Drgania układu o wielu stopniu swobody

Wielkość: px
Rozpocząć pokaz od strony:

Download "Drgania układu o wielu stopniu swobody"

Transkrypt

1 Drgana układu welu stpnu swbd

2 Drgana własne

3 Zasada d laberta Zasada d leberta: w dnesenu d knstrukcj, znajdującej sę pd wpłwe sł zennch w czase, żna stswać zasad statk pd warunke, że uwzględn sę sł bezwładnśc.

4 Drgana własne układ welu stpnach swbd rak sł wuszającej drgana Przeeszczena pszczególnch as równają sę sue przeeszczeń d pszczególnch sł bezwładnśc: n gdze: & j j a dla belk pwżej j j j j & & lub & && & & && & 4 &&

5 Drgana własne układ welu stpnach swbd Rzwązane równana różnczkweg a frę: sn( t) czl && sn( t) gdze częstść drgań własnch & & & && && & & & && ( t) sn( t) sn( t) sn( t) sn ( t) sn( t) sn( t) sn( t) sn ( t) sn( t) sn( t) sn( t) sn 5

6 Równane ruchu układu klku stpnach swbd rak sł wuszającej drgana ( t) sn( t) sn( t) sn( t) ( t ) sn ( t ) sn ( t ) sn ( t ) ( t) sn( t) sn( t) sn( t) sn sn sn P przekształcenach układ równań przbera frę:

7 Wznaczane częstśc drgań własnch Układ równań psując ruch: lub 0 7

8 Wznaczane częstśc drgań własnch Układ równań psując ruch: 0 gdze: newad są częstść drgań własnch [rad/s], apltud drgań as na t stpnu swbd a znane są as na t stpnu swbd, j przeeszczena na kerunku wwłane słą jednstkwch, dzałającą na kerunku j 8

9 Wznaczane częstśc drgań własnch Rzwązane układu równań : 0 lub 0 T jest ne prawdą czl t us bć równe zer 9

10 Wznaczane częstśc drgań własnch Częstśc są rzwązane równana jake pwstane p plczenu wznacznka: P pdzelenu klun przez ten wznacznk wgląda tak: 0 0 0

11 Wznaczane apltud drgań własnch pltud drgań własnch ne żna plczć, natast żna plczć stsunek apltud. Układ równań: Dzel przez czl trzuje:

12 Wznaczane apltud drgań własnch 0 0 Układ równań, psując apltud drgań własnch Z pwższeg układu równań wbera dwa równana wznacza: 0, Uwaga: Najczęścej w pwższ układze równań za wstawa sę pzstawa sę znaczena stsunku apltud d apltud jak

13 Fr drgań własnch Na pdstawe apltud rsuje fr drgań własnch: a,, a a a a a a a,, a a a a a a,, a a a a

14 Ortgnalnść drgań własnch pltud drgań własnch spełnają warunek rtgnalnśc czl: n j k gdze as skupne, j apltuda drgań as prz częstśc j, k apltuda drgań as prz częstśc k. j perwsz ndeks znacza kerunek drgana, a drug częstść drgań własnch, dla której apltuda (stsunek d apltud j ) zstała wznaczna. Ortgnalnść sprawdza dla dwóch fr drgań własnch. 4 0

15 Ortgnalnść drgań własnch pltud drgań własnch pwnn spełnać warunk rtgnalnśc czl: dla 0 dla 0 dla 0 5

16 Metd szacwana perwszej częstśc drgań własnch W przpadku układu jedn stpnu częstść drgań własnch wns: Metda Dunkerle a (lub Gegera): D n lub D Zależnść pędz blczn wartśca D < 6

17 Metd szacwana perwszej częstśc drgań własnch - Metda Ralegh a Płżene równwag z aksalną prędkścą energą knetczną Funkcje psujące zan prędkśc ruchu as w czase Płżene aksalneg wchlena prędkścą równą zer aksalna energą ptencjalną & cst & cst & cst a, są apltuda prędkśc, wstępując w płżenu równwag. Funkcje psujące przeeszczena as w czase a, są apltuda przeeszczeń. sn t snt snt 7

