DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.
|
|
- Irena Malinowska
- 5 lat temu
- Przeglądów:
Transkrypt
1 DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, ( jeśli w liczbie nie ma przecinka to możemy go postawić na końcu) Odejmowanie, zwracamy uwagę aby podpisywać przecinek po przecinkiem i tutaj musimy liczbę - 8,8, uzupełnić z prawej strony zerem ( ostatni rząd musi być uzupełniony) więc 9 9 0,0 0,000-8,8-0,8,88,9 Mnożenie w mnożeniu pisemnym nie podpisujemy przecinka pod przecinkiem ale staramy się tak podpisać aby ostatnia kolumna była uzupełniona.,, Dobrze jest liczbę która ma więcej cyfr podpisać jako pierwszą *, *, źle podpisane wykonujemy schodek, pierwsza liczba, posiada miejsca po przecinku druga liczba, tylko jedno razem więc mamy miejsca po przecinku dlatego w liczbie odcinamy od końca miejsca otrzymując, Dzielenie aby wykonać dzielenie należy w obu dzielonych liczbach przesunąć przecinek o tyle miejsc w prawo Aby druga liczba ( dzielnik) nie miała przecinka na przykład,, =,,,9 = 9,, =,, 0,, 0, =, =, 8 = 0, = = == - =0-0 = == UŁAMKI ZWYKŁE SKRACANIE polega na tym, że dzielimy licznik i mianownik ułamka przez taką samą liczbę na przykład podzieliliśmy licznik i mianownik ( i 8 ) przez liczbę 8 8 teraz najlepiej było podzielić licznik i mianownik ( i 8 ) przez liczbę ROZSZERZANIE polega na tym,że mnożymy licznik i mianownik ułamka przez taką samą liczbę np. * wynik dzielenia = mnożymy przez licznik stąd 0 0 ( pomnożono przez ) albo WYŁĄCZNIE CAŁOŚCI ( pomnożono przez ) = bo = i reszty jeden 8 8 bo 8 = i reszty
2 ZAMIANA NA UŁAMEK NIEWŁAŚCIWY Całości czyli mnożymy przez mianownik czyli i do wyniku dodajemy licznik czyli ( * + = ) 8 8 wpisujemy to do licznika, a mianownik zostaje bez zmian czyli * 8 + MNOŻENIE UŁAMKÓW ZWYKŁYCH 0 mnożymy licznik razy licznik i mianownik razy mianownik 8 - zamieniamy liczbę mieszaną na ułamek niewłaściwy i dopiero mnożymy ( na końcu powinniśmy wyłączyć całości) mnożymy liczbę tylko przez licznik a mianownik przepisujemy, albo drugim sposobem tutaj liczbę przedstawiamy jako ułamek i dopiero mnożymy. 9 = w mnożeniu można dokonywać skracania na krzyż oraz w pionie DZIELENIE UŁAMKÓW ZWYKŁYCH dzielenie ułamków zwykłych zastępujemy mnożeniem pierwszej liczby przez odwróconą drugą liczbę 9 dzielenie przez zastępujemy mnożeniem przez zamieniamy liczby na ułamki niewłaściwe i dzielenie przez 9 zastępujemy mnożeniem przez 9 dzielenie przez to dzielenie przez zastępujemy mnożeniem przez DODAWANIE UŁAMKÓW ZWYKŁYCH aby dodać dwa ułamki zwykłe sprowadzamy do wspólnego mianownika a następnie dodajemy do siebie liczniki i mianowniki przepisujemy bez zmian gdy występują również całości najpierw dodajemy do siebie całości a potem ułamki 0 dla mianowników oraz wspólnym mianownikiem jest liczba bo *= *= tak można postąpić bo i nie mają wspólnych dzielników innych niż dla mianowników i wspólny mianownik to ( analizujemy wielokrotności większej liczby *= czyli tutaj są to liczby,, 8,, 0... najmniejsza z tych liczb która dzieli się przez to a) i wspólny mianownik to *=0 ( nie mają wspólnych dzielników innych niż ) b) i 8 to bo ( wielokrotności większej, czyli 8 to 8,,,, 0.. a najmniejsza z nich podzielna przez mniejszą czyli to ODEJMOWANIE UŁAMKÓW ZWYKŁYCH aby odjąć dwa ułamki zwykłe sprowadzamy do wspólnego mianownika, a następnie odejmujemy liczniki a mianownik przepisujemy bez zmian 9 ponieważ od nie można odjąć 9 pożyczamy jedną całość od całych i tą pożyczoną całość = ( )( 9 ) - łączymy z ułamkiem stojącym przy liczbie =... ( bo zamiana na ułamek niewłaściwy ) pięć całych przedstawiamy jako i z tym,że = stąd =
3 DZIAŁANIA NA LICZBACH CAŁKOWITYCH Aby dodać dwie liczby o tych samych znakach ( ujemne) należy dodać ich wartości bezwzględne i postawić przed wynikiem minus ( -) + ( -) = - ( + ) = - Aby dodać dwie liczby o różnych znakach należy odjąć od większej wartości bezwzględnej mniejszą i przed wynikiem postawić znak tej liczby od której odejmowaliśmy drugą ( - ) + = - ( -) = - większą wartość bezwzględną ma liczba (-) dlatego od niej odejmowaliśmy i dlatego wynik jest ujemny. + ( -) = + ( ) = - (tutaj większą wartość bezwzględną ma liczba która jest dodatnia) Odejmując dwie liczby kierujemy się następującą zasadą z odejmowania robimy dodawania jednym z dwu sposobów jeżeli występuje tylko jeden minus dostawiamy przed nim +, jeśli zaś są obok siebie dwa minusy to zastępujemy ich + ( - ) - = ( -) + ( -) = -0 (występował jeden minus i dostawiliśmy przednim +) 8 ( - ) = 8 + = ( dwa minusy obok siebie zostały zastąpione + ) Przy mnożeniu i dzieleniu liczb ujemnych kierujemy się następującą zasadą parzysta liczba występujących minusów sprawia,że wynik działania jest dodatni, a nieparzysta liczba minusów daje wynik ujemny. ( - ) ( ) ( dwa minusy dały wynik dodatni) ( - ) = - ( jeden minus to liczba nieparzysta zatem wynik ujemny) ( - ) ( ) ( ) ( trzy minusy dały wynik ujemny ) ( - ) = bo ( -) = ( -) ( ) ( -) = - Przykład ( - ) + ( - ) ( - ) + - ( - ) = tutaj należy usunąć nawiasy według zasady + i daje -, - i - daje = teraz należy do sumy liczb dodatnich ( i i i ) dodać sumę liczb ujemnych ( - i - ) + ( -) = 8
4 RÓWNANIA I NIERÓWNOŚCI. ALGORYTM ROZWIĄZYWANIA RÓWNAŃ. Usuwamy nawiasy i występujące ułamki ( usuwanie ułamków odbywa się przez pomnożenie każdego wyrazu po lewej i prawej stronie równania przez taką liczbę, która jest wspólnym mianownikiem występujących wszystkich ułamków.. Przenosimy niewiadome na jedną stronę, a wiadome na drugą stronę. Jeżeli dany wyraz nie zmienia strony jest przepisywany jeżeli zaś zmienia stronę piszemy go ze zmienionym znakiem niż był po drugiej stronie. ( zazwyczaj przenosi się niewiadome na lewą stronę, a wiadome na prawą, ale może być również odwrotnie.. Redukujemy wyrazy podobne. ( w niektórych przypadkach redukcja wyrazów podobnych nie jest tak oczywista i tutaj należy dokonać wyłączenia czynnika przed nawias np. x + x tutaj trzeba zapisać x ( + ). ). Należy podzielić obie strony równania przez liczbę, która stoi przy niewiadomej. ( przy rozwiązywaniu nierówności jeżeli dzielimy obie strony przez liczbę ujemną należy zmienić znak nierówności na przeciwny np. -x < / (-) to x > - ( x ) x + = x( x ) - (x + ) / * - występują dwa ułamki, których wspólny mianownik