Budowa atomu. Ładunki elektryczne. Kwantyzacja ładunku. Zasada zachowania ładunku

Wielkość: px
Rozpocząć pokaz od strony:

Download "Budowa atomu. Ładunki elektryczne. Kwantyzacja ładunku. Zasada zachowania ładunku"

Transkrypt

1 ektstatka Cząstk eementane Istneją dwa dzaje ładunków, umwne zwane ddatnm ujemnm Atm składają sę z eektnów jąda Ładunk jednmenne dpchają sę, a óŝnmenne pzcągają sę zma atmu 0-0 m. zma jąda m. Jąd twzą dwa tp cząstek eementanch: ptn neutn. ektn są naładwane ujemne, ptn są naładwane ddatn, natmast neutn są bjętne eektczne. udwa atmu Ładunk eektczne Atm są eektczne bjętne. Lczba eektnów w atme jest ówna czbe ptnów, keśa ją czba atmwa Z. Właścwśc chemczne substancj są wznaczne pzez tę czbę. Sumę ptnów neutnów w jądze keśa czba maswa A. 5 9 masa 0 Ptn (p) : mp kg; e ektn (e) : me kg; -e U Ładunek Z 9 czba ptnów/eektnów A 5 czba ptnów neutnów e C Iztp atm tej samej czbe atmwej óŝnej czbe maswej. Np. da wdu: H - ptn; ładunek mn kg; Neutn (n) : H - deute; zwan jest ładunkem eementanm. H - tt. Kwantzacja ładunku Zasada zachwana ładunku nenaeektzwane Cał Całkwt ładunek cał cała psadają psadająceg Np sk jedwab ptnó ptnów, Ne eektnó eektnów az Nn neutnó neutnów t: enp - ene 0Nn e(n e(np Ne) en en Np Ne gdze Nn n Np Ne KaŜ KaŜd sptkan w pzdze ładunek jest cał całkwtą kwtą jedwab Wskutek eektzwana ładunk mgą pzechdzć d jednch cał d dugch, jednak całkwta suma ładunków ne zmena sę. naeektzwan ujemne sk pałeczka szkana pałeczka szkana naeektzwana ddatn W układze zwanm eektczne agebaczna suma ładunków eektcznch jest stała. wektnś wektnścą cą ładunku eementaneg. Np Ne t cał cał jest bję bjętne eektczne 8 9 U 4 90 Th 4 He

2 ektzwane pzez wpłw cz zjawsk ndukcj eektstatcznej pzewdnk Pzewdnk zat Pzewdnk mateał zbudwan z atmów, d któch łatw dwają sę eektn waencjne (jeden ub węcej), któe z ke twzą wewnątz pzewdnka tzw. gaz eektnw. ektn te ne są zwązane z knketnm jnem ddatnm mgą sę swbdne puszać np. medź, gn, Ŝeaz. Izat eektczn (deektk) substancja w któej paktczne ne ma ładunków swbdnch np. szkł, ceamka, guma. a) dpchane b) dpchane c) pzcągane Paw Cumba F 4π C /(N m ) pzenkanść eektczna póŝn Sła eektstatczneg ddzałwana wzajemneg dwóch punktwch ładunków eektcznch jest wpst ppcjnana d cznu tch ładunków dwtne k ppcjnana d kwadatu degłśc mędz nm, > 0 Wektw zaps pawa Cumba F wes : ˆ ˆ k ˆ ˆ ˆ F W układze n cząstek naładwanch wpadkwa sła dzałająca na ładunek j jest wektwą sumą sł ddzałwana z kaŝdm z pzstałch (n-) ładunków teg układu. F j F j F F k ˆ Pównane sł ddzałwana eektstatczneg gawtacjneg NatęŜene pa eektczneg F C ODDZIAŁYWANI LKTOSTATYCZN Sła, jaką ddzałują na sebe dwa ładunk punktwe, znajdujące sę w pwetzu (), ddane d sebe met, bdwa naładwane ładunkem C: 4π 9 N m 9 0 C C C N m m ODDZIAŁYWANI GAWITACYJN Sła, jaką ddzałują na sebe dwa cała mase kg, ddane d sebe m: mm Fg G 6,67 0 N Testwa cząstka w punkce P Pe eektczne w punkce P Naładwan bekt Defncja natęŝena pa eektczneg: zwaŝm dwn punkt P w pbŝu naładwaneg bektu.. Umeśćm ddatn ładunek w punkce P. Zmezm słę dzałającą na testw ładunek. Zdefnujm natęŝene pa eektczneg w punkce P jak: F UWAGA Ładunek mus bć na te mał, ab ne zabuzć zkładu ładunku naładwaneg bektu.

