Własności jąder w stanie podstawowym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Własności jąder w stanie podstawowym"

Transkrypt

1 Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów = A-Z Symbol jądra: Podstawy fizyki jądrowej - B.Kamys 1

2 Izotopy,izotony i izobary Izotopy jądra o tym samym Z lecz różnych A,N Izotony jądra o tym samym N lecz różnych A,Z Izobary jądra o tym samym A lecz różnych N,Z Izobary mające taką samą masę (różniącą się tylko o energię oddziaływania elektromagnetycznego) i mające taki sam spin oraz parzystość mogą zachowywać się identycznie jeżeli chodzi o silne oddziaływanie. Mówimy wtedy, że tworzą one multiplet izospinowy o liczebności 2T+1, gdzie T to tzw. izospin. Składniki multipletu różnią się rzutem izospinu T 3 przyjmującym 2T+1 wartości (-T, -T+1,, T-1, T). Neutron i proton tworzą multiplet o izospinie T=1/2 oraz rzutach T 3 (n)=+1/2, T 3 (p)=-1/2 Podstawy fizyki jądrowej - B.Kamys 2

3 c.d. izospin Izospin jądra T (lub I) to suma wektorowa izospinów nukleonów UWAGA: W fizyce cząstek używa się innej konwencji znaków rzutu izospinu. Izospin oznacza się wtedy zwykle literą I i neutron ma rzut I 3 =-1/2a proton I 3 =+1/2. Ogólniej : składnik multipletu izospinowego o najmniejszym ładunku (uwzględniając znak ) ma I 3 = - I a kolejne następne mają trzecią składową powiększoną o 1 (I 3 = -I+1, -I+2, itd.) UWAGA: Jądra atomowe w stanie podstawowym mają prawie zawsze izospin równy trzeciej składowej T=T 3 =(N-Z)/2 a jądra w stanie wzbudzonym mają izospin NIE MNIEJSZY od stanu podstawowego różniący się o liczbę całkowitą ( T 3 T A/2) Podstawy fizyki jądrowej - B.Kamys 3

4 Multiplet izospinowy dla A=10 Podstawy fizyki jądrowej - B.Kamys 4

5 Zachowywane liczby kwantowe Π- parzystość (wartość własna operatora odbicia przestrzennego) J spin (wektorowa suma spinów nukleonów i ich krętów orbitalnych) W układzie izolowanym (a jądro lub oddziałujące jądra zwykle można za taki uważać) zachowywana jest zawsze energia, pęd i kręt (moment pędu) Oddziaływanie silne zachowuje dodatkowo Π, T i T 3 Elektromagnetyczne zachowuje Π i T 3 ale NIE T Słabe zachowuje T 3 ale NIE zachowuje Π i T Podstawy fizyki jądrowej - B.Kamys 5

6 Gęstość rozkładu masy w jądrze atomu Dla A<5 funkcja Gaussa Dla 4<A<30 dno butelki Dla A>30 stała w centrum Podstawy fizyki jądrowej - B.Kamys 6

7 Średni promień kwadratowy rozkładu ładunku Pierwiastek ze średniego promienia kwadratowego Wzór dla A<30: Wzór dla A>30: Podstawy fizyki jądrowej - B.Kamys 7

8 Średni promień kwadratowy rozkładu masy Na rysunku pokazano pierwiastek ze średniego promienia kwadratowego masy A 1/3 i ładunku (2Z) 1/3 Podstawy fizyki jądrowej - B.Kamys 8

9 Wyznaczanie rozmiarów Rozkład masy: Rozpraszanie hadronów (protony, cz. alfa): Poziomy atomów pionowych Emisja cząstek alfa Rozkład ładunku: Rozpraszanie leptonów (elektrony) Przesunięcia izotopowe poziomów energetycznych atomów (atomy jednoelektronowe i atomy mionowe) dla rozkładu ładunku Różnica energii jąder zwierciadlanych Podstawy fizyki jądrowej - B.Kamys 9

10 Rozpraszanie hadronów Historycznie pierwsza metoda, która pozwoliła na odkrycie jądra atomu Wzór Rutherforda Podstawy fizyki jądrowej - B.Kamys 10

11 Uwzględnienie silnego oddziaływania Potencjał hadron-jądro fenomenologiczny lub wyliczony mikroskopowo ( Model optyczny ) Korzysta ze znanych oddziaływań nukleon-nukleon oraz rozkładów gęstości (masy) cząstki i jądra atomu Podstawy fizyki jądrowej - B.Kamys 11

12 Atomy pionowe Pion o ładunku ujemnym (-e) zachowuje się w polu kulombowskim jądra jak ciężki elektron Orbita Bohra a 0 elektronu w atomie wodoru ma promień odwrotnie proporcjonalny do masy elektronu: Pion ma masę ok. 139,6 MeV/c 2 (273 razy większą niż elektron) więc część czasu spędza wewnątrz jądra Oddziaływanie silne zmienia energię poziomu a możliwość pochłonięcia pionu powoduje zwiększenie szerokości naturalnej poziomu Podstawy fizyki jądrowej - B.Kamys 12

13 Rozpad alfa Emisja cząstki alfa jest faworyzowana energetycznie bo jej masa i masa jądra końcowego jest mniejsza od masy jadra emitującego cząstkę alfa Rozpad zachodzi po pewnym czasie silnie zależnym od promienia bariery potencjału (zmiana promienia o 5% zmienia czas życia 10 5 razy) Podstawy fizyki jądrowej - B.Kamys 13

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

Podstawy fizyki subatomowej. 3 kwietnia 2019 r.

Podstawy fizyki subatomowej. 3 kwietnia 2019 r. Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.

Bardziej szczegółowo

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów

Bardziej szczegółowo

Symetrie. D. Kiełczewska, wykład 5 1

Symetrie. D. Kiełczewska, wykład 5 1 Symetrie Symetrie a prawa zachowania Spin Parzystość Spin izotopowy Multiplety hadronowe Niezachowanie parzystości w oddz. słabych Sprzężenie ładunkowe C Symetria CP Zależność spinowa oddziaływań słabych

Bardziej szczegółowo

Rozpady promieniotwórcze

Rozpady promieniotwórcze Rozpady promieniotwórcze Przez rozpady promieniotwórcze rozumie się spontaniczne procesy, w których niestabilne jądra atomowe przekształcają się w inne jądra atomowe i emitują specyficzne promieniowanie

Bardziej szczegółowo

Masa jądra atomowego

Masa jądra atomowego Masa jądra atomowego Masa jądra jest mniejsza od sumy mas nukleonów Aby jądro rozdzielić na nukleony trzeba mu dostarczyć powyższą różnicę masy zwaną niedoborem masy Energia równoważna tej masie to energia

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro

Bardziej szczegółowo

Symetrie. D. Kiełczewska, wykład 5 1

Symetrie. D. Kiełczewska, wykład 5 1 Symetrie Symetrie a prawa zachowania Spin Parzystość Spin izotopowy Multiplety hadronowe Niezachowanie parzystości w oddz. słabych Sprzężenie ładunkowe C Symetria CP Zależność spinowa oddziaływań słabych

Bardziej szczegółowo

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba

Bardziej szczegółowo

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1 Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

Rozpad gamma. Przez konwersję wewnętrzną (emisję wirtualnego kwantu gamma, który przekazuje swą energię elektronom z powłoki atomowej)

Rozpad gamma. Przez konwersję wewnętrzną (emisję wirtualnego kwantu gamma, który przekazuje swą energię elektronom z powłoki atomowej) Rozpad gamma Deekscytacja jądra atomowego (przejście ze stanu wzbudzonego o energii do niższego stanu o energii ) może zachodzić dzięki oddziaływaniu elektromagnetycznemu przez tzw. rozpad gamma Przejście

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Modele jądra atomowego

Modele jądra atomowego Modele jądra atomowego Model to uproszczona wersja teoretycznego opisu, która: 1.) Tworzona jest biorąc pod uwagę tylko wybrane fakty doświadczalne 2.) Przewiduje dalsze fakty, które mogą być doświadczalnie

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski

Bardziej szczegółowo

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A)

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A) PRZYKŁADOW SPRAWDZIANY WIADOMOŚCI l UMIJĘTNOŚCI Współczesny model budowy atomu (wersja A) 1. nuklid A. Zbiór atomów o tej samej wartości liczby atomowej. B. Nazwa elektrycznie obojętnej cząstki składowej

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r

Bardziej szczegółowo

3. Jaka jest masa atomowa pierwiastka E w następujących związkach? Który to pierwiastek? EO o masie cząsteczkowej 28 [u]

3. Jaka jest masa atomowa pierwiastka E w następujących związkach? Który to pierwiastek? EO o masie cząsteczkowej 28 [u] 1. Masa cząsteczkowa tlenku dwuwartościowego metalu wynosi 56 [u]. Masa atomowa tlenu wynosi 16 [u]. Ustal jaki to metal i podaj jego nazwę. Napisz wzór sumaryczny tego tlenku. 2. Ile razy masa atomowa

Bardziej szczegółowo

Symetrie w fizyce cząstek elementarnych

Symetrie w fizyce cząstek elementarnych Symetrie w fizyce cząstek elementarnych Odkrycie : elektronu- koniec XIX wieku protonu początek XX neutron lata 3 XX w; mion µ -1937, mezon π 1947 Lata 5 XX w zalew nowych cząstek; łączna produkcja cząstek

Bardziej szczegółowo

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na

Bardziej szczegółowo

Rozpady promieniotwórcze

Rozpady promieniotwórcze Rozpady promieniotwórcze Przez rozpady promieniotwórcze rozumie się spontaniczne procesy, w których niestabilne jądra atomowe przekształcają się w inne jądra atomowe i emitują specyficzne promieniowanie

Bardziej szczegółowo

Autorzy: Zbigniew Kąkol, Piotr Morawski

Autorzy: Zbigniew Kąkol, Piotr Morawski Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

Rozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa

Rozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa Rozpad alfa Samorzutny rozpad jądra (Z,A) na cząstkę α i jądro (Z-2,A-4) tj. rozpad 2-ciałowy, stąd Widmo cząstek α jest dyskretne bo przejścia zachodzą między określonymi stanami jądra początkowego i

Bardziej szczegółowo

Reakcje jądrowe. Podstawy fizyki jądrowej - B.Kamys 1

Reakcje jądrowe. Podstawy fizyki jądrowej - B.Kamys 1 Reakcje jądrowe Reakcje w których uczestniczą jądra atomowe nazywane są reakcjami jądrowymi Mogą one zachodzić w wyniku oddziaływań silnych, elektromagnetycznych i słabych Nomenklatura Reakcje, w których

Bardziej szczegółowo

Model uogólniony jądra atomowego

Model uogólniony jądra atomowego Model uogólniony jądra atomowego Jądro traktowane jako chmura nukleonów krążąca w średnim potencjale Średni potencjał może być sferyczny ale także trwale zdeformowany lub może zależeć od czasu (wibracje)

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Reakcje jądrowe dr inż. Romuald Kędzierski

Reakcje jądrowe dr inż. Romuald Kędzierski Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

Słowniczek pojęć fizyki jądrowej

Słowniczek pojęć fizyki jądrowej Słowniczek pojęć fizyki jądrowej atom - najmniejsza ilość pierwiastka jaka może istnieć. Atomy składają się z małego, gęstego jądra, zbudowanego z protonów i neutronów (nazywanych inaczej nukleonami),

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

Fizyka cząstek elementarnych i oddziaływań podstawowych

Fizyka cząstek elementarnych i oddziaływań podstawowych Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej

Bardziej szczegółowo

Liczby kwantowe elektronu w atomie wodoru

Liczby kwantowe elektronu w atomie wodoru Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Doświadczenie Rutherforda. Budowa jądra atomowego.

Doświadczenie Rutherforda. Budowa jądra atomowego. Doświadczenie Rutherforda. Budowa jądra atomowego. Rozwój poglądów na budowę atomu Model atomu Thomsona - zwany także modelem "'ciasta z rodzynkami". Został zaproponowany przez brytyjskiego fizyka J. J.

Bardziej szczegółowo

Reakcje rozpadu jądra atomowego

Reakcje rozpadu jądra atomowego Reakcje rozpadu jądra atomowego O P R A C O W A N I E : P A W E Ł Z A B O R O W S K I K O N S U L T A C J A M E R Y T O R Y C Z N A : M A Ł G O R Z A T A L E C H Trwałość izotopów Czynnikiem decydującym

Bardziej szczegółowo

Promieniowanie jądrowe w środowisku człowieka

Promieniowanie jądrowe w środowisku człowieka Promieniowanie jądrowe w środowisku człowieka Prof. dr hab. ndrzej Płochocki (z wykorzystaniem elementów wykładu dr Piotra Jaracza) Cz. 1. Podstawowe własności jąder atomowych, jądra nietrwałe, elementy

Bardziej szczegółowo

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Formalizm skrajnych modeli reakcji

Formalizm skrajnych modeli reakcji Formalizm skrajnych modeli reakcji Reakcje wprost czyli reakcje bezpośredniego oddziaływania opisywane są w ramach formalizmu, który rozwiązuje równanie Schroedingera dla oddziałujących jąder atomowych

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres podstawowy

FIZYKA IV etap edukacyjny zakres podstawowy FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie

Bardziej szczegółowo

W-28 (Jaroszewicz) 36 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Fizyka jądrowa cz. 1. budowa jądra atomowego przemiany promieniotwórcze

W-28 (Jaroszewicz) 36 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Fizyka jądrowa cz. 1. budowa jądra atomowego przemiany promieniotwórcze W-28 (Jaroszewicz) 36 slajdy Na podstawie prezentacji prof. J. Rutkowskiego Fizyka jądrowa cz. 1 budowa jądra atomowego przemiany promieniotwórcze 3/35-W28 Podstawowe pojęcia jądra atomowe (nuklidy) dzielimy

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Model powłokowy Moment kwadrupolowy w jednocząstkowym modelu powłokowym: Dla pojedynczego protonu znajdującego się na orbicie j (m j

Bardziej szczegółowo

II.1 Serie widmowe wodoru

II.1 Serie widmowe wodoru II.1 Serie widmowe wodoru Jan Królikowski Fizyka IVBC 1 II.1 Serie widmowe wodoru W obszarze widzialnym wystepują 3 silne linie wodoru: H α (656.3 nm), H β (486.1 nm) i H γ (434.0 nm) oraz szereg linii

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.

Bardziej szczegółowo

Wykład 3. Witold Bekas SGGW.

Wykład 3. Witold Bekas SGGW. Wykład 3 Witold Bekas SGGW Budowa atomu - przypomnienie: Atom: jądro atomowe (+) nukleos chmura elektronowa(-) chmura elektronowa relacje wielkości: jądro / atom 1 cm / 1 km Jądro atomowe m p m n u pamiętaj

Bardziej szczegółowo

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU) WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

W2. Struktura jądra atomowego

W2. Struktura jądra atomowego W2. Struktura jądra atomowego Doświadczenie Rutherforda - badanie odchylania wiązki cząstek alfa w cienkiej folii metalicznej Hans Geiger, Ernest Marsden, Ernest Rutherford ( 1911r.) detektor pierwiastek

Bardziej szczegółowo

Wykład Budowa atomu 1

Wykład Budowa atomu 1 Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Wstęp do fizyki jądrowej Tomasz Pawlak, 2013

Wstęp do fizyki jądrowej Tomasz Pawlak, 2013 24-06-2007 Wstęp do fizyki jądrowej Tomasz Pawlak, 2013 część 1 własności jąder (w stanie podstawowym) składniki jąder przekrój czynny masy jąder rozmiary jąder Rutherford (1911) Ernest Rutherford (1871-1937)

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 9-4.XII.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad gamma 152 Dy * 152 Dy+gamma

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze

Bardziej szczegółowo

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

Promieniotwórczość naturalna. Jądro atomu i jego budowa. Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 1 Podstawy budowy materii (chemiczne i fizyczne) O wykładzie Pojęcia fizyki subatomowej rządzące zastosowaniami fizyki w diagnostyce i terapii

Bardziej szczegółowo

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów

Bardziej szczegółowo

Zasady obsadzania poziomów

Zasady obsadzania poziomów Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo

Wyk³ady z Fizyki. J¹dra. Zbigniew Osiak

Wyk³ady z Fizyki. J¹dra. Zbigniew Osiak Wyk³ady z Fizyki J¹dra 12 Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Energetyka w Środowisku Naturalnym

Energetyka w Środowisku Naturalnym Energetyka w Środowisku Naturalnym Energia w Środowisku -technika ograniczenia i koszty Wykład 12 17/24 stycznia 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Dział: 7. Światło i jego rola w przyrodzie.

Dział: 7. Światło i jego rola w przyrodzie. Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Atom. Aleksander Gendarz. Cel fizyki: ująć przyrodę jako różne przejawy tego samego zespołu praw. - Richard Feynman

Atom. Aleksander Gendarz. Cel fizyki: ująć przyrodę jako różne przejawy tego samego zespołu praw. - Richard Feynman Atom Aleksander Gendarz Cel fizyki: ująć przyrodę jako różne przejawy tego samego zespołu praw. - Richard Feynman Geneza słowa atom Słowo atom pochodzi z greckiego ἄτομος átomos (od α-, nie- + τέμνω temno,

Bardziej szczegółowo

Fizyka jądrowa. Podstawowe pojęcia. Izotopy. budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe. jądra atomowe (nuklidy) dzielimy na:

Fizyka jądrowa. Podstawowe pojęcia. Izotopy. budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe. jądra atomowe (nuklidy) dzielimy na: Fizyka jądrowa budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe Podstawowe pojęcia jądra atomowe (nuklidy) dzielimy na: trwałe (stabilne) nietrwałe (promieniotwórcze) jądro składa się

Bardziej szczegółowo

Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów.

Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. prof. dr hab. Marta Kicińska-Habior Wydział Fizyki UW Zakład Fizyki Jądra Atomowego e-mail: Marta.Kicinska-Habior@fuw.edu.pl

Bardziej szczegółowo

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY.

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY. . JĄDROWA BUDOWA ATOMU. A - POIOM PODSTAWOWY. Na początek - przeczytaj uważnie tekst i wykonaj zawarte pod nim polecenia.. Dwie reakcje jądrowe zachodzące w górnych warstwach atmosfery: N + n C + p N +

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU UWAGA: Tekst poniżej,

Bardziej szczegółowo

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Fizyka jądrowa. Podstawowe pojęcia

Fizyka jądrowa. Podstawowe pojęcia Fizyka jądrowa budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe Podstawowe pojęcia jądra atomowe (nuklidy) dzielimy na: trwałe (stabilne) nietrwałe (promieniotwórcze) jądro składa się

Bardziej szczegółowo

Wszechświat cząstek elementarnych WYKŁAD 5

Wszechświat cząstek elementarnych WYKŁAD 5 Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo