MATEMATYKA. Sporządził: Andrzej Wölk
|
|
- Andrzej Wolk
- 9 lat temu
- Przeglądów:
Transkrypt
1 MATEMATYKA Sporządzł: Adrzej ölk
2 . adae Rozwązać rówae różczkowe: b) e X X e rozwązuję całkę żeb wzaczć e X e X z tego wka, że e X X e X e
3 adae a) s d t dt d ( t ) dt dt pochoda d dt s d s s s s d = C adae a) d t dt t t C lm lm * * d d
4 adae 4 b) 8 5 Dzedza: Szukam puktów, które mogą bć ekstremum fukcj 4 4 ; ; Otrzmałem dwa pukt: M ; M ; " " " " 48 * M Pukt te e jest ekstremum fukcj Mz 4 Podstawam do wzoru: 8 5
5 m ; 8* ** 5 4 Fukcja 8 5 e posada mamum fukcj. pukce M z adae 5 ; fukcja przjmuje wartość mmalą. kazać: a) *( * ) ( * ) * Nech: (a;b)*(c;d) = (ac-bd;ad+bc) ( e; f ) ( a; b) ( c; d) Lewa stroa rówaa: L=(e;f)*[(a;b)*(c;d)]= e ; f * ac bd; ad bc = =(e-f;e+f)= (eac bde fad bcf ;ead + ebc + fac - fbd) P=[ (e;f)*(a;b)]*(c;d)= ea fb; eb fa * c; d = 4 =(c-4d;d+4c)= (eac-fbc-ebd-dfa;aed-fbd+ebc+afc) L=P
6 adae Oblczć:,,,,..., s * k k k k k b a s s ** s ** 8 s ) (8 s s * * s ** s 8 ) (8 s s * 4* 4 s ) ( s 5 s *5* 5
Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
Ł ć ć Ł Ą Ń Ę Ą Ń Ń Ą Ą ć Ń Ń ć Ą ć ć ź ć ź Ł Ł Ą Ę ć ć ć ć ć ć Ź ć Ę ĘĄ ć Ę ĘĄ Ę Ł Ł ź Ę ć ć ć Ę Ł Ż Ę Ł ź ć Ł ć ź Ę ź Ą Ą ć ć ć Ą Ł Ł Ą ć Ę Ę Ę ć ć ć ć Ą Ę Ń Ę Ą Ń ć Ł Ą Ń Ę Ą Ń Ę ć Ń ć Ć ć Ń Ń ć ć ć
Ź Ó Ź Ź Ą ź ź Ń Ó ć Ź ć ć Ź Ó Ń ź Ó Ś Ó Ó Ó Ą ź ź Ó Ą Ą Ź ć Ź Ó Ó Ó Ą ć ć ć Ą ć Ó Ść ć Ś Ść Ś Ó ć ć Ś Ó Ó ć Ś ć ć ć Ó Ó ć ć Ó Ś Ą Ó ć Ź ĘĄ Ó Ó Ą Ś Ó Ź Ą Ł Ś ć Ź Ł Ł Ą Ó Ś Ł ć ć Ź Ó Ź Ł Ć ć Ó ć Ś Ź Ó ć
ć ć Ą Ę Ę Ę Ę Ą ć ć ć ć ć ź Ą Ą Ą Ą ć Ą Ą Ą Ą ź Ę Ż ć ć Ł Ł ź ź Ł ć Ę Ę Ń Ż Ń ć Ę ć Ś Ś ć Ą Ę ć ć ć Ę ź Ę Ę Ń Ę Ń Ę Ę ć Ę Ę Ę Ę ć ć ź ć ć Ę ć Ę ć ć ć ć Ę Ę ź Ł Ę Ą Ą Ą Ę ź ź ć ź ć Ł ć Ł Ę ć Ą Ł
ż Ź Ą Ż Ż Ż ć Ó Ą Ó ź ć Ż Ż ź ż ż Ź ż ć ż Ż ć Ż Ż ż Ę Ą Ę Ą Ż Ść ć ż ż Ą ć Ź Ś ć Ż ż ż ż ż Ż ż Ż ż ż Ś ż Ź ż Ą ĘĄ Ż ć ć ż ż ż Ż ż Ż ć ż Ż ż ć ż Ż Ś Ż ż ć ż Ź Ż Ź ż ć Ź Ś ż Ź ż ż ź ż Ż ż Ż ż ż ż ż ż Ę Ś
ź Ę Ą ć ź Ą ć ć ć ź ć ć ź ć ć Ł Ę ź ć ź ć Ś Ę ź Ę Ą Ą Ś Ę ć ź ć ć ć ć ź Ę Ę ć ć ź ź ć ź ć ź ź ź ć ź ć ć ź ź ź ć Ę ć ć Ę ć Ń ć Ł Ą Ę ź Ę ć ź ć ź Ł Ę ź ź Ą Ę ć Ś Ś Ś ź Ś ź ź ź Ś Ś ć Ż Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś
EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.
Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
B FB A D AEA D A A D E B E DE D A D D B A F EC AEAA D A DA E A BEA A D C D DC A B D B A D DA F EA BC B D F D B B A A E B C F DA E D D EA
AB CDEF FC FC A BC DECF B A F E C C DC B E A D CDC EC D DFA C C A C A A DD B B A A B ECD D E A D A B BC DA DC A E D D EA CEA A C EE FCB EB D C A D D E BF D B B A A C B D AE F A E A D A D D F D B A D EC
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł
Ź Ź Ó Ł Ś Ź Ń Ż Ę Ę ź Ę Ź ĘĄ ż ź Ę Ź Ż ź Ź Ł ź Ę Ż ż Ż Ą ź ż Ż Ż ż Ź ż ć ć ć Ż ż ż Ź ż ż Ź Ź Ż ć ć Ą Ż ć Ż Ń Ó ż ć ż Ż ż Ż Ź Ż ż ż Ę ż Ź Ź Ź Ź Ź ĄĄ ź Ż Ź Ź Ź Ż Ź Ź ź Ż Ź ź ź ź Ś Ź Ę ĘĄ ż Ż Ę ż ć Ś ĄĄ Ę
Ó Ó ć Ę Ę Ę Ę Ę Ę ć ć ć Ę ź ć ć Ń ć ć Ę ć Ę ć ć Ą Ą ć ć ć ć ć ć Ł Ś Ś Ż ź Ą Ę ć ź ć ć ć ź ć ć ć ć ć ć ć Ę ź ć ć ć ć ć Ł ć ć Ś ć Ś ź Ę ź ć ć ć ć ć ć ć ć ć ć ź ź ć ć ć ć Ą Ę Ó Ę ć ć ć ć ć Ę ć ć ć ć ć ć ć
dr Michał Konopczyński Ekonomia matematyczna ćwiczenia
dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom
Ę ń ń ć Ł Ś ń ź Ś ń ń ź Ś ć ć Ł ć ń ń Ś ć ń ć ć ć ć Ś ń ń ź ć ń ź ć ź ń ĘĄ ć ć ć ć ń ń Ź ń Ś Ś Ś Ń ć ń ń Ś ń ć ć ń Ń Ó Ć ć ć ń ć Ś ń ć ć Ś ń ć ć ć ń Ł Ę Ł ń ć Ś ń Ą ć ń ń ć ń ć ć ć Ń ć ć ń ć ć ń Ń Ś ć
ż ź ż Ś Ź Ś Ś ń ń Ś ń Ś Ś ż Ś Ś ż ćś ż ż ż Ł ć ć ć Ść ń Ś ż ż Ś ż ń Ź Ś ż ż ć Ś Ś Ś Ś Ś Ś Ś ź ż ń Ę ż ć Ś Ś ć ż Ś Ś ż ż ć Ś Ś ć Ś Ś ćś Ś Ś ń ż ń Ś ż ć ć Ć Ś ń Ź ń ć ć ć Ść ń ń Ś Ś ż ĘĄ Ś ż ć ć Ś ć ń ć
Ł Ć Ć Ę ŁĄ Ł ż ż ż ż ż ć ż Ż ż Ć ż ż ż ż Ą Ć Ć Ą Ć Ż ć ż Ć Ź Ć Ą ż Ł ŁĄ Ę ż ż Ż Ą ż ż Ł ż Ż ż Ć Ć Ć Ć Ą Ą Ą ż ż Ą Ź ż ż ż Ź Ą ż ć Ż ż ż Ć ż ż ż Ę Ź Ć Ą Ń ż Ć Ć Ź ć ż Ż ż ć Ą ż ć Ź ż ż Ź ż ż ż ż Ź ż Ć ż
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Ł Ł Ó Ż Ź Ż ń Ą Ó Ż ć ż ć Ó ż ż ć Ż ŚÓ Ę ń Ż Ż Ń Ż ć Ą ż Ł Ż ż ż Ł Ż Ó Ż ć ż ż ń ż ć ń Ż ć ż Ż ć ż ń ż Ż Ł ż ć ż ć Ż ż Ż Ż ć ż ń ń ń Ż ż ż Ż ć Ż ć Ł Ę ż Ż Ł Ż ć Ł Ż Ż Ż ń ż Ż Ż ń ĘĄ ż Ż Ł ć Ż ć Ź Ł Ż ć
