciętności. Budując model zjawiska zachodzącego w populacji posługujemy się informacjami pochodzącymi z próby y = Xβ + ε y = Xb + e (1) β, ε - wartości pochodzące z populacji, b, e - wartości pochodzące z próby. Zjawisko zachodzące w populacji opisać możemy następującym równaniem liniowym: y = Xβ + ε (2) gdzie: y - wektor wartości zmiennej objaśnianej (zależnej), X - macierz zmiennych objaśniających (niezależnych), β - wektor nieznanych parametrów ε - składnik losowy (czynnik stochastyczny równania). W ekonomii zazwyczaj zachodzi problem przeidentyfikowania układu równań. Szukamy rozwiązania równania, które ma dużo więcej warunków ograniczających (obserwacji) niż jest w równaniu niewiadomych (parametrów w modelu). W rezultacie bardzo rzadko otrzymujemy dokładne rozwiazanie układu, częściej najlepsze liniowe jego przybliżenie. y = y 1 y 2... y n X = x 11 x x 1k x 21 x x 2k x n1 x n2... x nk β = β 1 β 2... β k ε = ε 1 ε 2... ε n Model zjawiska zapisujemy jako: 1
2 lub alternatywnie: E[y X] = Xβ (3) y = Xb + e (4) Bardzo często przyjmuje się, że model posiada stałą. Wtedy pierwsza kolumna macierzy zmiennych objaśniających X wypełniona jest przez wektor l = [1, 1,.., 1]. Założenia modelu: 1. Związek pomiędzy y a x 1,..., x k jest opisany równaniem y = Xβ + ε. Alternatywnie to założenie definiowane jest jako y = Xβ + ε jest procesem generującym dane. 2. liniowość. O modelu ekonometrycznym mówimy, że jest liniowy jeśli jest liniowy względem parametrów. Model nie musi być liniowy względem zmiennych. Mogą być one dowolnymi funkcjami od wartości obserwowanych. Przykłady modeli liniowych: y = β 0 + x 1 β 1 + x 2 β 2 y = β 0 + x 2 1β 1 + x 2 2β 2 Równanie wyjściowe: y = Ax β e ε po zlogarytmowaniu ma formę liniową: ln y = ln A + β ln x + ε ln e ln y = β 0 + β 1 ln x 1 + β 2 ln x 2 + ε jest to ważny model noszący nazwę modelu logliniowego. 3. E(ε) = 0. Wartość oczekiwana składnika losowego wynosi Wariancja składnika losowego jest identyczna dla wszystkich obserwacji (homoscedastyczność). i var(ε i ) = σ 2 5. Kowariancja między dwoma różnymi błędami losowymi wynosi zero. i j cov(ε i, ε j ). 6. Składnik losowy ma wielowymiarowy rozkład normalny N(0, σ 2 I), jest homoscedastyczny, oraz występuje brak autokorelacji. E(εε ) = σ 2 I var(ε) = E(εε ) 2
3 Macierz wariancji-kowariancji. ε 1 ε 2... ε k [ ε1 ε 2... ε k ] = ε 1 ε 1 ε 1 ε 2... ε 1 ε k ε 2 ε 1 ε 2 ε 2... ε 2 ε k ε k ε 1 ε k ε 2... ε k ε k 7. Egzogeniczność zmiennych niezależnych E[ε i x i,1, x i,2,..., x i,k ] = 0. Zaburzenie losowe nie jest funkcją zmiennych objaśniających modelu. 8. Macierz X zawiera wielkości stałe lub elementy losowe, ale proces generujący dane jest niezależny od składnika losowego ε. 9. Macierz X ma pełen rząd kolumnowy. rz(x) = k T 1.2 Metoda najmniejszych kwadratów (MNK) Celem estymacji jest dopasowanie linii regresji do zaobserwowanego zbioru danych empirycznych. Model jest tym lepiej dopasowany im mniejsza jest odległość wartości teoretycznych ŷ od wartości zaobserwowanych y dla zmiennej zależnej. Celem jest minimalizacja min i dist(y i, ŷ i ) ponieważ w przestrzeniach euklidesowych wszystkie metryki są równoważne możemy dla celów optymalizacji wybrać dowolną z nich. Najlepszym wyborem będzie 2. Przy takim wyborze problem minimalizacji sprowadzi się do minimalizacji sumy kwadratów reszt. Ponadto, zastosowana funkcja jest ciągła i różniczkowalna dla wszystkich wartości reszt e i. Dzięki temu rozwiązując w standardowy sposób warunki pierwszego rzędu można znaleźć jej optimum. Nazwa Metoda najmniejszych kwadratów (MNK) bierze się ze względu na sposób znajdowania optymalnych wartości nieznanych parametrów. Polega na minimalizowaniu sumy kwadratów reszt szacowanego modelu. Szacujemy model y = Xb + e e = y Xb RSS = e e = (y Xb) (y Xb) = (y b X )(y Xb) = = y y y Xb b X y + b X Xb Ponieważ y Xb oraz b X y są skalarami (liczbami) możemy je dodać. Otrzymujemy: RSS = y y 2b X y + b X Xb (5) 3
4 W celu minimalizacji sumy kwadratów błędów liczymy jej pochodna. Pochodna wektora, to pochodna każdego jego elementu liczona osobno. RSS = 2X y + 2X Xb b 2 RSS = 2X X b b ponieważ macierz X ma pełen rząd kolumnowy, to macierz X X jest dodatnio określona więc RSS jest szukanym minimum. b Zapisujemy warunek pierwszego rzędu: 2X y + 2X Xb = 0 X y = X Xb mnożymy obie strony przez macierz (X X) 1 z lewej strony. Ponieważ macierz X X ma pełen rząd kolumnowy i jest dodatnio określona to jest odwracalna (X X) 1 X y = (X X) 1 X Xb b = (X X) 1 X y Własności algebraiczne metody MNK. 1. każdy regresor, oraz cała macierz regresorów jest ortogonalna (prostopadła) względem wektora reszt X e = 0 Dowód: Z warunków pierwszego rzędu mamy X Xb = X y X y X Xb = 0 = X (y X b) = 0 }{{} X e=0 4
5 2. hiperpłaszyzna regresji przechodzi przez punkt średnich ( X, ȳ) Dowód: Z warunków pierwszego rzędu mamy X Xb = X y weźmy pod uwagę jedynie pierwszy wiersz macierzy X jedynki wówczas: l Xb = l y [T, Σx 1, Σx 2,..., Σx k ]b = Σy / : T [1, Σx 1 /T, Σx 2 /T,..., Σx k /T ]b = Σy/T [1, x 1, x 2,..., x k ]b = ȳ zawierający 3. wektor reszt e jest ortogonalny do wektora wartości dopasowanych ŷ ŷ e = 0 Dowód: wektor wartości dopasowanych ŷ = Xb ŷ = b X. ŷ e = b }{{} X e = 0 0 Dla modelu ze stałą można pokazać dwie dodatkowe własności 4. suma reszt jest równa zero. Dowód: Z własności 1 wiadomo, że X e = 0. Niech X = l. Wówczas: X e = l e = i e = 0 5. średnia wartość teoretyczna jest równa średniej wartości empirycznej (próbkowej) ŷ = ȳ. Dowód: Wiemy, że y = Xb + e = ŷ + e /l l y = l ŷ + l e }{{} 0 /N l y N = l ŷ N = ȳ = ŷ 5
6 Rysunek 1: Rzut wektora y na przestrzeń X Macierz idempotentna. Definicja. Macierz idempotentna M to jest taka macierz, że M 2 = MM = M. Jeśli M jest macierzą symetryczną idempotentną wtedy M M = M. W ekonometrii literą M oznaczmy macierz M = I X(X X) 1 X. Macierz M przekształca wektor obserwacji w wektor reszt. My = e MX = [I X(X X) 1 X ]X = X X (X X) 1 X X = X X = 0 }{{} I Macierz X(X X) 1 X nazywamy macierzą rzutu (projekcji) i oznaczmy przez P. P = I M = X(X X) 1 X Macierz P jest macierzą przekształcenia (rzutu) wektora y na przestrzeń rozpiętą na kolumnach macierzy X. ŷ = y e = (I M)y = X(X X) 1 X y = P y Macierz idempotentna M oraz macierz rzutu P mają następujące własności: P X = X MP = P M = 0 Za ich pomocą zmienną zależną można rozbić na dwa elementy y = P y + My = rzut + reszta. Część zmienności zmiennej y wyjaśnioną przez zmienne zawarte w macierzy X, oraz składnik resztowy. Wspołczynnik R 2 6
7 Podstawową równością analizy wariancji jest zależność Σ(y i ȳ) 2 = Σ(ŷ i ȳ) 2 + Σ(y i ŷ i ) 2 (6) Suma po lewiej stronie to całkowita suma kwadratów (Total Sum of Squares). Można ją przedstawić jako sumę dwóch komponentów. Pierwszy jej składnik po prawej stronie to estymowana suma kwadratów (Estimated Sum of Squares), a drugi to resztowa suma kwardartów (Residual Sum of Squares). Dokonują drobnej manipulacji łatwo można udowodnić poniższy wzór: Σ(ŷ i ȳ + y i ŷ i ) 2 = Σ(ŷ i ȳ) 2 + Σ(y i ŷ i ) 2 + 2Σ(y i ŷ }{{} i )(ŷ i ȳ) e Wcześniej pokazaliśmy, że wektor reszt jest ortogonalny do ŷ. Ortogonalność ȳ e wprost wynika z 5 własności MNK. Wobec tego ostatni składnik sumy po prawej stronie jest równy zero. T SS = ESS + RSS / : T SS 1 = ESS T SS + RSS T SS R 2 = ESS T SS = 1 RSS (7) T SS Współczynnik R 2 jest miarą dopasowania modelu. Mówi nam ile procent zmienności zmiennej objaśnianej jest wyjaśnione przez model ekonometryczny. Jednak ta miara ma pewne wady. Po