18 Metd szacwana perwszej częstśc drgań własnch - Metda Ralegh a Energa knetczna n E k ax ( ) Energa ptencjalna n E p ax P Z zasad zachwana energ a E E k ax p ax n n ( ) P n P n n n P drgana.exe 8

19 Metd szacwana perwszej częstśc drgań własnch - Metda Ralegh a n n P P P P gdze: P sł, np. cężar as, dzałające na kerunkach stpn swbd, apltud przeeszczeń, wznaczne jak przeeszczena wwłane sła P czl P g g P P g ( ) g ( ) g v ( ) g P P P g P P P g P P P g n n g g > n n v g 9

20 Metd szacwana perwszej częstśc drgań własnch Metda Dunkerle a (lub Gegera): D n lub D Metda Ralegha R n n lub Zależnść pędz blczn wartśca < < R D R gdze: 0

21 Rswane fr drgań własnch Pdstawwe zasad: - perwsza fra (dla perwszej najnższej częstśc) jest najprstsz dkształcene, każde wższa częstść wąże sę z bardzej skplkwan kształte drgań, - pręt ne że sę wdłużać czl węzeł że pruszać sę tlk p ln prstpadłej d pręta, - kąt pędz pręta w węźle p brce węzła pzstają take sae, - kąt w drganach ne są blkwane pdpra.

22 Drgana własne - przkład Dane: N 00kg 4 Stpne dnaczne 4

23 Drgana własne - przkład 4 Stan Stan jednstkwe dla pszczególnch stpn dnacznch przeeszczena d sł jednstkwch Stan Stan 4 4

24 Drgana własne - przkład Przeeszczena d sł jednstkwch N 00kg

25 Drgana własne - przkład Lub p przenżenu wrazów przez

26 Drgana własne - przkład N 00kg P wknanu pdstawena X trzuje X X X 0 N s X 096 kg rad N s kg rad N s kg rad 4. X X X rad 0.8 s rad s rad.55 s rad s rad s rad s 6

27 Wznaczane apltud fr drgań własnch - przkład Wznaczene apltud drgań P pdstawenu danch dla ( ) ( )

28 Wznaczane apltud fr drgań własnch - przkład Dla 0.8rad/s X 4.096, załżene (.486 X) ( ) ( ) (.485 X) ( 0.47 X ) X -.09,

29 Wznaczane apltud fr drgań własnch - przkład Dla.55rad/s X.4806 załżene (.486 X ) ( ) ( ) (.485 X ) ( 0.47 X ) X 0.0,

30 Wznaczane apltud fr drgań własnch - przkład Dla rad/s X 0.809, załżene (.486 X ) ( ) ( ) (.485 X ) ( 0.47 X ) X -0.88,

31 Sprawdzene rtgnalnśc drgań, -.09, , 0.0, (.09) 0.0 (.705) ( 0.049) ( 0.88) ( 0.049) (.09) ( 0.88) (.705) , -0.88, 9.95

32 Szacwane częstśc drgań własnch 4 Dane: N 00kg

33 Szacwane częstśc drgań własnch 4 Dane: N 456 rad 6. D ( ) kg s ( ). s ( (.99 ) 0 ( ) (.677 ) ) rad R 56 rad D < 0. 8 < R s N kg

34 Drgana wuszne 4

35 Zasada d laberta SS sn(pt) Zasada d leberta: w dnesenu d knstrukcj, znajdującej sę pd wpłwe sł zennch w czase, żna stswać zasad statk pd warunke, że uwzględn sę sł bezwładnśc. Dtcz t zarówn blczana przeeszczeń jak sł wewnętrznch. D wznaczena ekstrealnch sł wewnętrznch ptrzebne są apltud sł bezwładnśc. 5