3 Pe eektczne ładunku punktweg Zasada supepzcj natęŝeń naładwana cząstka wtwaza pe eektczne Pe eektczne ddzałuje na cząstkę naładwaną, któa sę w tm pu znajdze P NatęŜene pa eektczneg układu ładunków punktwch ówna sę sume wektwej natęŝeń wtwznch pzez kaŝd z ładunków - >0 <0 F Da ładunku punktweg 4π F ˆ k ˆ Da ładunków punktwch k ˆ <0 Lne pa eektczneg Dp eektczn Kzwe, d któch stczne w kaŝdm punkce pkwają sę z keunkem wekta natęŝena pa (ch keunek jest zgdn z keunkem natęŝena pa) Lczba n na jednstkę pwezchn mezna w płaszczźne pstpadłej d n jest ppcjnana d watśc wekta natęŝena pa eektczneg Dpem eektcznm nazwam układ dwóch ładunków eektcznch, ównch pd wzgędem watśc bezwzgędnej, ecz pzecwneg znaku, któch degłść wzajemna jest mała w stsunku d ch degłśc d zpatwanch punktów pa eektczneg. Iczn ładunku ddatneg dpa amena dpa t dpw mment eektczn / / - p e - ) - α α NatęŜene pa eektczneg na smetanej dpa α - p e ( / 4) k cs α k >> ( / 4) cs α / ( / 4) ( / 4) p k e / / / Lne pa dpa eektczneg p e

4 ` Stumeń natęŝena pa eektczneg Φ S ScsΘ jest ówn cznw skaanemu natęŝena pa eektczneg wekta pwezchn Wekt pwezchn jest pstpadł (nman) d pwezchn (skewan na zewnątz pwezchn zamknętej), a jeg długść jest ówna pu tej pwezchn S Θ 0 Φ Φ ma S 0 < Θ < 90 0 < Φ < Φ ma S Θ 90 Φ 0 S PAWO GAUSSA Watść stumena natęŝena pa eektczneg pzechdząceg pzez dwną zamknętą pwezchnę jest ówna watśc całkwteg ładunku zamknęteg wewnątz tej pwezchn pdzenemu pzez Φ S p pw. zamkn. S 0 ds kółk na całce znacza, Ŝe całkwać naeŝ p pwezchn zamknętej Paw Gaussa - zastswane NatęŜene pa eektczneg ładunku punktweg Φ > 0 Φ < 0 Φ 0 S p pw. ku pm. p pw. ku pm. S S cs0 4π () 4π S ku p pw. pm. NatęŜene pa eektczneg da cągłch zkładów ładunków Ptencjał pa eektczneg Na zewnątz ) sfecznej jedndne naładwanej ku ) sfecznej jedndne naładwanej pwłk 4π Da neskńcznej n naładwanej z gęstścą nwą ładunku λ Da neskńcznej nepzewdzącej płt naładwanej z gęstścą pwezchnwą ładunku σ σ cnst óŝnca ptencjałów (napęce U ) pmędz punktam A jest czbw ówna pac jaką tzeba wknać pzecwk słm pa, ab pzesunąć jednstkw, ddatn ładunek punktw z punktu A d punktu A W VP V V Napęce jest ówne V, jeŝe pzenesene ładunku C wmaga wknana pac ównej J A WA J [ U ] V C Ptencjał defnuje sę pzjmując, Ŝe e jeg watść w neskńczn cznśc c ówna jest zeu ( v 0 ) Ptencjał w danm punkce pa ówn jest pac jaką tzeba wknać pzecwk słm pa, ab pzemeścć jednstkw, ddatn ładunek punktw z neskńcznśc d teg punktu. P Ptencjał w danm punkce pa jest ówn eneg ptencjanej jednstkweg ddatneg ładunku punktweg W P P 4

5 A Wznaczane ptencjału pa eektczneg Θ F - W A mnus znacza, Ŝe pacę wknują sł zewnętzne pzecwk słm pa eektczneg F d A 0 Ptencjał pa eektczneg ładunku punktweg V d V 4π d V 4π V V 4π 4 π V k Ptencjał dpa eektczneg V V V V V k _ V k k csϕ k p e - ϕ -- e >> - kp cs ϕ V P(,) Pwezchne ekwptencjane Zbó wszstkch punktów, w któch ptencjał pa ma stałą watść Pwezchne ekwptencjane są pstpadłe d n pa eektczneg W Paca wknwana pz pzemeszczanu ładunku p pwezchn ekwptencjanej jest ówna ze Ptencjał zwaneg naładwaneg pzewdnka Nadma ładunku na zwanm pzewdnku zkłada sę na pwezchn teg pzewdnka tak, Ŝe w kaŝdm punkce wewnątz pzewdnka 0 wewnątz 0 Vcnst wszstke punkt zaówn na zewnątz, jak na pwezchn mają ten sam ptencjał (pawdzwe ówneŝ da pzewdnka z wnęką) pwezchna pzewdnka stanw pwezchnę ekwptencjaną Wekt natęŝena pa eektczneg jest pstpadł d pwezchn pzewdnka KONSKWNCJA: Nadmaw ładunek na pzewdnkach (np. metawch kuach), płącznch ze sbą pzewdzącm eementem, zkłada sę tak ab kaŝd ch punkt mał ten sam ptencjał O O Step O nega ptencjana układu ładunków Step Step p Wznaczć enegę ptencjaną układu tzech ładunków P V P nega ptencjana ładunków k p V (d) Umeszczam ładunek w pu ładunków p p k k Całkwta enega ptencjana teg układu p p p k 5

6 nega ptencjana da kku ddzałwań Tp ddzałwana ZaeŜnść eneg ptencjanej d degłśc Tpwa watść eneg [kj/m] Kmentaz Jn-jn / 50 Tk mędz jnam Jn-dp / 5 Dp-dp / Mędz twae panm cząsteczkam / Mędz tującm cząsteczkam panm Lndna (dspesjne) Dp ndukwan-dp ndukwan / 6 Mędz cząsteczkam kaŝdeg dzaju 6

Polecane podręczniki. Elektryczność i magnetyzm. Ładunek elektryczny. Pole elektryczne. Pojęcie pola elektrycznego. Właściwości ładunków elektrycznych

Polecane podręczniki. Elektryczność i magnetyzm. Ładunek elektryczny. Pole elektryczne. Pojęcie pola elektrycznego. Właściwości ładunków elektrycznych Plcan pdęcznk lktycznść lktycznść magntyzm. D. Hallday, R. Rsnck J. Walk Pdstawy zyk lktycznść magntyzm (tm ). Hwtt zyka wkół nas d Mnka Makcka-Rydzyk pkazy dśwadczń: Rafał Wjtynak. R. Kudzl Pdstawy lkttchnk

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

W-13 (Jaroszewicz) 19 slajdów. w próżni

W-13 (Jaroszewicz) 19 slajdów. w próżni Hawa, USA, August 00 W-13 asewc 19 slajdów Ple magnetcne w póżn Ple magnetcne magnetcna składwa sł enta Ładunek elektcn w plu elektmagnetcnm - ckltn Paw Ampea pstać óżnckwa Natężene ptencjał pla magnetcneg