pierwsze jest dobrą miarą wyłącznie dla modelu liniowego. Po drugie, jeżeli w modelu występuje problem autokorelacji, wysokie R 2 nie zawsze świadczy o dobrym dopasowaniu modelu. Kolejnym problemem z tą miarą jest to że dodanie regresora powoduje wzrost współczynnika R 2 nawet gdy nowa zmienna jest słabo skorelowana ze zmienną objaśnianą i w rzeczywistości niewiele wyjaśnia, bowiem: ŷ = X iβ R 2 = 1 Σ(y i ŷ i ) 2 Σ(y i ȳ) = 1 Σ(y i X i β) 2 2 Σ(y i ȳ) 2 Gdy dodamy jedna zmienną do macierzy X, która nie jest dokładnie wspóliniowa ze zmiennymi już uwzględnionymi, to RSS maleje, wobec tego wartość 7
8 statystyki R 2 rośnie. By uniezależnić miarę dopasowania modelu od liczby zmiennych powszechnie używa się skorygowanego współczynnika R 2 = 1 n 1 n K (1 R2 ) (8) Gdzie n jest liczebnością próby, a k liczbą zmiennych uwzględnionych w modelu łącznie ze stałą. Dodatkowo dla różnych modeli wartość współczynnika R 2 jest różna. Wynik zależy od typu danych na podstawie których oszacowano parametry modelu. Dla modelu szacowanego na podstawie szeregów czasowych wartość R 2 jest bliska 1, dla danych przekrojowych R 2 wartość jest silnie uzależniona od liczebności próby. Dla małej próby R 2 równe 0.5 jest wysokie, dla dużej prawidłowy model może mieć współczynnik R 2 bliski wartości 0. Dla danych panelowych wartość R 2 = 0.3 należy przyjąć za znaczącą. Przykład 1. Na podstawie tej samej próby losowej wyestymowano dwa modele ekonometryczne: (1) y = α 0 + α 1 x 1 + α 2 x 2 + ε R 2 = (2) ln y = β 0 + β 1 x 1 + β 2 ln x 2 + ψ R 2 = który model jest lepszy? Odpowiedź: Lepszy jest model (2) ponieważ ma wyższy współczynnik R 2. Przykład 2. Na podstawie próby zawierającej k + 1 obserwacji oszacowano parametry modelu: y = α 0 + α 1 x 1 + α 2 x α k x k + ε Jaki będzie współczynnik R 2 tego modelu? Odpowiedź: Współczynnik R 2 modelu będzie bardzo bliski lub równy 1. Ale ponieważ liczba obserwacji k + 1 jest równa liczbie nieznanych parametrów modelu, liczba stopni swobody wynosi 0. Powoduje to że nie jesteśmy w stanie oszacować błędów standardowych szukanych parametr ow. Czyli nic nie wiemy o dopasowaniu modelu. Przykład 3. Oszacowano model postaci y = Xβ + ε. Następnie przeprowadzono regresję reszt z powyższego modelu na uzyskanych wartościach teoretycznych ŷ. Ile będzie wynosiło R 2 w takiej regresji? Odpowiedź: Mamy znaleźć współczynnik R 2 dla modelu: ε = ŷγ + ψ (9) 8
9 Wiemy, że estymator KMRL jest dany wzorem: b = (X X) 1 X y (10) Podstawiając zmienne z równania (9) do równiania (10) otrzymujemy: γ = (ŷ ŷ) 1 ŷε = ((Xb) Xb) 1 (Xb) ε (11) γ = ((Xb) Xb) 1 (Xb) (y Xb) = γ = ((Xb) Xb) 1 (Xb) y ((Xb) Xb) 1 (Xb) Xb = γ = ((Xb) Xb) 1 (Xb) Xb + ((Xb) Xb) 1 (Xb) ε ((Xb) Xb) 1 (Xb) Xb = γ = I + 0 I = 0 Literatura [1] William H. Greene (2003) Econometric Analysis, 5th edition. Prentice Hall. [2] Wojciech Niemiro (1999) Rachunek Prawdopodobieństwa i statystyka matematyczna, Szkoła Nauk Ścisłych. [3] G.S Maddala (2006) Ekonometria. PWE [4] Aleksander Welfe (1998) Zbiór zadań z ekonometrii, PWE 9
Metoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Bardziej szczegółowoEkonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 4
Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik
Bardziej szczegółowoStatystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Bardziej szczegółowoRozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Bardziej szczegółowoMetoda najmniejszych kwadratów
Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K
Bardziej szczegółowoMetody Ekonometryczne
Metody Ekonometryczne Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 4 Uogólniona Metoda Najmniejszych Kwadratów (GLS) 1 / 19 Outline 1 2 3 Jakub Mućk Metody Ekonometyczne
Bardziej szczegółowoNatalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Bardziej szczegółowoZależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
Bardziej szczegółowoJEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
Bardziej szczegółowoStosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
Bardziej szczegółowoRozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Bardziej szczegółowoRegresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Bardziej szczegółowoTestowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna
Bardziej szczegółowoEkonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoEkonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoLosowe zmienne objaśniające. Rozszerzenia KMRL. Rozszerzenia KMRL
MNK z losową macierzą obserwacji Równanie modelu y = X β + ε Jeżeli X zawiera elementy losowe to należy sprawdzić czy E(b β) = E[(X X ) 1 X ε]? = E[(X X ) 1 X ]E(ε) Przypomnienie: Nieskorelowane zmienne
Bardziej szczegółowoTestowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Bardziej szczegółowoMetody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Bardziej szczegółowoREGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Bardziej szczegółowoK wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Bardziej szczegółowoMetoda najmniejszych kwadratów
Model ekonometryczny Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między poziomem wykształcenia a wysokością zarobków Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między
Bardziej szczegółowoEkonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk
Bardziej szczegółowoEkonometria egzamin wersja Informatyka i Ekonometria 26/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
Bardziej szczegółowoEkonometria egzamin wersja ogólna 29/01/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Bardziej szczegółowoHeteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów
Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności
Bardziej szczegółowoStacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
Bardziej szczegółowoZadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Bardziej szczegółowoStatystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoEkonometria. Weryfikacja liniowego modelu jednorównaniowego. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Weryfikacja liniowego modelu jednorównaniowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 2 Weryfikacja liniowego modelu jednorównaniowego 1 / 28 Agenda 1 Estymator
Bardziej szczegółowoWprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Bardziej szczegółowoZadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1
Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów
Bardziej szczegółowoRegresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Bardziej szczegółowoMetoda największej wiarogodności
Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm
Bardziej szczegółowo1.3 Własności statystyczne estymatorów MNK
1.3 Własności statystyczne estymatorów MNK 1. Estymator nazywamy estymatorem nieobciążonym, jeżeli jego wartość oczekiwana jest równa wartości szacowanego parametru. Udowodnimy, że estymator MNK wektora
Bardziej szczegółowo1.9 Czasowy wymiar danych
1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoEkonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Bardziej szczegółowoMODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Bardziej szczegółowo, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59
Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,
Bardziej szczegółowoEgzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Bardziej szczegółowoStopę zbieżności ciagu zmiennych losowych a n, takiego, że E (a n ) < oznaczamy jako a n = o p (1) prawdopodobieństwa szybciej niż n α.