wynosi zatem w celu usunięcia ułamków mnożymy każdy wyraz przez ( x ) x + = x( x ) - (x + ) - skracamy ułamki ( x- ) + ( x ) = x( x - ) - ( x + licznik ułamka zapisujemy w nawiasie. Dalej usuwamy nawiasy ( x - 8x + ) +x = x 8x x x 8x x = x - 8x x - przenosimy niewiadome na jedną stronę wiadome na drugą x 8x + x - x + 8x + x= redukujemy wyrazy podobne - x = dzielimy obie strony przez (- ) bo stoi przy niewiadomej 9 x = - takie równanie posiada jedno rozwiązanie na które 9 mówimy pierwiastkiem równania jest liczba INNE MOŻLIWE ROZWIĄZANIA RÓWNANIA Jeżeli rozwiązując równanie otrzymamy zapis 0 = 0 ( zredukowały się x,a druga strona wynosi 0) Równanie takie nazywamy tożsamościowym,a jego Rozwiązaniem jest każda liczba rzeczywista. Jeżeli rozwiązując równanie otrzymamy zapis np. 0 = 0 ) Równanie takie nazywamy sprzecznym, które nie posiada Rozwiązań ( zredukowały się x,a druga strona nie wynosi
5 DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, ( jeśli w liczbie nie ma przecinka to możemy go postawić na końcu) Odejmowanie, zwracamy uwagę aby podpisywać przecinek po przecinkiem i tutaj musimy liczbę - 8,8, uzupełnić z prawej strony zerem ( ostatni rząd musi być uzupełniony) więc 9 9 0,0 0,000-8,8-0,8,88,9 Mnożenie w mnożeniu pisemnym nie podpisujemy przecinka pod przecinkiem ale staramy się tak podpisać aby ostatnia kolumna była uzupełniona.,, Dobrze jest liczbę która ma więcej cyfr podpisać jako pierwszą *, *, źle podpisane wykonujemy schodek, pierwsza liczba, posiada miejsca po przecinku druga liczba, tylko jedno razem więc mamy miejsca po przecinku dlatego w liczbie odcinamy od końca miejsca otrzymując, Dzielenie aby wykonać dzielenie należy w obu dzielonych liczbach przesunąć przecinek o tyle miejsc w prawo Aby druga liczba ( dzielnik) nie miała przecinka na przykład,, =,,,9 = 9,, =,, 0,, 0, =, =, 8 = 0, = = == - =0-0 = == UŁAMKI ZWYKŁE MNOŻENIE UŁAMKÓW ZWYKŁYCH 0 mnożymy licznik razy licznik i mianownik razy mianownik 8 - zamieniamy liczbę mieszaną na ułamek niewłaściwy i dopiero mnożymy ( na końcu powinniśmy wyłączyć całości) mnożymy liczbę tylko przez licznik a mianownik przepisujemy, albo drugim sposobem tutaj liczbę przedstawiamy jako ułamek i dopiero mnożymy. 9 = w mnożeniu można dokonywać skracania na krzyż oraz w pionie DZIELENIE UŁAMKÓW ZWYKŁYCH dzielenie ułamków zwykłych zastępujemy mnożeniem pierwszej liczby przez odwróconą drugą liczbę 9 dzielenie przez zastępujemy mnożeniem przez zamieniamy liczby na ułamki niewłaściwe i dzielenie przez 9 zastępujemy mnożeniem przez 9 dzielenie przez to dzielenie przez zastępujemy mnożeniem przez
6 DODAWANIE UŁAMKÓW ZWYKŁYCH aby dodać dwa ułamki zwykłe sprowadzamy do wspólnego mianownika a następnie dodajemy do siebie liczniki i mianowniki przepisujemy bez zmian gdy występują również całości najpierw dodajemy do siebie całości a potem ułamki 0 dla mianowników oraz wspólnym mianownikiem jest liczba bo *= *= tak można postąpić bo i nie mają wspólnych dzielników innych niż dla mianowników i wspólny mianownik to ( analizujemy wielokrotności większej liczby *= czyli tutaj są to liczby,, 8,, 0... najmniejsza z tych liczb która dzieli się przez to c) i wspólny mianownik to *=0 ( nie mają wspólnych dzielników innych niż ) d) i 8 to bo ( wielokrotności większej, czyli 8 to 8,,,, 0.. a najmniejsza z nich podzielna przez mniejszą czyli to ODEJMOWANIE UŁAMKÓW ZWYKŁYCH aby odjąć dwa ułamki zwykłe sprowadzamy do wspólnego mianownika, a następnie odejmujemy liczniki a mianownik przepisujemy bez zmian 9 ponieważ od nie można odjąć 9 pożyczamy jedną całość od całych i tą pożyczoną całość = ( )( 9 ) - łączymy z ułamkiem stojącym przy liczbie =... ( bo zamiana na ułamek niewłaściwy ) pięć całych przedstawiamy jako i z tym,że = stąd = DZIAŁANIA NA LICZBACH CAŁKOWITYCH Aby dodać dwie liczby o tych samych znakach ( ujemne) należy dodać ich wartości bezwzględne i postawić przed wynikiem minus ( -) + ( -) = - ( + ) = - Aby dodać dwie liczby o różnych znakach należy odjąć od większej wartości bezwzględnej mniejszą i przed wynikiem postawić znak tej liczby od której odejmowaliśmy drugą ( - ) + = - ( -) = - większą wartość bezwzględną ma liczba (-) dlatego od niej odejmowaliśmy i dlatego wynik jest ujemny. + ( -) = + ( ) = - (tutaj większą wartość bezwzględną ma liczba która jest dodatnia) Odejmując dwie liczby kierujemy się następującą zasadą z odejmowania robimy dodawania jednym z dwu sposobów jeżeli występuje tylko jeden minus dostawiamy przed nim +, jeśli zaś są obok siebie dwa minusy to zastępujemy ich + ( - ) - = ( -) + ( -) = -0 (występował jeden minus i dostawiliśmy przednim +) 8 ( - ) = 8 + = ( dwa minusy obok siebie zostały zastąpione + ) Przy mnożeniu i dzieleniu liczb ujemnych kierujemy się następującą zasadą parzysta liczba występujących minusów sprawia,że wynik działania jest dodatni, a nieparzysta liczba minusów daje wynik ujemny. ( - ) ( ) ( dwa minusy dały wynik dodatni) ( - ) = - ( jeden minus to liczba nieparzysta zatem wynik ujemny) ( - ) ( ) ( ) ( trzy minusy dały wynik ujemny ) ( - ) = bo ( -) = ( -) ( ) ( -) = - Przykład ( - ) + ( - ) ( - ) + - ( - ) = tutaj należy usunąć nawiasy według zasady + i daje -, - i - daje = teraz należy do sumy liczb dodatnich ( i i i ) dodać sumę liczb ujemnych ( - i - ) + ( -) = 8
Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
Bardziej szczegółowoPowtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *
Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
Bardziej szczegółowoKryteria ocen z matematyki w klasie IV
Kryteria ocen z matematyki w klasie IV odejmuje liczby w zakresie 100 z przekroczeniem progu dziesiętnego, zna kolejność wykonywania działań, gdy nie występuję nawiasy, odczytuje współrzędne punktu na
Bardziej szczegółowoPrzypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,
Bardziej szczegółowoWYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Bardziej szczegółowo1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Bardziej szczegółowoUłamki zwykłe. mgr Janusz Trzepizur
Ułamki zwykłe mgr Janusz Trzepizur Ułamek jako część całości W ułamku wyróżniamy licznik i mianownik. kreska ułamkowa licznik mianownik (czytamy: jedna druga) czyli połowa całości. Dwie takie połowy tworzą
Bardziej szczegółowoC z y p a m i ę t a s z?
C z y p a m i ę t a s z? Liczby naturalne porządkowe, Przykłady: 0,1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne do nich i 0. Przykłady:, -3, -1, 0, 17, Liczby wymierne można przedstawid
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoMatematyka. Klasa IV
Matematyka Klasa IV Ocenę niedostateczną otrzymuje uczeń, który nie opanował umiejętności przewidzianych w wymaganiach na ocenę dopuszczającą Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby
Bardziej szczegółowoPrzykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Bardziej szczegółowoSZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej
Bardziej szczegółowoMATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm
MATEMATYKA Spis treści 1 jednostki miar 2 wzory skróconego mnożenia 3 podzielność liczb 3 przedrostki 4 skala 4 liczby naturalne 5 ułamki zwykłe 9 ułamki dziesiętne 9 procenty 10 geometria i stereometria
Bardziej szczegółowoMATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowoKRYTERIA OCENIANIA KLASA IV KLASA V KLASA VI
KRYTERIA OCENIANIA II ETAP EDUKACYJNY MATEMATYKA KLASA IV KLASA V KLASA VI DOPUSZCZAJĄCY odejmować liczby w zakresie 100 z przekroczeniem progu dziesiętnego znać kolejność wykonywania działań, gdy nie
Bardziej szczegółowoSkrypt 32. Przygotowanie do matury. Równania i nierówności
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt Przygotowanie do matury Równania
Bardziej szczegółowoFunkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Bardziej szczegółowoLISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24 x=6 ODP: Podstawą (bazą), w której spełniona jest ta zależność
Bardziej szczegółowoWSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ
WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ Dla wszystkich, których przerażają opasłe podręczniki szkolne do matematyki, opracowałem w przystępnej formie to co trzeba wiedzieć by rozpocząć
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie IV
Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania
Bardziej szczegółowoMatematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7
Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
Bardziej szczegółowoI semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.
Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,
Bardziej szczegółowoWYMAGANIA EDUKACYNE Z MATEMATYKI ODDZIAŁ 4
1 WYMAGANIA EDUKACYNE Z MATEMATYKI ODDZIAŁ 4 Ocena dopuszczająca Uczeń: zapisuje i odczytuje liczby naturalne czterocyfrowe; przedstawia liczby w zakresie 20 na osi liczbowej; porównuje liczby naturalne;
Bardziej szczegółowo3.2. RÓWNANIA I NIERÓWNOŚCI LINIOWE.
.. RÓWNANIA I NIERÓWNOŚCI LINIOWE. m równania (pierwiastkiem równania) z jedną niewiadomą nazywamy liczbę, która spełnia dane równanie, tzn. jeśli w miejsce niewiadomej podstawimy tę liczbę, to otrzymamy
Bardziej szczegółowoZbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami
Bardziej szczegółowoI) Reszta z dzielenia
Michał Kremzer tekst zawiera 9 stron na moim komputerze Tajemnice liczb I) Reszta z dzielenia 1) Liczby naturalne dodatnie a, b, c dają tę samą resztę przy dzieleniu przez 3. Czy liczba A) a + b + c B)
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Bardziej szczegółowoKatarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil
Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i
Bardziej szczegółowoKryteria ocen z matematyki w klasie V
Uczeń musi umieć: Kryteria ocen z matematyki w klasie V na ocenę dopuszczającą: -odczytywać liczby zapisane cyframi -porównywać liczby naturalne, - przedstawiać liczby naturalne na osi liczbowej, - pamięciowo
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy 7 na podstawie planu wynikowego z rozkładem materiału
Wymagania edukacyjne z matematyki dla klasy 7 na podstawie planu wynikowego z rozkładem materiału Lp. Temat lekcji Punkty z podstawy programowej z dnia 1 lutego 2017 r. Wymagania podstawowe Wymagania ponadpodstawowe
Bardziej szczegółowo4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Bardziej szczegółowoSkrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Liczby wymierne dodatnie i niedodatnie
Bardziej szczegółowo1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w
Bardziej szczegółowoROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem
ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania
Bardziej szczegółowoUKŁADY RÓWNAŃ LINIOWYCH
Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie 5
Wymagania edukacyjne z matematyki w klasie 5 PODSTAWOWE PONADPODSTAWOWE LICZBY I DZAŁANIA porównywać liczby porządkować liczby w kolejności od najmniejszej do największej lub odwrotnie przedstawiać liczby
Bardziej szczegółowoSkrypt 7. Równania. 1. Zapisywanie związków między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 7 Równania 1. Zapisywanie związków między
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowoZamiana ułamków na procenty oraz procentów na ułamki
Zamiana ułamków na procenty oraz procentów na ułamki Przedmowa Opracowanie to jest napisane z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach. Prawie wszystko
Bardziej szczegółowoArytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
Bardziej szczegółowoKRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka
KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka 1. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą. 2. Ocenę dopuszczającą otrzymuje uczeń, który: 2.1 Liczby
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie VI
edukacyjne z matematyki w klasie VI Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań na ocenę dopuszczającą. Do uzyskania oceny dostatecznej uczeń musi spełniać kryteria wymagane na ocenę
Bardziej szczegółowoMatematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7
Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Temat lekcji Punkty z podstawy programowej Lp. Wymagania podstawowe Wymagania
Bardziej szczegółowoMatematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7
Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Temat lekcji Punkty z podstawy programowej Lp. Wymagania podstawowe Wymagania
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoKRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE. Przedmiot: matematyka. Klasa: 5
KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE Przedmiot: matematyka Klasa: 5 OCENA CELUJĄCA Rozwiązuje nietypowe zadania tekstowe wielodziałaniowe. Proponuje własne metody szybkiego liczenia. Rozwiązuje
Bardziej szczegółowoLICZBY - Podział liczb
1 LICZBY - Podział liczb Liczby naturalne (N) to liczby, za pomocą których rachujemy. Podział liczb na diagramie prezentuje się następująco 0, 1, 2, 3, 4, 5,, 99, 100, 101,, 999, 1000, Liczby całkowite
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Bardziej szczegółowoKryteria ocen z matematyki
Klasa I DZIAŁ: Liczby i działania Kryteria ocen z matematyki obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki zwykłe
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.
Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych
Bardziej szczegółowoLiczby. Wymagania programowe kl. VII. Dział
Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do
Bardziej szczegółowoOpracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie VII szkoły podstawowej
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie
Bardziej szczegółowoWymagania edukacyjne klasa pierwsza.
Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane
Bardziej szczegółowoSprowadzanie ułamków do wspólnego mianownika(
STOPIEŃ BARDZO WYMAGANIA NA OCENY ŚRÓDROCZNE: LICZBY NATURALNE - POWTÓRZENIE WIADOMOŚCI I OSIĄGNIĘCIA Zapisywanie i odczytywanie liczb w dziesiątkowym systemie pozycyjnym. Obliczanie wartości wyrażeń arytmetycznych
Bardziej szczegółowoB.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:
Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka
Bardziej szczegółowoKRYTERIA OCEN Z MATEMATYKI DLA KLASY VII
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą
Bardziej szczegółowoTemat: Pojęcie potęgi i wykładniczy zapis liczb. Część I Potęga o wykładniku naturalnym
PRZELICZANIE JEDNOSTEK MIAR Kompleks zajęć dotyczący przeliczania jednostek miar składa się z czterech odrębnych zajęć, które są jednak nierozerwalnie połączone ze sobą tematycznie w takiej sekwencji,
Bardziej szczegółowoWYMAGANIA EDUKACYJNE WRAZ Z KRYTERIAMI OCENIANIA WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH UCZNIÓW KLAS 5 ROK SZKOLNY 2016/2017
WYMAGANIA EDUKACYJNE WRAZ Z KRYTERIAMI OCENIANIA WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH UCZNIÓW KLAS 5 ROK SZKOLNY 2016/2017 WYMAGANIA EDUKACYJNE I OKRES II OKRES I. LICZBY NATURALNE rozumieć dziesiątkowy
Bardziej szczegółowoTEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
Bardziej szczegółowoKRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI
KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI Ocenę niedostateczną (1) otrzymuje uczeń, który nie spełnia wymagań na ocenę dopuszczającą, Wymagania na ocenę dopuszczającą (2) rozróżnia liczby pierwsze i
Bardziej szczegółowoWymagania eduka cyjne z matematyki
Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na
Bardziej szczegółowoPendolinem z równaniami, nierównościami i układami
Pendolinem z równaniami, nierównościami i układami 1. Równaniem nazywamy równość dwóch wyrażeń algebraicznych. Równaniami z jedną niewiadomą są, np. równania: 2 x+3=5 x 2 =4 2x=4 9=17 x 3 2t +3=5t 7 Równaniami
Bardziej szczegółowoWymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019
Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 LICZBY Uczeń otrzymuje ocenę dopuszczającą, jeśli: rozpoznaje cyfry używane do zapisu liczb w
Bardziej szczegółowoMATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM Lp. Temat lekcji Zakres treści Osiągnięcia uczeń: I. LICZBY 1. Oś liczbowa 1. pojęcie osi liczbowej 2. liczby przeciwne 1. zaznacza na osi liczbowej punkty
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2015/16
Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie Szkolne - klasa 6
Katalog wymagań programowych na poszczególne stopnie Szkolne - klasa 6 Opis osiągnięć Liczby naturalne Wykonuje proste obliczenia czasowe. Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje
Bardziej szczegółowoKompendium wiedzy dla gimnazjalisty. Matematyka
Kompendium wiedzy dla gimnazjalisty Matematyka Tekst: Anna Augustyn Konsultacja merytoryczna: Katarzyna Kabzińska Ilustracje: Maciej Maćkowiak Redakcja: Elżbieta Wójcik Korekta: Natalia Kawałko Projekt
Bardziej szczegółowoWymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
Bardziej szczegółowoKryteria ocen z matematyki w klasie IV. na ocenę dopuszczającą: na ocenę dostateczną: Uczeń musi umieć:
Kryteria ocen z matematyki w klasie IV Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiętnego, znać kolejność wykonywania działań, gdy nie występuję
Bardziej szczegółowoMatematyka Dyskretna Zestaw 2
Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje
Bardziej szczegółowoWHILE (wyrażenie) instrukcja;
INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
Bardziej szczegółowo1 Całki funkcji wymiernych
Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...
Bardziej szczegółowoWYMAGANIA na poszczególne oceny-klasa I Gimnazjum
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -
Bardziej szczegółowoSZKOŁA PODSTAWOWA NR 1 W LUBARTOWIE. Równania
Równania Jeżeli połączymy znakiem równości (=) dwa wyrażenia algebraiczne to tak stworzony zapis będzie nazywał się równaniem. W dalszych latach nauki poznasz wiele typów i rodzajów równań, w tej chwili
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy IV
WŁASNOŚCI LICZB NATURALNYCH DZIAŁANIA PISEMNE SYSTEM ZAPISYWANIA LICZB LICZBY I DZIAŁANIA Wymagania edukacyjne z matematyki dla klasy IV DZIAŁ WYMAGANIA KONIECZNE (OCENA DOPUSZCZAJĄCA) - pamięciowo dodaje
Bardziej szczegółowoWymagania edukacyjne z matematyki dla kl. V
Wymagania edukacyjne z matematyki dla kl. V Semestr I Wymagane wiadomości i umiejętności na ocenę: dopuszczającą: pojęcie cyfry nazwy elementów działań kolejność wykonywania działań, gdy nie występują
Bardziej szczegółowoWIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery
Bardziej szczegółowoWymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
Bardziej szczegółowoLista 1 liczby rzeczywiste.
Lista 1 liczby rzeczywiste Zad 1 Przedstaw liczbę m w postaci W każdym ze składników tej sumy musimy wyłączyd czynnik przed znak pierwiastka Można to zrobid rozkładając liczby podpierwiastkowe na czynniki
Bardziej szczegółowoWymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
Bardziej szczegółowoPlan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł
Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoTEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-
Bardziej szczegółowoWymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie
Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie dziesiątkowego systemu liczenia, rozumie pojęcie pozycyjnego
Bardziej szczegółowoWymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 6.
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 6. Semestr I Dział programu: Liczby naturalne Wykonuje proste obliczenia czasowe
Bardziej szczegółowo