36 Drgana wuszne układu welu stpnach swbd SS sn(pt) Przeeszczena pszczególnch as równają sę sue przeeszczeń d pszczególnch sł bezwładnśc sł wuszającej : n gdze: k kerunek przłżena sł wuszającej j ( t ) j& j ( t) ( ) ks t j j ( t) j 6

37 Drgana wuszne układu welu stpnach swbd SS sn(pt) ( t) ( ) ks t j j ( t) n j Dla belk pwżej Rzwązane a frę && p sn pt czl ( ) p sn( pt) sn( pt) ks ks ks sn gdze - apltuda sł bezwładnśc ( pt) 7

38 Drgana wuszne układu welu stpnach swbd SS sn(pt) ( t) ( ) ks t j j ( t) p n j Dla belk pwżej sn( pt) k S sn( pt) p sn( pt) p sn( pt) p sn( pt) sn( pt) sn( pt) S sn( pt) p sn( pt) p sn( pt) p sn( pt) sn( pt) k ( pt) S sn( pt) p sn( pt) p sn( pt) p sn( pt) sn( pt) sn k Rzwązane a frę sn( pt) czl && p sn( pt) p sn( pt) sn( pt) gdze - apltuda sł bezwładnśc 8

39 Drgana wuszne układu welu stpnach swbd SS sn(pt) ( t) ( ) ks t j j ( t) p n j lub z apltuda sł bezwładnśc p ( pt) S sn( pt) sn( pt) sn( pt) sn( pt) sn( pt) sn k p ( pt) S sn( pt) sn( pt) sn( pt) sn( pt) sn( pt) sn k p ( pt) S sn( pt) sn( pt) sn( pt) sn( pt) sn( pt) sn k 9

40 Drgana wuszne układu welu stpnach swbd SS sn(pt) S k n j Układ równań, psując apltud drgań wusznch, a frę: ( ) p p p ks 0 ( ) p p p ks 0 ( p p p ) 0 S k gdze newad są apltud drgań wusznch, znane są as na t stpnu swbd, j przeeszczena na kerunku wwłane słą jednstkwch, dzałającą na kerunku j, p częsttlwść wuszena [rad/s] j 40 j

41 Drgana wuszne układu welu stpnach swbd Układ równań, psując apltud sł bezwładnśc: 0 k S p 0 k p S 0 k p S gdze newad są apltud sł bezwładnśc, znane są as na t stpnu swbd, j przeeszczena na kerunku wwłane słą jednstkwch, dzałającą na kerunku j, p częsttlwść wuszena [rad/s] 4

42 Ekstrealne sł wewnętrzne, wwłane drgana wuszn SS sn(pt) D wznaczena sł wewnętrznch wkrzstuje wkres 4 D wznaczena sł wewnętrznch wkrzstuje wkres d sł jednstkwch krzsta z zasad superpzcj czl: gdze: j - apltud sł bezwładnśc, S - apltuda sł wuszającej, N j, T j, M j - sł wewnętrzne d bcążeń jednstkwch. ± ± ± ± j j j k k N N S N N N N S N ± ± ± ± j j j k k T N S T T T T S T ± ± ± ± j j j k k M M S M M M M S M

43 Wznaczene apltud sł bezwładnśc - przkład 4 P sn(πnt) Dane: N 00kg, P 0kN, n0hz Sła dzała na kerunku 4 4

44 Wznaczene apltud sł bezwładnśc - przkład p p p S k S k S k Dane: N 00kg, P 0kN, n0hz k N ( 0 / ) kn π s N ( 0 / ) kn π s N ( 0 / ) kn π s 44

45 Wznaczene apltud sł bezwładnśc - przkład N ( 0 / ) kn π s N ( 0 / ) kn π s N ( 0 / ) kn π s pltud sł bezwładnśc, wznaczne z pwższeg układu, wnszą: -0.6kN,.69kN,

46 Wznaczene sł wewnętrznch d wuszena Zasada d leberta: w dnesenu d knstrukcj, znajdującej sę pd wpłwe sł zennch w czase, żna stswać zasad statk pd warunke, że uwzględn sę sł bezwładnśc. Warant I Warant II P P kN,.69kN, -0.45, P 0kN 46