Stopy zbieżności Stopę zbieżności ciagu zmiennych losowych a n, takiego, że a n oznaczamy jako a n = o p (1 p 0 a Jeśli n p n α 0, to a n = o p (n α i mówimy a n zbiega według prawdopodobieństwa szybciej
Bardziej szczegółowoEKONOMETRIA PRZESTRZENNA
EKONOMETRIA PRZESTRZENNA Wstęp podstawy ekonometrii Uniwersytet Ekonomiczny w Krakowie, 2012 1 EKONOMETRIA wybrane definicje (Osińska) Ekonometria dziedzina ekonomii wykorzystująca modele i sposoby wnioskowania
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Bardziej szczegółowoEkonometria egzamin 06/03/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 06/03/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoUogólniona Metoda Momentów
Uogólniona Metoda Momentów Momenty z próby daż a do momentów teoretycznych (Prawo Wielkich Liczb) plim 1 n y i = E (y) n i=1 Klasyczna Metoda Momentów (M M) polega na szacowaniu momentów teoretycznych
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Bardziej szczegółowoWspółczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Bardziej szczegółowoEkonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007
, transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R
Bardziej szczegółowoEkonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007
Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja
Bardziej szczegółowoWiadomości ogólne o ekonometrii
Wiadomości ogólne o ekonometrii Materiały zostały przygotowane w oparciu o podręcznik Ekonometria Wybrane Zagadnienia, którego autorami są: Bolesław Borkowski, Hanna Dudek oraz Wiesław Szczęsny. Ekonometria
Bardziej szczegółowoCzasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Bardziej szczegółowoEkonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Bardziej szczegółowoWprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Bardziej szczegółowoModele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
Bardziej szczegółowox x 1. Przedmiot identyfikacji System x (1) x (2) : x (s) a 1 a 2 : a s mierzone, a = zestaw współczynników konkretyzujacych F ()
. Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x () x (2) x (s) mierzone, a = a a 2 a s zestaw współczynników konkretyzujacych F () informacja
Bardziej szczegółowoStanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
Bardziej szczegółowoMetody Ekonometryczne
Metody Ekonometryczne Goodness of fit i wprowadzenie do wnioskowania statystycznego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 2 Goodness of fit i wprowadzenie do wnioskowania
Bardziej szczegółowoTestowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Bardziej szczegółowoAnaliza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Bardziej szczegółowoStosowana Analiza Regresji
Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q
Bardziej szczegółowo3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Bardziej szczegółowoWażne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Bardziej szczegółowoEstymacja w regresji nieparametrycznej
Estymacja w regresji nieparametrycznej Jakub Kolecki Politechnika Gdańska 28 listopada 2011 1 Wstęp Co to jest regresja? Przykład regresji 2 Regresja nieparametryczna Założenia modelu Estymacja i jej charakterystyki
Bardziej szczegółowoMatematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowo1.7 Ograniczenia nakładane na równanie regresji
1.7 Ograniczenia nakładane na równanie regresji Często teoria ekonomiczna wskazuje dobór zmiennych do modelu. Jednak nie w każdym przypadku oceny wartości parametrów są statystycznie istotne. Zastanowimy
Bardziej szczegółowoAnaliza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Bardziej szczegółowoEkonometria egzamin wersja Informatyka i Ekonometria 29/01/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
Bardziej szczegółowoAnaliza wariancji i kowariancji
Analiza wariancji i kowariancji Historia Analiza wariancji jest metodą zaproponowaną przez Ronalda A. Fishera. Po zakończeniu pierwszej wojny światowej był on pracownikiem laboratorium statystycznego w
Bardziej szczegółowoMikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 3 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Bardziej szczegółowoEkonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoStatystyczna analiza danych 1
Statystyczna analiza danych 1 Regresja liniowa 1 Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Ewa Szczurek Regresja liniowa 1 1 / 41 Dane: wpływ reklam produktu na sprzedaż
Bardziej szczegółowoEkonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoEkonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Własności składnika losowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 3 Własności składnika losowego 1 / 31 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4
Bardziej szczegółowoWNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Bardziej szczegółowoPrzykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
Bardziej szczegółowoMetoda Najmniejszych Kwadratów
Rozdział 2 Metoda ajmniejszych Kwadratów W tym rozdziale wyprowadzimy najszerzej stosowaną w ekonometrii metodę estymacji, tj Metodę ajmniejszych Kwadratów (MK) Pokażemy, że szacując za pomocą tej metody
Bardziej szczegółowo1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Zajęcia 11-12
Stanisław Cichocki Natalia Nehrebecka Zajęcia 11-12 1. Zmienne pominięte 2. Zmienne nieistotne 3. Obserwacje nietypowe i błędne 4. Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2) - Potencjalnie
Bardziej szczegółowoStanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
Bardziej szczegółowo2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoEkonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Bardziej szczegółowoKORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Bardziej szczegółowoKomputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Bardziej szczegółowoparametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Bardziej szczegółowoWnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Bardziej szczegółowoStatystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Bardziej szczegółowoTestowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych
Bardziej szczegółowoWłasności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Bardziej szczegółowoProgramowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Bardziej szczegółowoWprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Bardziej szczegółowoREGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój
1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y
Bardziej szczegółowoEKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.
EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji
Bardziej szczegółowo