Metody numeryczne i statystyka dla in»ynierów
|
|
- Paweł Pluta
- 8 lat temu
- Przeglądów:
Transkrypt
1 Kierunek: Automatyka i Robotyka, II rok Ukªady równa«liniowych PWSZ Gªogów, 2009
2 Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zada«redukuje si do problemu rozwi zania ukªadu równa«liniowych, cz sto o bardzo du»ych rozmiarach Przykªad: numeryczne modele przewidywania i prognozy pogody s dane w postaci ukªadów równa«ró»niczkowych cz stkowych rozwi zywanych na siatce zawieraj cej bardzo du» liczb w zªów zadanie sprowadza si do rozwi zania ukªadu równa«liniowych o ogromnej liczbie zmiennych St d potrzeba szybkich i wydajnych obliczeniowo metod ich rozwi zywania
3 Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zada«redukuje si do problemu rozwi zania ukªadu równa«liniowych, cz sto o bardzo du»ych rozmiarach Przykªad: numeryczne modele przewidywania i prognozy pogody s dane w postaci ukªadów równa«ró»niczkowych cz stkowych rozwi zywanych na siatce zawieraj cej bardzo du» liczb w zªów zadanie sprowadza si do rozwi zania ukªadu równa«liniowych o ogromnej liczbie zmiennych St d potrzeba szybkich i wydajnych obliczeniowo metod ich rozwi zywania
4 Wst p Sformuªowanie problemu a 1,1 x 1 + a 1,2 x 2 + a 1,3 x a 1,n x n = b 1 a 2,1 x 1 + a 2,2 x 2 + a 2,3 x a 2,n x n = b =.. a m,1 x 1 + a m,2 x 2 + a m,3 x a m,n x n = b m Posta macierzowa gdzie: A R m n, b R m, x R n. Ax = b,
5 Wst p - macierze Wyznacznik macierzy kwadratowej A Liczba okre±lona rekurencyjnie: dla n = 1 det(a) = a 11 dla n > 1 det(a) = n ( 1) k+1 a 1k M 1k gdzie M 1k jest wyznacznikiem macierzy powstaªej z macierzy A przez skre±lenie 1-go wiersza i k-tej kolumny. Zachodzi: n a ij ( 1) i+j M ij dla dowolnego i {1,..., n} j=1 det(a) = n a ij ( 1) i+j M ij dla dowolnego j {1,..., n} i=1 gdzie M ij jest wyznacznikiem macierzy powstaªej z macierzy A przez skre±lenie i-tego wiersza i j-tej kolumny, tzw. minorem stopnia n 1 macierzy A. Liczb D ij = ( 1) i+j M ij dla i, j = 1,..., n nazywamy dopeªnieniem algebraicznym elementu a ij w macierzy A k=1
6 Wst p - macierze Macierz osobliwa Macierz kwadratowa A dla której det A = 0 Macierz odwrotna Macierz kwadratowa A 1 dla której AA 1 = A 1 A = 1 n Macierz odwrotna A 1 istnieje wtedy i tylko wtedy, gdy A jest macierz nieosobliw. Macierz transponowana Macierz A T o elementach a ij takich,»e a ij = a ji Macierz symetryczna Macierz dla której A T = A
7 Wst p - macierze Macierz trójk tna górna (dolna) Macierz kwadratowa w której i, j i > j a ij = 0 (i < j a ij = 0) Przykªad: U = a 11 a 12 a 13 0 a 22 a a 33 L = a a 21 a 22 0 a 31 a 32 a 33 Rz d macierzy Liczba rank(a) równa najwy»szemu stopniu podmacierzy kwadratowej (skonstruowanej przez wykre±lenie wybranych wierszy i/lub kolumn z danej macierzy) o niezerowym wyznaczniku. Dla macierzy A o wymiarze m n mamy wi c: rank(a) min(m, n) Rz d macierzy jest równy liczbie liniowo niezale»nych kolumn tej macierzy (tzw. rz d kolumnowy) a tak»e liczbie liniowo niezale»nych wierszy tej macierzy (tzw. rz d wierszowy).