Bardziej szczegółowo

elektrostatyka ver

elektrostatyka ver elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna

Bardziej szczegółowo

Zbigniew Osiak ELEKTRYCZNOŚĆ

Zbigniew Osiak ELEKTRYCZNOŚĆ Zbgnew Osak LKTRYCZNOŚĆ Zbgnew Osak LKTRYCZ OŚĆ STŁ POL LKTRYCZ PRÓŻ I KO D STOR PŁSKI DILKTRYKI PRĄD LKTRYCZ Y STŁY MTLCH OODY PRĄDU STŁGO Mad, mjej cóce pśwęcam Cpght b Zbgnew Osak selke pawa asteżne.

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 1: lektrstatyka cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektrn ma masę m e ładunek -e i Każdy prtn ma masę m p ładunek

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w

POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.

Bardziej szczegółowo

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna

Bardziej szczegółowo

Prawo Gaussa. Potencjał elektryczny.

Prawo Gaussa. Potencjał elektryczny. Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla

Bardziej szczegółowo

Pole elektryczne w próżni

Pole elektryczne w próżni Kuala Lumul, Malesia, ebuay 04 W- (Jaszewicz według Rutwskieg) 9 slajdów Ple elektyczne w óżni LKTROSTTYK zagadnienia związane z ddziaływaniem ładunków elektycznych w sczynku 3/9 L.R. Jaszewicz Pdstawwe

Bardziej szczegółowo

ELEKTRYCZNOŚĆ i MAGNETYZM

ELEKTRYCZNOŚĆ i MAGNETYZM ELEKTRYCZNOŚĆ i MAGNETYZM ELEKTROTATYKA zagadnienia związane z ddziaływaniem ładunków elektycznych w spczynku Pdstawwe pjęcia elektstatyki siły elektstatyczne wywłane są ładunkiem elektycznym ładunek elementany

Bardziej szczegółowo

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

Indukcja elektromagnetyczna Indukcyjność Drgania w obwodach elektrycznych

Indukcja elektromagnetyczna Indukcyjność Drgania w obwodach elektrycznych ndukcja eektomagnetyczna ndukcyjność Dgana w obwodach eektycznych Pawo ndukcj eektomagnetycznej Faadaya > d zewnętzne poe magnetyczne skeowane za płaszczyznę ysunku o watośc osnącej w funkcj czasu. ds

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił.

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił. ykład z fzyk. Pot Pomykewcz 40 Y K Ł A D 5 Pa enega. Pa enega odgywają waŝną olę zaówno w fzyce jak w codzennym Ŝycu. fzyce ła wykonuje konketną pacę, jeŝel dzała ona na pzedmot ma kładową wzdłuŝ pzemezczena

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1

Bardziej szczegółowo

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow

Bardziej szczegółowo

ELEKTROSTATYKA. Ładunek elektryczny. Siła oddziaływania między elektronem a protonem znajdującymi się w odległości równej promieniowi atomu wodoru: 2

ELEKTROSTATYKA. Ładunek elektryczny. Siła oddziaływania między elektronem a protonem znajdującymi się w odległości równej promieniowi atomu wodoru: 2 LKTROSTATYKA Oddziaływania elektmagnetyczne: zjawiska elektyczne, pmieniwanie elektmagnetyczne i ptyka, pwiązane z mechaniką kwantwą. Ładunek elektyczny Siła ddziaływania między elektnem a ptnem znajdującymi

Bardziej szczegółowo

Coba, Mexico, August 2015

Coba, Mexico, August 2015 Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm

Bardziej szczegółowo

Pola siłowe i ich charakterystyka

Pola siłowe i ich charakterystyka W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic

Bardziej szczegółowo

POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA

POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA POLE MAGNETYCZNE: PRAWO GAUSSA, -S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA Wpwadzenie Ple magnetyczne, jedna z pstaci pla elmg: wytwazane pzez zmiany pla elektyczneg w czasie,

Bardziej szczegółowo

E r. Cztery fundamentalne oddziaływania: 1. Grawitacyjne 2. Elektromagnetyczne 3. Słabe jądrowe 4. Silne Elektromagnetyzm , Q.