47 Wznaczene sł wewnętrznch d wuszena Zasada d leberta: w dnesenu d knstrukcj, znajdującej sę pd wpłwe sł zennch w czase, żna stswać zasad statk pd warunke, że uwzględn sę sł bezwładnśc. Warant III Warant IV P P kN,.69kN, -0.45, P 0kN 47

48 Wznaczene sł wewnętrznch d wuszena warant I D wznaczena sł wewnętrznch wkrzstuje wkres d sł jednstkwch krzsta z zasad superpzcj czl: N S N T S T M S N N N T T T M M M M -0.6kN,.69kN, -0.45, P 0kN P Kerunk ddatne 48

49 Wznaczene sł wewnętrznch d wuszena warant II D wznaczena sł wewnętrznch wkrzstuje wkres d sł jednstkwch krzsta z zasad superpzcj czl: N SN T ST M S N N N T T T M M M M -0.6kN,.69kN, -0.45, P 0kN P Kerunk ddatne 49

50 Wznaczene sł wewnętrznch d wuszena warant III D wznaczena sł wewnętrznch wkrzstuje wkres d sł jednstkwch krzsta z zasad superpzcj czl: N S N T S T M S N N N T T T M M M M -0.6kN,.69kN, -0.45, P 0kN P Kerunk ddatne 50

51 Wznaczene sł wewnętrznch d wuszena warant IV D wznaczena sł wewnętrznch wkrzstuje wkres d sł jednstkwch krzsta z zasad superpzcj czl: N SN T ST M S N N N T T T M M M M -0.6kN,.69kN, -0.45, P 0kN P Kerunk ddatne 5

52 Sł wewnętrzne dla stanu N [/] T [/] M [/] 5

53 Sł wewnętrzne dla stanu N [/] T [/] M [/] 5

54 Sł wewnętrzne dla stanu N [/] T [/] M [/] 54

55 Sł nralne warant I N 0kN N kn N 0.6kN N.69kN N P NI [kn] N [/] - - N [/] N [/] 55

56 Sł tnące warant I T 0kN T kn T 0.6kN T.69kN T P Wkres sł tnącch w warance I d wznaczena ze wzru pwżej - T [/] T [/] T [/] 56

57 Ment zgnające warant I M 0kN M kn M 0.6kN M.69kN M P M [/] M [/] M [/] Wkres entów zgnającch w warance I d wznaczena ze wzru pwżej 57

58 Knec 58

Rodzaje drgań na przykładzie układu o jednym stopniu swobody

Rodzaje drgań na przykładzie układu o jednym stopniu swobody Rdzaje drgań na przkładzie układu jednm stpniu swbd Układ jednm stpniu swbd Ssin pt m k C m S sinpt Przkład układu jednm stpniu swbd Schemat układu jednm stpniu swbd Zestawienie sił w układzie jednm stpniu

Bardziej szczegółowo

Rodzaje drgań na przykładzie układu o jednym stopniu swobody

Rodzaje drgań na przykładzie układu o jednym stopniu swobody Rdzaje drgań na rzkładzie układu jednm stniu swbd Układ jednm stniu swbd Ssin t m k C m S sint Przkład układu jednm stniu swbd Schemat układu jednm stniu swbd Zestawienie sił w układzie jednm stniu swbd

Bardziej szczegółowo

Ń Ł Ł Ś ć Ż ń Ś ń Ą ś ń ś ń ń ń ś Ą ź ś ś ś ń Ą ś ś Ż ś ś ź Ć ń ś ś ś ń Ą Ą Ą ś Ą ś ś ć ść Ą ś ć ść ś ź Ę Ś ć Ą Ą ś Ą ś ś ść ń Ą ś ś Ś Ś ś Ą ść Ę ść ść Ę ść Ą ń Ą ń Ę ś ś Ś ś ść Ę ś Ą ś ń ś ś Ę ś Ą ś ść

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Ś Ą Ś Ą Ś Ą Ą Ś Ą Ą ŚĆ Ą Ą Ś Ś ć ź ź Ń Ś Ą ć Ź Ą Ą Ś ć Ą Ą Ą Ś Ą ć Ą Ą ć Ą ć ć Ć Ź ć Ś Ź Ź ć Ź Ź ć Ź ź Ź Ś ź Ź ć ć Ń ź ć ć Ń Ć ź ć ć Ś ć ć ć Ź Ń ć Ź ć ć ź Ą Ś Ć Ź ź ź Ź ć ć Ś ź Ń ć ć ć ź Ą Ś Ń Ś ć ć Ź

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blk 6: Pęd. Zasada zachwana pędu. Praca. Mc. ZESTAW ZADAŃ NA ZAJĘCIA Uwaga: w pnższych zadanach przyjmj, że wartść przyspeszena zemskeg jest równa g 10 m / s. PĘD I ZASADA ZACHOWANIA PĘDU 1. Płka mase

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [ ] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale spełna je także unkcja [ ] Q. Dokłaając warunek cąłośc unkcj [ ]

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM Budownctwo 7 Mkhal Hrtsuk, Rszard Hulbo WYZNACZNI ODKSZTAŁCŃ, PRZMISZCZŃ I NAPRĘŻŃ W ŁAWACH FNDAMNTOWYCH NA PODŁOŻ GRNTOWYM O KSZTAŁCI WYPKŁYM Wprowadzene Prz rozwązanu zagadnena przmuem, że brła fundamentowa

Bardziej szczegółowo

Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać

Bardziej szczegółowo

ź ć Ń Ę Ś Ę ź Ś Ę ć ŚĆ Ó ÓŁ Ł ć ź ź ź ź Ń ć Ę Ę ź ć ć ź ć ć Ł ć Ę Ń ć Ę Ę ć Ł ć ź ź ć ź ć ć ć ź ć ź ź Ó Ń Ó Ż ź ć Ó ź ź ć ź ź Ś ć ć ź ć ć Ę Ł ź ź Ę Ę Ę Ę Ń Ę Ł Ę Ń Ń Ń ź Ń Ń ź ź Ń Ł ź ź ź Ę ź ź Ę Ń Ń

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

własność: suma dowolnych rozwiązań jest również rozwiązaniem równania zasada superpozycji

własność: suma dowolnych rozwiązań jest również rozwiązaniem równania zasada superpozycji Składani drgań harnicznch () równani ruchu harniczng js: - liniw -jdnrdn d d własnść: sua dwlnch rzwiązań js równiż rzwiązani równania zasada suprpzcji knskwncj:. snza - (składani) drgań. analiza rzkładani

Bardziej szczegółowo

3. Dynamika ruchu postępowego

3. Dynamika ruchu postępowego . Dnaka ruchu postępowego Zasad dnak Newtona Zasad dnak Newtona opsują zagadnena echank klascznej. Zasad te pozwalają w szczególnośc znaleźć wszstke paraetr opsujące ruch cała, take jak położene, prędkość

Bardziej szczegółowo

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra Wstęp do metod numerycznych Faktoryzacja SVD Metody teracyjne P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ 2013 Sngular Value Decomposton Twerdzene 1. Dla każdej macerzy A R M N, M N, stneje rozkład

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy

Bardziej szczegółowo

Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.

Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił. 1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało

Bardziej szczegółowo

Blok 7: Zasada zachowania energii mechanicznej. Zderzenia

Blok 7: Zasada zachowania energii mechanicznej. Zderzenia Blok 7 Zaada zachowana energ echancznej. Zderzena I. Sły zachowawcze nezachowawcze Słą zachowawczą nazyway łę która wzdłuż dowolnego zaknętego toru wykonuje pracę równą zeru. Słą zachowawczą nazyway łę

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(95)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(95)/2013 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(95)/2013 Mchał Makwsk 1 NUMERYCZNE BADANIA DRGAŃ KONSTRUKCJI BUDOWLANYCH ZE STEROWANYMI TŁUMIKAMI 1. Wstęp Tematyka pracy jest zwązana z systemam wbrzlacj maszyn knstrukcj

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Moment siły (z ang. torque, inna nazwa moment obrotowy)

Moment siły (z ang. torque, inna nazwa moment obrotowy) Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b

Bardziej szczegółowo

-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych

-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych WYKŁAD 4 dla zanteresowanych -Macerz gęstośc: stany czyste meszane (przykłady) -równane ruchu dla macerzy gęstośc -granca klasyczna rozkładów kwantowych Macerz gęstośc (przypomnene z poprzednch wykładów)

Bardziej szczegółowo

Modelowanie przekładni i sprzęgieł

Modelowanie przekładni i sprzęgieł Jakub Wercak delwane przekładn sprzęgeł Człwek- najlepsza nwestycja Prjekt współfnanswany przez Unę Eurpejską w ramach Eurpejskeg Funduszu Spłeczneg delwane przekładn sprzęgeł del funkcjnalny elektryczneg

Bardziej szczegółowo

Projekt nr 4. Dynamika ujęcie klasyczne

Projekt nr 4. Dynamika ujęcie klasyczne Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek

Bardziej szczegółowo

Ć w i c z e n i e K 2 b

Ć w i c z e n i e K 2 b Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =?

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =? PROPAGACJA BŁĘDU Zad 1. Rzpuszczalnść gazów w rztwrach elektrlitów pisuje równanie Seczenwa: S ln = k c S Gdzie S i S t rzpuszczalnści gazu w czystym rzpuszczalniku i w rztwrze elektrlitu stężeniu c. Obliczy

Bardziej szczegółowo

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w Metrologa... - "W y z n ac z an e d y s y p ac z p raw a -5 / " WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TRBLENCJI PRZY ŻYCI PRAWA -5/. WPROWADZENIE Energa przepływaącego płyn E c dem E p dem E c E k

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy. rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów

Bardziej szczegółowo

22. PARAMETRY GEOMETRYCZNE FIGUR PŁASKICH

22. PARAMETRY GEOMETRYCZNE FIGUR PŁASKICH Ddatek. PRMETRY GEOMETRYCZNE FIGUR PŁSKICH 1. PRMETRY GEOMETRYCZNE FIGUR PŁSKICH.1. DEFINICJE Rzdzał. dtyczy fgur płaskch równmernym rzkładze masy (ρ cnst). Rzważane fgury reprezentują zazwyczaj przekrje

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz

Bardziej szczegółowo

obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3

obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3 TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu

Bardziej szczegółowo

Ćwiczenie 6 WYZNACZANIE OBROTÓW KRYTYCZNYCH WAŁÓW

Ćwiczenie 6 WYZNACZANIE OBROTÓW KRYTYCZNYCH WAŁÓW Ćwiczenie 6 WYZNACZANIE OBROTÓW KRYTYCZNYCH WAŁÓW. Cel ćwiczenia Cele ćwiczenia jest analitczne wznaczenie obrotów tcznch wału, a następnie werikacja eksperentalna uzskanch wników.. Wprowadzenie O prawidłowości

Bardziej szczegółowo

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska Proble nośnośc grancznej płt żelbetowch w ujęcu aktualnch przepsów norowch Prof. dr hab. nż. Potr Konderla Poltechnka Wrocławska 1. Wprowadzene Przedote analz jest płta żelbetowa zbrojona ortogonalne paraetrzowana

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Mędznarodowa Norma Ocen Nepewnośc Pomaru(Gude to Epresson of Uncertant n Measurements - Mędznarodowa Organzacja Normalzacjna ISO) RACHUNEK NIEPEWNOŚCI http://phscs.nst./gov/uncertant POMIARU Wrażane Nepewnośc

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad8 011/01, zima 1 Własnści sprężyste ciał stałych naprężenie rzciągające naprężenie ścinające naprężenie bjętściwe Względne dkształcenie ciała zależy d naprężenia naprężenie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo

Wstępne przyjęcie wymiarów i głębokości posadowienia

Wstępne przyjęcie wymiarów i głębokości posadowienia MARCIN BRAS POSADOWIENIE SŁUPA 1 Dane do projektu: INSTYTUT GEOTECHNIKI Poltechnka Krakowska m. T. Koścuszk w Krakowe Wydzał Inżyner Środowska MECHANIKA GRUNTÓW I FUNDAMENTOWANIE P :=.0MN H := 10kN M :=

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

ś Ę ś Ę ź ś Ó ś ś Ś ć ś ź Ź ść ć ś Ż ś ś Ż Ż Ż ś Ż ź ś ś ć Ż ś ś Ż ś ś ś ś Ó ś Ż ź ś ź ś ć ź ś ś ś ć ć Ń ś ś ś ź ś ś ś ś Ń ś Ż ś ś ś Ź Ó ć Ę ś ś ś Ń Ż Ś Ż ś ś ź ź ć Ó Ó ś ś ź Ś ć Ż Ń ś ź Ą ś ś Ż ć ć ść

Bardziej szczegółowo

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const

Bardziej szczegółowo

Rys. 1. Rozwiązanie zadania rozpoczniemy od wyznaczenia wartość momentów zginających wywołanych działaniem siły 20[kN]. Rys. 2

Rys. 1. Rozwiązanie zadania rozpoczniemy od wyznaczenia wartość momentów zginających wywołanych działaniem siły 20[kN]. Rys. 2 Dynaika Drgania wyuszone nietłuione - Raa /9 Dynaika Drgania wyuszone nietłuione Raa Wyznaczyć siły kinetyczne działające na raę jak na rysunku, obciążoną zienna haronicznie siłą P o. Przyjąć następujące

Bardziej szczegółowo

Sieć kątowa metoda spostrzeżeń pośredniczących. Układ równań obserwacyjnych

Sieć kątowa metoda spostrzeżeń pośredniczących. Układ równań obserwacyjnych Seć kątowa etoda spostrzeżeń pośrednząyh Układ równań obserwayjnyh rzyrosty współrzędnyh X = X X X X = X X Y = Y Y X Y = Y Y Długość odnka X ' ' ' ' x y Współzynnk kerunkowe x y * B * x y x y gdze - odpowedn

Bardziej szczegółowo

Podstawowe definicje

Podstawowe definicje W-8 (Jarswc na ba J. Rukwsk) 5 slajów Ruch rgający Psaww fncj Swbn rgana harmncn Drgana łumn Drgana wymusn Skłaan rgań 3/8 L.R. Jarswc Psaww fncj rgana prcsy, w kórych ana wlkść fycna na prman rśn malj

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ WPŁYW SIŁY JONOWEJ ROZTWORU N STŁĄ SZYKOŚI REKJI WSTĘP Rozpatrzmy reakcję przebegającą w roztworze mędzy jonam oraz : k + D (1) Gdy reakcja ta zachodz przez równowagę wstępną, w układze występuje produkt

Bardziej szczegółowo

Programowanie wielokryterialne

Programowanie wielokryterialne Prgramwane welkryteralne. Pdstawwe defncje znaczena. Matematyczny mdel sytuacj decyzyjnej Załóżmy, że decydent dknując wybru decyzj dpuszczalnej x = [ x,..., xn ] D keruje sę szeregem kryterów f,..., f.

Bardziej szczegółowo

Mieczysław Wilk Mielec, 2008

Mieczysław Wilk Mielec, 2008 Mieczsław Wilk Mielec, 008 lastcznść unkcji jednej zmiennej stwierdza ile prcent ( w przbliŝeniu wzrśnie lub zmaleje wartść tej unkcji, gd jej zmienna rzeczwista wzrśnie 1%. A t ilustracja graiczna elastcznści

Bardziej szczegółowo

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe Rozwiązanie równań stanu dla układów liniowch - pola wektorowe Przgotowanie: Dariusz Pazderski Wprowadzenie Rozważm liniowe równanie stanu układu niesingularnego stacjonarnego o m wejściach: ẋ = A+ Bu,

Bardziej szczegółowo

P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A

P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A TEORI STNU NPRĘŻENI. WEKTOR NPRĘŻENI r x P P P P, P - wektory sł wewnętrznych w unktach owerzchn wokół unktu P P r, P - suma sł wewnętrznych na owerzchn P P P P średna gęstość sł wewnętrznych na owerzchn

Bardziej szczegółowo

t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o

t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz na podsawe ego odelu ożna wcągać wnos doczące badanego zjawsa

Bardziej szczegółowo

f 4,3 m l 20 m 4 f l x x 2 y x l 2 4 4,3 20 x x ,86 x 0,043 x 2 y x 4 f l 2 x l 2 4 4, x dy dx tg y x ,86 0,086 x

f 4,3 m l 20 m 4 f l x x 2 y x l 2 4 4,3 20 x x ,86 x 0,043 x 2 y x 4 f l 2 x l 2 4 4, x dy dx tg y x ,86 0,086 x f l Ry. 3. Rozpatrywany łuk parabolczny 4 f l x x 2 y x l 2 f m l 2 m y x 4 2 x x 2 2 2,86 x,43 x 2 tg y x dy 4 f l 2 x l 2 4 2 2 x 2 2,86,86 x Mechanka Budowl Projekty Zgodne ze poobem rozwązywana układów

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika

Bardziej szczegółowo

Tensorowe. Wielkości fizyczne. Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna to właściwość fizyczna zjawisk lub obiektów,

Tensorowe. Wielkości fizyczne. Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna to właściwość fizyczna zjawisk lub obiektów, Welkośc Jednosk UŜywane w Elekryce Welkość Fzyczna o właścwość fzyczna zjawsk lub obeków, Przykłady: W. f.: kórą moŝna zmerzyć. czas, długość, naęŝene pola elekrycznego, przenkalność elekryczna kryszałów.

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w

Bardziej szczegółowo

Definicja wartości bezwzględnej. x < x y. x =

Definicja wartości bezwzględnej. x < x y. x = 1.9. WARTOŚĆ BEZWZGLĘDNA Definicja wartości bezwzględnej... gd... 0 =... gd... < 0 Własności wartości bezwzględnej 0 = = = n a n = a, gd n jest liczbą parzstą Przkład 1.9.1. Oblicz: a) b) c) 1 d) 0 e)

Bardziej szczegółowo

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,

Bardziej szczegółowo

Stateczność układów ramowych

Stateczność układów ramowych tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po

Bardziej szczegółowo

I..ROZWIĄZANIE DŹWIGARA DANEGO OD DANEGO OBCIĄŻENIA

I..ROZWIĄZANIE DŹWIGARA DANEGO OD DANEGO OBCIĄŻENIA METO IŁ uład przetrzenn przład dźwgar załaan w plane OZWIĄZNIE ŹWIG ZŁMNEGO W PLNIE METOĄ IŁ I OLIZENIE PZEMIEZZENI an jet dźwgar załaan w plane. ozwązać go etodą ł porządzć wre ł przerojowch doonać ontrol

Bardziej szczegółowo

Interpolacja. Układ. x exp. = y 1. = y 2. = y n

Interpolacja. Układ. x exp. = y 1. = y 2. = y n MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?

Bardziej szczegółowo

Pochodna funkcji wykład 5

Pochodna funkcji wykład 5 Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren

Bardziej szczegółowo

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %) Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata 1 2 3 4 5 Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium

Kier. MTR Programowanie w MATLABie Laboratorium Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami?

MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami? MES- 07 Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami? Na razie rozpatrwaliśm

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba

Bardziej szczegółowo

Macierze hamiltonianu kp

Macierze hamiltonianu kp Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej

Bardziej szczegółowo