8 Wst p - macierze Normy macierzowe A = max i=1,...,n j=1 i=1 j=1 n a ij norma wierszowa; n A = max a ij norma kolumnowa; j=1,...,n i=1 n n A = a ij 2 norma Euklidesowa A = max λ λ S gdzie: λ warto±ci wªasne macierzy A (Schura, Frobeniusa); norma spektralna
9 Sprawdzenie istnienia rozwi zania Twierdzenie Kroneckera-Capellego Zaªo»enia: Ax = b A R m n, b R m, x R n Zachodzi: rank(a) < rank([a, b]) rank(a) = rank([a, b]) < n rank(a) = rank([a, b]) = n brak rozwi zania; niesko«czenie wiele rozwi za«; dokªadnie jedno rozwi zanie. gdzie [A, b] jest macierz rozszerzon, powstaª przez doª czenie wektora wyrazów wolnych b do macierzy ukªadu A. Mo»na policzy rozwi zanie stosuj c wzór: x = A 1 b, ale w praktyce unikamy operacji odwracania macierzy: kosztowna obliczeniowo, mo»e prowadzi do du»ych bª dów numerycznych
10 Sprawdzenie istnienia rozwi zania Twierdzenie Kroneckera-Capellego Zaªo»enia: Ax = b A R m n, b R m, x R n Zachodzi: rank(a) < rank([a, b]) rank(a) = rank([a, b]) < n rank(a) = rank([a, b]) = n brak rozwi zania; niesko«czenie wiele rozwi za«; dokªadnie jedno rozwi zanie. gdzie [A, b] jest macierz rozszerzon, powstaª przez doª czenie wektora wyrazów wolnych b do macierzy ukªadu A. Mo»na policzy rozwi zanie stosuj c wzór: x = A 1 b, ale w praktyce unikamy operacji odwracania macierzy: kosztowna obliczeniowo, mo»e prowadzi do du»ych bª dów numerycznych
11 Sprawdzenie uwarunkowania ukªadu równa«przykªad ukªadu ¹le uwarunkowanego: { 2x + 6y = 8 2x + 6, y = 8, { x = 1 y = 1 { { 2x + 6y = 8 2x + 5, y = 8, x = 10 y = 2 Wska¹nik uwarunkowania: card(a) = A A 1 Ukªad dobrze uwarunkowany, gdy card(a) = 1 Dla ukªadów ¹le uwarunkowanych (card(a) > 1000) mo»na mie zaufanie jedynie do rz du wyniku Interpretacja geometryczna uwarunkowania ukªadu równa«liniowych: k t przeci cia si hiperpªaszczyzn deniowanych równaniami (zªe uwarunkowanie oznacza maªy k t przeci cia, a wi c du» wra»liwo± na bª dy przetwarzania numerycznego).
12 Jak radzimy sobie w praktyce? Metody rozwi zywania ukªadów równa«liniowych dla kwadratowej macierzy A n n Metody dokªadne eliminacja Gaussa rozkªad trójk tny Choleskiego-Banachiewicza (dla symetrycznych macierzy A) Thomasa (dla trójdiagonalnych macierzy A) Metody iteracyjne Jacobiego Gaussa - Seidle'a
13 Metody dokªadne Ukªad równa«o macierzy trójk tnej górnej u 11 x 1 + u 12 x u 1,n 1 x n 1 + u 1n x n = b 1 u 22 x u 2,n 1 x n 1 + u 2n x n = b 2 u n 1,n 1 x n 1 + u n 1,n x n u nn x n. = b n 1 = b n Rozwi zanie trywialne: x n = bn u nn ( x i = 1 u ii b i n j=i+1 u ij x j ) i = n 1, n 2,..., 1
14 Metody dokªadne Ukªad równa«o macierzy trójk tnej dolnej l 11 x 1 = b 1 l 21 x 1 + l 22 x2 = b 2.. l n 1,1 x 1 + l n 1,2 x l n 1,n 1 x n 1 = b n 1 l n1 x 1 + l n2 x l n,n 1 x n 1 + l nn x n = b n Rozwi zanie trywialne: x 1 = b1 l 11 ( ) x i = 1 b l i ii i 1 l ij x j j=1 i = 2, 3,..., n
15 Metody dokªadne Metoda eliminacji Gaussa I faza: za pomoc elementarnych operacji wierszowych na macierzy [A, b] sprowadzamy macierz ukªadu do postaci trójk tnej II faza: dalej rozwi zanie ju» trywialne (patrz poprzednie 2 slajdy) Wªasno±ci metody: 1 liczba mno»e«: 3 n3 + n n 1 liczba dodawa«: 3 n n2 5 6 n zatem zªo»ono± obliczeniowa jest rz du O(n 3 ) Modykacje dotycz sposobu sprowadzenia do postaci trójk tnej, tak aby zminimalizowa wpªyw bª dów przetwarzania numerycznego tzw. eliminacja Gaussa z wyborem cz ±ciowym i peªnym cel zapewnienie mno»ników 1, unikni cie bª du przepeªnienia przy operacji dzielenia
16 Metody dokªadne Metoda eliminacji Gaussa - prosty przykªad 2x 1 + x 2 + x 3 = 7 ( 0.5) ( 2) x 1 + x 2 + 2x 3 = 9 + 4x 1 + 2x 2 x 3 = 5 + Otrzymujemy: Mamy [II faza]: 2x 1 + x 2 +x 3 = 7 0.5x x 3 = 5.5 3x 3 = 9 3x 3 = 9 x 3 = 3 0.5x x 3 = 5.5 x 2 = 2 2x 1 + x 2 + x 3 = 7 x 1 = 1
17 Metody dokªadne Metoda eliminacji Gaussa - prosty przykªad 2x 1 + x 2 + x 3 = 7 ( 0.5) ( 2) x 1 + x 2 + 2x 3 = 9 + 4x 1 + 2x 2 x 3 = 5 + Otrzymujemy: Mamy [II faza]: 2x 1 + x 2 +x 3 = 7 0.5x x 3 = 5.5 3x 3 = 9 3x 3 = 9 x 3 = 3 0.5x x 3 = 5.5 x 2 = 2 2x 1 + x 2 + x 3 = 7 x 1 = 1
18 Metody dokªadne Metoda eliminacji Gaussa - prosty przykªad 2x 1 + x 2 + x 3 = 7 ( 0.5) ( 2) x 1 + x 2 + 2x 3 = 9 + 4x 1 + 2x 2 x 3 = 5 + Otrzymujemy: Mamy [II faza]: 2x 1 + x 2 +x 3 = 7 0.5x x 3 = 5.5 3x 3 = 9 3x 3 = 9 x 3 = 3 0.5x x 3 = 5.5 x 2 = 2 2x 1 + x 2 + x 3 = 7 x 1 = 1
19 Metody dokªadne Rozkªad trójk tny (tzw. dekompozycja LU) { Ly = b Ax = b LUx = b Ux = y a11 a12... a1n l u11 u12... u1n a21 a22... a2n = l21 l u22... u2n an1 an2... ann ln1 ln2... lnn unn Mamy n 2 równa«z n 2 + n niewiadomymi ukªad niedookre±lony. Brakuj ce warunki zwykle s deniowane w postaci: Rozkªad trójk tny: Doolittle'a l ii = 1 i = 1, 2,..., n Crouta u ii = 1 i = 1, 2,..., n Cholesky'ego l ii = u ii i = 1, 2,..., n
20 Metody dokªadne Wyznacznik macierzy A = LU przy czym: det(a) = det(lu) = det(l)det(u) = det(u) dla rozkªadu Doolittle'a = det(l) dla rozkªadu Crouta (det(l)) 2 dla rozkªadu Cholesky'ego det(l) = n l ii, det(u) = i=1 n i=1 u ii
21 Metody dokªadne Metoda Cholesky'ego-Banachiewicza (dla symetrycznych macierzy A) Dla ka»dej nieosobliwej macierzy symetrycznej mo»na dokona rozkªadu (dekompozycji): A = LL T a11 a12... a1n a12 a22... a2n a1n a2n... ann = l l21 l ln1 ln2... lnn l11 l21... ln1 0 l22... ln lnn Powy»szy ukªad równa«posiada jednoznaczne rozwi zanie, zatem: Ax = b LL T x = b { Ly = b L T x = y
22 Metody iteracyjne Idea Sekwencyjne polepszanie rozwi zania: x k+1 = F (x k, A, b, ) Aby rozpocz proces iteracyjny potrzebne przybli»enie pocz tkowe x 0. Jak dªugo iterowa? a» x k+1 x k < ɛ Metoda Jacobiego iteracji prostej Idea wyprowadzenia wzoru iteracyjnego: Mamy: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x a nn x n = b n Przeksztaªcamy równania do postaci: x 1 = 1 (b a 11 1 a 12 x 2 a 13 x 3... a 1n x n ) x 2 = 1 (b a 22 2 a 21 x 1 a 23 x 3... a 2n x n )... x n = 1 (b a nn n a n1 x 1 a n2 x 2... a n,n 1 x n 1 )
23 Metody iteracyjne Idea Sekwencyjne polepszanie rozwi zania: x k+1 = F (x k, A, b, ) Aby rozpocz proces iteracyjny potrzebne przybli»enie pocz tkowe x 0. Jak dªugo iterowa? a» x k+1 x k < ɛ Metoda Jacobiego iteracji prostej Idea wyprowadzenia wzoru iteracyjnego: Mamy: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x a nn x n = b n Przeksztaªcamy równania do postaci: x 1 = 1 (b a 11 1 a 12 x 2 a 13 x 3... a 1n x n ) x 2 = 1 (b a 22 2 a 21 x 1 a 23 x 3... a 2n x n )... x n = 1 (b a nn n a n1 x 1 a n2 x 2... a n,n 1 x n 1 )
24 Metody iteracyjne Metoda Jacobiego iteracji prostej Co mo»na zapisa macierzowo: gdzie: Wzór iteracyjny: C : c ij = x = Cx + g { a ij i j aii 0 i = j x k+1 = Cx k + g Elementy wektora x k+1 wyznaczamy: g : g i = b i a ii x k+1 1 = 1 (b a 11 1 a 12 x2 k a 13x3 k... a 1nxn k ) x k+1 2 = 1 (b a 22 2 a 21 x1 k a 23x3 k... a 2nxn k )... x k+1 n = 1 (b a nn n a n1 x1 k a n2x2 k... a n,n 1xn 1 k ) Aby proces byª zbie»ny wystarczy aby C < 1 dla dowolnego rodzaju normy
25 Metody iteracyjne Metoda Gaussa-Seidla Idea wyprowadzenia wzoru iteracyjnego: Ax = b (L + D + U)x = b Dx = (L + U)x + b x = D 1 (L + U)x + D 1 b gdzie macierze L, D, U maja posta : d l L = l31 l ; D = 0 d d ; ln1 ln2... ln,n dnn U = 0 u12 u13... u1n un 2,n 1 un 2,n un 1,n