E r. Cztery fundamentalne oddziaływania: 1. Grawitacyjne 2. Elektromagnetyczne 3. Słabe jądrowe 4. Silne Elektromagnetyzm , Q. Cztey fundamentalne ddziaływania: 1. Gawitacyjne. Elektmagnetyczne 3. Słabe jądwe 4. Silne Elektmagnetyzm Elektycznść E, Q Magnetyzm B, Q M Równania Maxwella Wykład 6 015/16 1 ELEKTROSTATYKA Wykład 6 015/16

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź

Bardziej szczegółowo

16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski

16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski 6. Poe magnetczne, nukcja Wbó opacowane Maek meewsk 6.. Znaeźć nukcje poa magnetcznego w oegłośc o neskończone ługego pzewonka wacowego o pomenu pzekoju popzecznego a w któm płne pą I. 6.. Wznaczć nukcję

Bardziej szczegółowo

Cztery fundamentalne oddziaływania

Cztery fundamentalne oddziaływania Cztey fundamentalne ddziaływania:. Gawitacyjne. lektmagnetyczne 3. Słabe 4. Silne jądwe lektmagnetyzm lektycznść, Q Magnetyzm B, Q M Równania Maxwella Wykład - Fizyka II 00/ LKTROSTATYKA Wykład - Fizyka

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej

Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna

Bardziej szczegółowo

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E = 3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1

Bardziej szczegółowo

cz.1 dr inż. Zbigniew Szklarski

cz.1 dr inż. Zbigniew Szklarski ykład : Gawitacja cz. d inż. Zbiniew Szklaski szkla@ah.edu.l htt://laye.uci.ah.edu.l/z.szklaski/ Doa do awa owszechneo ciążenia Ruch obitalny lanet wokół Słońca jak i dlaczeo? Reulane, wieloletnie omiay

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

Teoria Względności. Czarne Dziury

Teoria Względności. Czarne Dziury Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą

Bardziej szczegółowo

Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.

Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił. 1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało

Bardziej szczegółowo

. W IX X IE W GO LIN KARO 2

. W IX X IE W GO LIN KARO 2 C E S~ R Z EP R Z Y M S K O MN I E M I E C C Y P 1 2 KAROLINGOWIE IX X W. WŁADCY ŚWIĘTEGO CESARSTWA RZYMSKIEGO oraz Genealogia KAROLINGOWIE IX X W. CESARZE AUSTRII opracował PRZEMYSŁAW JAWORSKI 2018 3

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltechnka Wrocławska nstytut Maszyn, Napędów Pomarów Elektrycznych Materał lustracyjny do przedmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zelńsk (-9, A10 p.408, tel. 30-3 9) Wrocław 005/6 PĄD ZMENNY

Bardziej szczegółowo

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Mędznarodowa Norma Ocen Nepewnośc Pomaru(Gude to Epresson of Uncertant n Measurements - Mędznarodowa Organzacja Normalzacjna ISO) RACHUNEK NIEPEWNOŚCI http://phscs.nst./gov/uncertant POMIARU Wrażane Nepewnośc

Bardziej szczegółowo

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania ermdyamka układów rzeczywstych 2.7.1. Pwwactw chemcze 2.7.2. Defcja raz ses tecjału chemczeg aktywść 2.7.3. ermdyamcze fukcje meszaa 2.7.4. Klasyfkacja rztwrów Waruk ztermcz-zchrycze ) ( V F F j V V d

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Przykład 3.2. Rama wolnopodparta

Przykład 3.2. Rama wolnopodparta rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ

Bardziej szczegółowo

Siły centralne, grawitacja (I)

Siły centralne, grawitacja (I) Pojęcia Gawitacja postawowe (I) i histoia Siły centalne, gawitacja (I) Enegia potencjalna E p B A E p ( ) E p A W ( ) F W ( A B) B A F Pawo gawitacji (siła gawitacji) - Newton 665 M N k F G G 6.6700 F,

Bardziej szczegółowo

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w

Bardziej szczegółowo

RUCH OBROTOWY BRYŁY SZTYWNEJ

RUCH OBROTOWY BRYŁY SZTYWNEJ RUCH OBROTOWY BRYŁY SZTYWNE RUCH OBROTOWY BRYŁY SZTYWNE Cało Doskonale Sztywne (Była Sztywna) model cała zeczywstego układ n oddzaływujących cząstek któych wzajemne odległośc ne ulegają zmane Cało wykonuje

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

Układy punktów materialnych i zasada zachowania pędu.

Układy punktów materialnych i zasada zachowania pędu. Wykład z fzyk. Pot Posmykewcz 68 W Y K Ł A D VII Układy punktów matealnych zasada zachowana pędu. Do tej poy taktowaly cała take jak samochód, aketę, czy człoweka jako punkty matealne (cząstk) stosowaly

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Elektrostatyka. + (proton) - (elektron)

Elektrostatyka. + (proton) - (elektron) lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Obroty. dθ, cząstka W Y K Ł A D VIII. Prędkość kątowa i przyspieszenie kątowe.

Obroty. dθ, cząstka W Y K Ł A D VIII. Prędkość kątowa i przyspieszenie kątowe. Wykład z fzyk, Pot Posmykewcz 84 W Y K Ł A D VIII Oboty. Ruch obotowy jest wszędze wokół nas; od atomów do galaktyk. Zema obaca sę wokół własnej os. Koła, pzekładne, slnk, śmgła, CD, łyŝwaka wykonująca

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana

Bardziej szczegółowo

Drgania układu o wielu stopniu swobody

Drgania układu o wielu stopniu swobody Drgana układu welu stpnu swbd Drgana własne Zasada d laberta Zasada d leberta: w dnesenu d knstrukcj, znajdującej sę pd wpłwe sł zennch w czase, żna stswać zasad statk pd warunke, że uwzględn sę sł bezwładnśc.

Bardziej szczegółowo

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika. ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana

Bardziej szczegółowo

4. Prąd stały Prąd i prawo Ohma. C s. i = i = t. i S. j = V u prędkość unoszenia ładunków. r r

4. Prąd stały Prąd i prawo Ohma. C s. i = i = t. i S. j = V u prędkość unoszenia ładunków. r r 4. Pąd sały. 4.. Pąd pawo Ohma. l U - + u u pędkość unoszena ładunków S j o ds gdze j jes gęsoścą pądu: j S j S A s A m W pzewodnku o objęośc S l znajduje sę ładunek n e S l m lczbą elekonów w jednosce

Bardziej szczegółowo

Diamagnetyzm. Paramagnetyzm. Paramagnetyzm. Magnetyczne własności materii. Ferromagnetyki. Dipolowy moment magnetyczny atomu B 0 = 0.

Diamagnetyzm. Paramagnetyzm. Paramagnetyzm. Magnetyczne własności materii. Ferromagnetyki. Dipolowy moment magnetyczny atomu B 0 = 0. aganna nt sły załający na akę z pą ) Wkt nukcj agntycznj. Ln pla agntyczng. ) Pą lktyczny jak źół pla agntyczng. ) ła Lntza. Ruch cząstk w plu agntyczny. 4) asaa załana spkttu aswg. 5) Efkt Halla. Wyznaczn

Bardziej szczegółowo

Prawo powszechnego ciążenia Newtona

Prawo powszechnego ciążenia Newtona Pawo powszechnego ciążenia Newtona m M FmM Mm =G 2 Mm FMm = G 2 Stała gawitacji G = 6.67 10 11 2 Nm 2 kg Wielkość siły gawitacji z jaką pzyciągają się wzajemnie ciała na Ziemi M = 100kg N M = Mg N m =

Bardziej szczegółowo

α i = n i /n β i = V i /V α i = β i γ i = m i /m

α i = n i /n β i = V i /V α i = β i γ i = m i /m Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

10 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I

10 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I 10 K A TEDRA FZYK STOSOWANEJ P R A C O W N A F Z Y K Ćw. 10. Wyznaczane mmentu bezwładnśc był neegulanych Wpwadzene Pzez byłę sztywną zumemy cał, któe pd wpływem dzałana sł ne zmena sweg kształtu, tzn.