Ą Ń Ś Ś ŚĆ Ą Ę Ń Ż ć Ś Ś ć Ś Ś Ś Ó Ó Ś Ń ć Ś Ś Ś Ń ć Ś ź Ś Ś Ść Ś ź Ś ź ź Ń ź Ś Ń ź Ń ć ć Ń Ś ź ź ć ć ź Ą Ń ć Ę Ń ź ć Ę ź Ś ć Ę Ń Ą ć ć Ę Ś ć Ś Ś Ś Ś ź ź Ś Ń Ń Ń Ż ŚĆ Ś ź ź ć Ś Ś Ą Ę Ę Ń ź ź ź Ś Ę ć Ę
LISTA OBECNOŚCI EGZAMINY USTNE JĘZYK WŁOSKI B2/C1 9.03.2015 R. PWP Kształcenie zawodowe na neofilologiach KUL na potrzeby rynku pracy
JĘZYK WŁOSKI B2/C1 9.03.2015 R. 8 14.00-14.50 9 14.30-15.20 10 15.00-15.50 JĘZYK WŁOSKI B2/C1 10.03.2015 R. 8 14.00-14.50 9 14.30-15.20 10 15.00-15.50 JĘZYK WŁOSKI B2/C1 14.03.2015 R. 1 8.30-9.20 2 9.00-9.50
234!"#$%& '!"# $%&%' ()*+,-./01 2 3' :; -. <= 7>?9:; D - F GH,2 I JKLM: 5 NO < - F P Q!",RSTCUV '4WX 3Y=- # Q!" ' <Z[\] ^_ ` $ abwc
234!"#$%& '!"#$%&%' ()*+,-./01 23'456789:;-. ?9:;
MMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg
Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył.
Wkład. Całka podwója. Zamaa a całkę terowaą. Oblczae pól obszarów objętośc brł.. Całka podwója w prostokące. Jak pamętam, całka ozaczoa z cągłej fukcj jedej zmeej wprowadzoa bła w celu oblczaa pola powerzch
Analiza numeryczna Kurs INP002009W. Wykład 4 Rozwiązywanie równań nieliniowych. Karol Tarnowski A-1 p.
Aaliza umerycza Kurs INP002009W Wykład 4 Rozwiązywaie rówań ieliiowych Karol Tarowski karol.tarowski@pwr.wroc.pl A-1 p.223 Pla wykładu Metoda bisekcji Algorytm Aaliza błędu Metoda Newtoa Algorytm Aaliza
INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR
INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR 1. Algorytm XOR Operacja XOR to inaczej alternatywa wykluczająca, oznaczona symbolem ^ w języku C i symbolem w matematyce.
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 0/03 Seria IV październik 0 rozwiązania zadań 6. Dla danej liczby naturalnej n rozważamy wszystkie sumy postaci a b a b 3 a 3 b 3 a b...n
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematyka Poziom rozszerzony Listopad 0 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź Wskazówki do rozwiązania.
DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ
DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 23 lipca 2015 r. Poz. 1024 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 6 lipca 2015 r. w sprawie zmiany obszaru składu wolnocłowego na terenie Portu
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
Struktura płci i wieku
Lp. Wiek Kobieta / Mężczyzna 1 32 Kobieta 2 55 Mężczyzna 3 42 Mężczyzna 4 30 Kobieta 5 37 Mężczyzna 6 33 Mężczyzna 7 57 Kobieta 8 45 Mężczyzna 9 70 Mężczyzna 10 27 Kobieta 11 51 Mężczyzna 12 43 Kobieta
CMYK!"#$%&'! ( )*+,-./01! )*789 :;' " ABCDE0 6 )*+,- FGH 6 )*+,-I J KL M6NO > PQ!RS?TU )*+,-VW RSXGY P 6 )*+, P Z[\?TU]^_ `Rab`6 $ $ )*
!"#$%&'! ( )*+,-./01! 23 4 56 )*789 :;' ? @ " ABCDE0 6 )*+,- FGH 6 )*+,-I J KL M6NO > PQ!RS?TU )*+,-VW RSXGY P 6 )*+, P Z[\?TU]^_ `Rab`6 $ $ )*+,c!k Q6?TU )*+,I1 > )*+,-,,!"#$% &'! ( )*)+,&' -.! /0
II Warsztaty Matematyczne w I LO
II Warsztaty Matematyczne w I LO Geometria Zadania konkursowe + niektóre rozwiązania 22 24września2008r. Dzień 1, Grupa młodsza Czas: 100 minut Zadanie1.(5p.)WtrójkątKLMwpisujemyokrągośrodkuS,stycznydobokówKLiKModpowiedniowpunktachPiQ.PunktKjestśrodkiemodcinkaPR(jesttodefinicjapunktuR).Wykazać,
Ą Ę Ą Ś Ń Ó Ę Ę Ę ź Ę Ę ź Ę Ń Ę Ę ź Ę Ę Ę ź Ę Ą Ę Ź Ą Ą Ę Ź Ź Ź Ń ź Ź Ń Ą Ę Ź Ą ź Ę Ź Ą Ę Ź Ą Ę Ą Ę Ę Ł Ń Ś Ę Ę Ń Ę ĘĄ Ę ĘĄ Ł Ę Ę Ę Ę Ź Ę Ę Ę Ę Ń ź Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę ź Ń Ę Ę Ń Ę Ę Ń Ą Ę Ę Ę Ą ź
Odbicie lustrzane, oś symetrii
Odbicie lustrzane, oś symetrii 1. Określ, czy poniższe figury są swoimi lustrzanymi odbiciami. Jeśli nie, odpowiedź uzasadnij. 2. Dokończ rysunki, tak aby dorysowana część była odbiciem lustrzanym. 3.
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
3 PRIORYTET 2 PRZESTRZE I INFRASTRUKTURA TURYSTYCZNA...24 4 PRIORYTET 3 WSPARCIE MARKETINGOWE...29
! " #$% #!" # ( ($) *+ $, -,* (4 9 9 ( 6(7 08 (4 4 $./ /. 12$ 3 4 $ +5" # %!!& $ 0 #&$% ' $ 6 ) 1( (6 *+. 0.+ %!!& $' 8 9 $, -, ' ' -$-).0.+$,-,/-%!!:;%!< 5"$.+- = 1 WPROWADZENIE...3 1.1. PROPONOWANA MISJA
! "#$ %&'! '$! ( )!! "#$%&' ()*+,*"-./01 $%1! 2#34 567! $%1 8/9:;% + &BCD:;E 9 $%1 F$%GHI# JKLMNO & # PQRST"JKUV9 A# $%WXE%Y $%"#%(1 7! ; Z
! "#$ %&'! '$! ( )!! "#$%&' ()*+,*"-./01 $%1! 2#34 567! $%1 8/9:;% + ?@+A#$% &BCD:;E 9 $%1 F$%GHI# JKLMNO & # PQRST"JKUV9 A# $%WXE%Y $%"#%(1 7! ; Z # M[ $%1 \ # %]^!X 34 M[; ^ _` abc Z ; #E%bc;W% W%
X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12.
Zadae p (X p (X ( ( π 6 6 e 6 X m ( π 6 6 e 6 ( X C e m 6 X, gdze staªa C e zale»y od statystyk X (X,, X 6, a m jest w ksze od zera Zatem p (X/p (X jest emalej c fukcj statystyk T (X 6 X ªatwo pokaza,»e
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 5 6 7 8 9 0 5 6 7 8 9 0 A D B B C D C C D D A B D B B A C B C A Zadanie. (0-) Rozwiąż nierówność
STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
Ą Ą Ą Ń Ę Ę ń ń ń Ń Ń Ń ń Ą Ą ń ń ćż Ą Ę ń ń ń Ó ń Ż Ą ń ŚĆ Ń Ś Ń Ś Ą Ś ć ń ć ź ń Ń ń ć ź Ń Ś Ó Ż ń ź ź ń ĄŚ Ą Ś Ń ń ń ń Ę Ę ń Ż Ż Ż ń ć ń Ń ć ń Ń ŚĆ Ć ń Ń Ń ŚÓ Ą ć ć Ą Ń ź Ę ć ć ć ź ć ć ź ć ź ć ź Ę ć
Regresja linowa metoda najmniejszych kwadratów. Tadeusz M. Molenda Instytut Fizyki US
Regresja lowa metoda ajmejszch kwadratów Tadeusz M. Moleda Isttut Fzk US Regresja lowa (też: metoda ajmejszch kwadratów, metoda wrówawcza, metoda Gaussa) Zagadea stota metod postulat Gaussa współczk prostej
Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)
Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()
Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.
terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest
Niemili nie będą mili
Ł Ł ś % X - Ś f ś ś ą ą ś ą - ą - ś f ć f ą - ś - f ą - ść ą ś ć ć ś ś ś - : ą f ą ą ą ć ą ą ą f - f - ą - - ą ą ź - ą - ś ą ą ą ś ą ą ś ć ś - ć ść ś ą - ą ą - ą ą ć - f ą f - ą ź ą ć - ą f ą ś - ś ą :
MATEMATYKA Instrukcja dla ucznia
KOD UCZNIA Centralna Komisja Egzaminacyjna UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia UZUPEŁNIA ZESPÓŁ
jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów A i B.
Zadanie PP-GA-1. W trójkącie równoramiennym prostokątnym punkt C = ( 3, 1) jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów
c 2 + d2 c 2 + d i, 2
3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym
cz. 1 Ponad słowami. 5. Matematyka Podręcznik zostanie podany na pierwszych zajęciach we wrześniu 2016 roku Spotkania z kulturą Odkrywamy na nowo
Sochaczew, dnia 4 lipca 2016 roku Wykaz podręczników do klasy 1a Liceum Ogólnokształcącego Lp. Przedmiot Autor Tytuł Numer 5. Matematyka 14. Język angielski Wykaz podręczników do klasy 1b Liceum Ogólnokształcącego
MATEMATYKA Instrukcja dla ucznia
KOD UCZNIA Centralna Komisja Egzaminacyjna UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia UZUPEŁNIA ZESPÓŁ
Ł Ł ÓŁ Ń óń Ł Ę Ę ó ą ść ó ń ś ą ą Ę Ęą ó ś ś ś ąś ą ą ą Ł Ł ą ą Ę ą ó ą ść ó ś Ę ą óź ś ń Ś Ę ą ą ść ó ń ś ą ó ś ą Ł Ęś Ń Ę ó ą ść ó Ń ś ą ź ś ść Ś ą Ą ń Ł ĘŚ ĘĄ ą ś ó ś ą ą ą ó ś ść ś ó ą ą Ą ź ó ą ść
Dekory płyt laminowanych Matdesign CLEAF Standard magazynowy SAS
Dekory płyt laminowanych Matdesign CLEAF Standard magazynowy SAS Penelope FA42 Aldany FB04 Ares FB43 Ares FB48 Ares FB49 Ares U129 Penelope UA88 Penelope UA41 Penelope UA83 Penelope U171 Primo fiore FB20
Oferta handlowa 2015 r.
Oferta handlowa 2015 r. Zakład Produkcyjno-Handlowy EKO Luiza Kwiek-Klepacka Adres: ul. Szklarniowa 38 33-111 Koszyce Wielkie www.ekokwiek.pl Kontakt: tel./faks (14)634-05-54 tel. kom. 602348588 e-mail:
123456 782923456 6 22336 46466 6 6 6 783863658386 6 6 6 6 4!"! 468983#84636434$4636 6 6 6 %&6 '5626 ()68'546 6 6 &6 6 82845469234548*+6 %6 6 6 %6 '56268'546"'844$$6 %6 6 6 %&6 '5626 ()68'546,6 6 6 6 -*386
2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S
Zadanie 1. Napisz równanie prostej przechodzącej przez punkt odcinka o koocach M N. Rozwiązanie - 1 sposób 1.Znajdujemy współrzędne punktu S będącego środkiem odcinka MN: oraz środek 2.Piszemy równanie
ó ó ć Ż Ł Ą Ż ó ż ć Ż ó Ą ó ó Ą ć ó ó Ł Ł ó ć ó ż ć ż Śó ó ó ó ć ó ż ć Ą ż ĘĄ ó Ś Ż óź Ż ć ó Ż Ż Ż ć ń Ą ó Ą ż ó Ż ó Ł ó ó Ż ó ó ó ź Ś ó Ą ć Ś ó ó ż ó ż Ł ńę ó ń ó ń ż ć ó Ż Ż ż ć Ż ć ć ć ż ó ń óź ó ć
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
instrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego
5.Bde wocze pręt śckego UT-H Rdom Ittut Mechk Stoowej Eergetk Lortorum Wtrzmłośc Mterłów trukcj do ćwcze 5. Bde wocze pręt śckego I ) C E L Ć W I C Z E N I A Celem ćwcze jet dośwdczle wzczee metodą Southwell
ś ź Ą ś Ą ś ś Ę Ą ń ń ń ś ń ńś ś ń ć ń ś ś ź ć ś ś ź ź Ę Ę ś ć ś ś ć ś ść ń Ę ć ć ć ś ń ć ć ć ś ś Ą ź ść ĘĄ ś ś ć ść ć Ś ś ś ś Ą ś ź ś ś ź ń Ą ś ź Ń ś ś ś Ń ń ź ć ś ś ś ć Ń ś ń ś ź ś ń ń ć ć ś ń ć ń ć
MATURA Powtórka do matury z matematyki. Część VII: Planimetria ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.pl
MATURA 2012 Powtórka do matury z matematyki Część VII: Planimetria ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już siódmą z dziesięciu części materiałów powtórkowych do matury
!" #$%%$&' () &(% +,%*-)$&.%&!*),)!%&$(.(***$*% 1 $*$&.%&!% &!0*%* ()' +.,5( ; A; :: !,#$2*!%!&&!,!$*
" #"$ '" "#$ SPIS TRECI 1. IDENTYFIKACJA/INFORMACJE WSTPNE... 5 2. PRZEGLD REALIZACJI PROGRAMU OPERACYJNEGO... 6 " #%$' () (% * +,%*-)$.%*),)%$(.(***$*% /$,%*0(),0 1 $*$.%% 0*%.2*$3 %* ()4 0*%* ()' 0*%
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym
Elżbieta Świda, Marcin Kurczab Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Zadanie (matura maj 009) Ciąg ( 3, + 3, 6 +, ) jest nieskończonym ciągiem geometrycznym o wyrazach dodatnich.
Wokół twierdzenia Pascala
Wokół twierdzenia Pascala Marcin Fryz 08 czerwca 2012 1 Wstęp Geometria, a w szczególności planimetria, jest jednym z najważniejszych działów matematyki. Jej zastosowania można dojrzeć wszędzie: zaczynając
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 9 MARCA 019 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Cena nart po obniżce o
H 1061 Serie Cenerentola
H 1061 Serie Cenerentola design: Luciana Di Virgilio e Gianni Veneziano wykończenie H1061 R8 H1061 R8Y H1061 R8BZG H1061FRS-41 złoty-satyna AB 373.74 373.74 502.32 243.02 brąz matowy EA 437.17 437.17 522.89
ZADANIA ZAMKNIĘTE. Zadanie 1. (1 pkt) Wartość wyrażenia. b dla a 2 3 i b 2 3 jest równa A B. 5 C. 6 D Zadanie 2.
Zachęcam do samodzielej prac z arkuszem diagostczm. Pozaj swoje moce i słabe stro, a astępie popracuj ad słabmi. Żczę przjemego rozwiązwaia zadań. Zadaie. ( pkt) Wartość wrażeia a ZADANIA ZAMKNIĘTE b dla
! "#$% &'!& & ( )*)* +,&, -! &./ * * -!"#$%&' 0 0!"#$% &' 1 (% )*+,'-./01 ) 2340,5 ( 67 1* 89:; 9?FG HIJK LMHIJK1NO K LME O K L M < = > P Q
! "#$% &'!& & ( )*)* +,&, -! &./ * * -!"#$%&' 0 0!"#$% &' 1 (% )*+,'-./01 ) 2340,5 ( 67 1* 89:; ?@ABCDE 9?FG HIJK LMHIJK1NO K LME O K L M < = > P Q A BR S T. U V W? @ XY=> E 9 Z [\] ^ _`a`@bc 9 M
INFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Potr Szczepńk Ktedr Chem Fzczej Fzkochem Polmeró ANALIZA REGRESJI REGRESJA LINIOWA. REGRESJA LINIOWA - metod jmejzch kdrtó. REGRESJA WAŻONA 3. ANALIZA RESZT 4. WSPÓŁCZYNNIK KORELACJI,
24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC
4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.
UCHWAŁA XV/120/15 RADY GMINY WOLA KRZYSZTOPORSKA. z dnia 30 listopada 2015 r. w sprawie określenia wysokości stawek podatku od środków transportowych
UCHWAŁA XV/120/15 RADY GMINY WOLA KRZYSZTOPORSKA w sprawie określenia wysokości stawek podatku od środków transportowych Na podstawie art. 18 ust. 2 pkt 8, art. 40 ust. 1 i art. 41 ust. 1 ustawy z dnia
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
Matematyka II. x 3 jest funkcja
Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f
!" #! $%&' $ &!!$ :;!"# $ %& ' ( )* %+,-./0 1 +( :; :, ( BC+=D E -./0% : > / F-.FG91"# H F IH F+J K L M N O + F+PQ"# RS*T"U VW6
!" #! $%&' $ &!!$ :;!"# $ %& ' ( )* %+,-./0 1 +( 234 56 2789 :; :, ,?@6A ( BC+=D E -./0% : > / F-.FG91"# H F IH F+J K L M N O + F+PQ"# RS*T"U VW6 &+ F XY * ZL[ \ 6]M^ F _,`ab bc :&+ FX FY F c = ] F
OLIMPIADA MATEMATYCZNA
OLIMPIADA MATEMATYCZNA Na stronie internetowej wwwomgedupl Olimpiady Matematycznej Gimnazjalistów (OMG) ukazały się ciekawe broszury zawierające interesujące zadania wraz z pomysłowymi rozwiązaniami z
Dawno, dawno temu przed siedmioma
Ćwiczenia przed maturą czworokąty Pola czworokątów po turecku. n MONIKA BOLANOWSKA Dawno, dawno temu przed siedmioma reformami... takie zadania znajdowały się w naszych zbiorach zadań. Znalazłam podobne
Cena : 10,09 zł Nr katalogowy : NGK BPR7E 001 Stan magazynowy : niski Średnia ocena : brak recenzji. watermark
Informacje o produkcie Świeca NGK V-LINE >19< BPR7E Cena : 10,09 zł Nr katalogowy : NGK BPR7E 001 Stan magazynowy : niski Średnia ocena : brak recenzji Utworzono 17-01-2017 W elektrodzie środkowe znajduje
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)