26 Metody iteracyjne Metoda Gaussa-Seidla Wzór iteracyjny: x k+1 = D 1 Lx k+1 D 1 Ux k + D 1 b Je±li A jest symetryczna i dodatnio okre±lona (tzn. y y T Ay > 0, gdzie: y dowolny wektor kolumnowy) to proces iteracyjny jest zbie»ny niezale»nie od x 0 Elementy wektora x k+1 s wyznaczane sekwencyjnie: x k+1 1 = 1 (b a 11 1 a 12 x2 k a 13x3 k a 14x4 k... a 1nxn k ) x k+1 2 = 1 (b a 22 2 a 21 x k+1 1 a 23 x3 k a 24x4 k... a 2nxn k ) x k+1 3 = 1 (b a 33 3 a 31 x k+1 1 a 32 x k+1 2 a 34 x4 k... a 3nxn k )... x k+1 n = 1 (b a nn n a n1 x k+1 1 a n2 x k+1 2 a n3 x k a n,n 1 x k+1 n 1 )
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Ukªady równa«liniowych - rozkªady typu LU i LL'
Rozdziaª 9 Ukªady równa«liniowych - rozkªady typu LU i LL' W tym rozdziale zapoznamy si z metodami sªu» cych do rozwi zywania ukªadów równa«liniowych przy pomocy uzyskiwaniu odpowiednich rozkªadów macierzy
Interpolacja funkcjami sklejanymi
Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
Macierze i Wyznaczniki
Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,
ANALIZA MATEMATYCZNA Z ALGEBR
ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie
Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja
Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy
Macierze i Wyznaczniki
dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B,
Macierze Dziaªania na macierzach Niech b d dane macierze A = E = [ 2 3 0 3 2 3 2 0 [ 0 8, B = 4 2, F = [ 2 3, C = 3 2 2 3 0 0 0 4 0 6 3 0, G =, D = 0 2 0 2 0 3 0 3 0 2 0 0 2 2 0 0 5 0 2,, H = 0 0 4 0 0
Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna
Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
(wymiar macierzy trójk¹tnej jest równy liczbie elementów na g³ównej przek¹tnej). Z twierdzen 1 > 0. Zatem dla zale noœci
56 Za³ó my, e twierdzenie jest prawdziwe dla macierzy dodatnio okreœlonej stopnia n 1. Macierz A dodatnio okreœlon¹ stopnia n mo na zapisaæ w postaci n 1 gdzie A n 1 oznacza macierz dodatnio okreœlon¹
Rozwiązywanie algebraicznych układów równań liniowych metodami bezpośrednimi
Rozwiązywanie algebraicznych układów równań liniowych metodami bezpośrednimi Plan wykładu:. Definicje macierzy, norm etc.. Metoda eliminacji Gaussa, Jordana. Rozkład LU metodą Gaussa. Układy równań z macierzą
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Aproksymacja cz. II, wielomiany ortogonalne zastosowania PWSZ Gªogów, 2009 Iloczyn skalarny Funkcja okre±lona na przestrzeni liniowej (, ) R iloczyn skalarny wektorów
Liniowe zadania najmniejszych kwadratów
Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e
Obliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Podstawowe działania w rachunku macierzowym
Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
LZNK. Rozkªad QR. Metoda Householdera
Rozdziaª 10 LZNK. Rozªad QR. Metoda Householdera W tym rozdziale zajmiemy si liniowym zadaniem najmniejszych wadratów (LZNK). Dla danej macierzy A wymiaru M N i wetora b wymiaru M chcemy znale¹ wetor x
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3
3 Wyznaczniki 31 Wyznaczniki stopni 2 i 3 Wyznacznik macierzy 2 2 Dana jest macierz [ ] a b A Mat c d 2 2 (R) Wyznacznikiem macierzy A nazywamy liczbę mamy a A c b ad bc d Wyznacznik macierzy A oznaczamy
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
10. Metody obliczeniowe najmniejszych kwadratów
10. Metody obliczeniowe najmniejszych kwadratów 1. Dowód twierdzenia o faktoryzacji macierzy Twierdzenie 1 Każdadodatniookreślon aisymetryczn amacierzm można przedstawíc wpostaci M = PP T gdzie P jest
A A A A A A A A A n n
DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Numeryczne zadanie wªasne