Bardziej szczegółowo

r śm równa się wypadkowej sile działającej na

r śm równa się wypadkowej sile działającej na Wykład z fzyk. Pot Posykewcz 74 F wyp dp dt 8- Duga zasada dynak Tak węc: Wypadkowa sła dzałająca na punkt atealny jest ówna szybkośc zany pędu cząstk. W zeczywstośc pewotne sfoułowane dugej zasady dynak

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blk 6: Pęd. Zasada zachwana pędu. Praca. Mc. ZESTAW ZADAŃ NA ZAJĘCIA Uwaga: w pnższych zadanach przyjmj, że wartść przyspeszena zemskeg jest równa g 10 m / s. PĘD I ZASADA ZACHOWANIA PĘDU 1. Płka mase

Bardziej szczegółowo

Z. Załączniki tabelaryczne i opisowe

Z. Załączniki tabelaryczne i opisowe Z. Załączniki tabelaryczne i opisowe 1 Z. ZAŁĄCZNIKI TABELARYCZNE I OPISOWE Tabela Z-1. Charakterystyka sieci pomiarowej pyłu zawieszonego PM10 i B(a)P w województwie śląskim w latach 2002-2007 (opracowanie

Bardziej szczegółowo

Tensorowe. Wielkości fizyczne. Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna to właściwość fizyczna zjawisk lub obiektów,

Tensorowe. Wielkości fizyczne. Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna to właściwość fizyczna zjawisk lub obiektów, Welkośc Jednosk UŜywane w Elekryce Welkość Fzyczna o właścwość fzyczna zjawsk lub obeków, Przykłady: W. f.: kórą moŝna zmerzyć. czas, długość, naęŝene pola elekrycznego, przenkalność elekryczna kryszałów.

Bardziej szczegółowo

Fizyka 7. Janusz Andrzejewski

Fizyka 7. Janusz Andrzejewski Fzyka 7 Janusz Andzejewsk Poblem: Dlaczego begacze na stadone muszą statować z óżnych mejsc wbegu na 400m? Janusz Andzejewsk Ruch obotowy Cało sztywne Cało, któe obaca sę w tak sposób, że wszystke jego

Bardziej szczegółowo

Dynamika relatywistyczna

Dynamika relatywistyczna Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Wybrane zagadnienia z elektryczności

Wybrane zagadnienia z elektryczności Wybane zaganienia z elektyczności Pomia łaunku elektycznego oświaczenie Millikana atomize płaszczyzna (+) bateia kople oleju mikoskop F el F g płaszczyzna (-) F g F el mg mg e.6 0 9 C Łaunek elektyczny

Bardziej szczegółowo

Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż

Bardziej szczegółowo

POLE MAGNETYCZNE. Prawo Ampera. 2 4πε. Cyrkulacją wektorab r po okręgu. Kierunek wektora B r reguła prawej ręki.

POLE MAGNETYCZNE. Prawo Ampera. 2 4πε. Cyrkulacją wektorab r po okręgu. Kierunek wektora B r reguła prawej ręki. POLE MAGNETYCZNE Paw Ampea Kieunek wekta eguła pawej ęki. l Cykulacją wekta p kęgu ds ds π 4πε c Mżna wykazać, że związek ten jest słuszny dla kntuu dwlneg kształtu bejmująceg pzewdnik. ds Rys. 6.. Całkę

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Ź Ż Ż Ź Ó Ść Ś Ó Ż Ż ć ć Ś Ż Ź Ś Ś ć Ó Ą Ź Ż Ą ć Ź Ź Ż Ś Ż ć Ś Ź Ś Ż Ż ć ć Ś Ś Ż Ó Ś Ę ć ć Ś Ż Ż Ż ć ć ć Ź Ź Ś Ę Ź Ź ć Ś ć Ś Ż ć Ć Ż Ść Ź Ź Ś Ść Ż Ź Ź Ś Ś Ż Ł ć Ś Ź Ó ć Ź Ś Ż Ś Ą Ś ź Ź ć ć Ś Ś Ą ć Ż Ż

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa

3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa 3. Sła bezwładnośc występująca podczas uchu cała w układze obacającym sę sła Coolsa ω ω ω v a co wdz obsewato w układze necjalnym co wdz obsewato w układze nenecjalnym tajemncze pzyspeszene: to właśne

Bardziej szczegółowo

Ń Ż Ó Ó Ó Ż Ę Ó Ś Ó Ę Ś Ś Ó ż Ó Ó Ż Ś Ś Ó Ó Ś Ś Ś Ó Ść Ó ż Ść Ę Ó Ń Ś Ó Ś Ó Ż Ż Ż ć Ż Ó Ó Ż Ś Ó Ś ć Ń ć Ó Ó Ś ż Ś Ż Ż Ść Ó Ś ż ćż ć Ó Ż Ś Ć Ó Ż Ó Ó Ż Ś Ó Ó Ś Ó ż Ó Ż Ź Ś ż Ń Ó Ó Ś ż Ś Ó Ó Ś ż Ś Ś Ś Ć Ż

Bardziej szczegółowo

władcy czech i węgier

władcy czech i węgier W ŁŻ D C YP C Z E C HP IP W Ę G I E R P 1 2 Genealogia książąt i królów czeskich i węgierskich od IX w. I. WŁADCY CZECH 1. PRZEMYŚLIDZI władcy czech i węgier opracował Przemysław Jaworski 2018 3 bibliografia

Bardziej szczegółowo

WYNIKI MISTRZOSTW KATOWIC W PŁYWANIU SZKÓŁ PONADPODSTAWOWYCH ( R.)

WYNIKI MISTRZOSTW KATOWIC W PŁYWANIU SZKÓŁ PONADPODSTAWOWYCH ( R.) WYNIKI MISTRZOSTW KATOWIC W PŁYWANIU SZKÓŁ PONADPODSTAWOWYCH (12.10.2018 R.) 100 metrów stylem zmiennym dziewcząt 1 WB X LO 1:25,52 17 2 KK I LO 1:25,77 15 3 MZ II LO 1:28,70 14 4 AP III LO 1:30,81 13

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe

Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe Leu. D. Hlld, R. Resnc, J. Wle, Podsw f, om -5, PWN, 7. D. Hlld, R. Resnc F om,, PWN, 974. 3. J. Blnows, J. Tls F dl nddów n wŝse ucelne PWN 986 4. P. W. Ans Chem fcn, PWN, 3. Pln włdu ) Podswowe wdomośc

Bardziej szczegółowo

Ł Ł Ą Ą Ą ż ń ż ń ż ń Ż Ż Ś ń Ż ń ć Ł Ą ń Ż Ś ń ć ń ć ń Ż ć ć ń ń ń ż ć ń ŁĄ ż ć ć ć ć ń Ż Ź ć ć ć ń ż ŁĄ Ł ż Ł Ąż ń ć ż ŚĆ ż Ł ń Ć Ś Ę ń ń ż ź Ż ń ć Ę ń ć ż ć ć ń ń Ć ć ż Ż ć ć ć ćż Ż ć Ż Ę Ż Ż Ść Ż ż

Bardziej szczegółowo

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

spinem elektronu związanym z orbitującymi elektronami H = H 0 +V ES +V LS + V ES

spinem elektronu związanym z orbitującymi elektronami H = H 0 +V ES +V LS + V ES Oałwane pn-obta: B' R ' popawka Thomaa R B' e pocho o magnet. momentu poowego, B wąanego e m pnem eektonu W poem magnet., B' wąanm obtującm eektonam mec W popawka enegetcna aeżna o c ) j m c chemat pężeń

Bardziej szczegółowo