Rozdziaª 11 Numeryczne zadanie wªasne W tym rozdziale zajmiemy si symetrycznym zadaniem wªasnym, tzn. zadaniem znajdowania warto±ci i/lub wektorów wªasnych dla macierzy symetrycznej A = A T. W zadaniach
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Wartości i wektory własne
Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Metody numeryczne. Janusz Szwabiński. nm_slides-7.tex Metody numeryczne Janusz Szwabiński 11/11/ :45 p.
Metody numeryczne Układy równań liniowych, część I Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-7.tex Metody numeryczne Janusz Szwabiński //2002 2:45 p./83 Układy równań liniowych, część I. Pojęcia
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
III TUTORIAL Z METOD OBLICZENIOWYCH
III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do
Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n
Plan Spis tre±ci 1 Problemy liniowe 1 2 Zadania I 3 3 Formy biliniowe 3 3.1 Odwzorowania wieloliniowe..................... 3 3.2 Formy biliniowe............................ 4 4 Formy kwadratowe 4 1 Problemy
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
IV. UK ADY RÓWNAÑ LINIOWYCH
IV. UK ADY RÓWNAÑ LINIOWYCH 4.1. Wprowadzenie Uk³ad równañ liniowych gdzie A oznacza dan¹ macierz o wymiarze n n, a b dany n-elementowy wektor, mo e byæ rozwi¹zany w skoñczonej liczbie kroków za pomoc¹
1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:
ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Metody dekompozycji macierzy stosowane w automatyce
Metody dekompozycji macierzy stosowane w automatyce Grzegorz Mzyk Politechnika Wrocławska, WydziałElektroniki 23 lutego 2015 Plan wykładu 1 Wprowadzenie 2 Rozkład LU 3 Rozkład spektralny 4 Rozkład Cholesky
Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010
WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.
Informacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję
Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50
Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie
Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd.
Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2010-11-23
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)
Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla
04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =
04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.
Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje
Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9
Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami ZałóŜmy, Ŝe macierz jest macierzą kwadratową stopnia n. Mówimy, Ŝe macierz tego samego wymiaru jest macierzą odwrotną
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:
Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow
Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak
Algebra Liniowa 2 Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Podobie«stwo macierzy, diagonalizacja macierzy 1. Znale¹ macierze przeksztaªcenia liniowego T
Wykład III Układy równań liniowych i dekompozycje macierzy
Wykład III Układy równań liniowych i dekompozycje macierzy Metody eliminacji i podstawienia wstecz Metoda dekompozycji LU i jej zastosowania Metody dla macierzy specjalnych i rzadkich Metody iteracyjne
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci
, A T = A + B = [a ij + b ij ].
1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m
Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013
Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia
Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym
1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji
D1. Algebra macierzy. D1.1. Definicje
D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla