Funkcje Analityczne, ćwiczenia i prace domowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Funkcje Analityczne, ćwiczenia i prace domowe"

Transkrypt

1 Funkcje Analityczne, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 22 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do samodzielnego rozwiązywania. Niektóre z nich mogą być nieco trudniejsze. 3. Zadania domowe. Te zadania należy rozwiązać w domu i umieć na kartkówkę Jest bardzo prawdopodobne, że w pliku tym pojawią się błędy i literówki. Za poprawki będę bardzo wdzięczny 3 luty 2 Zad. Wyraź ( + i) w postaci trygonometrycznej. Oblicz ( + i) 2 używając obu postaci i porównaj części rzeczywiste. Zad. 2 Udowodnij, że jeżeli Iz > to Iz <. Zad. 3 Opisz zbiory na płaszczyźnie zadane równaniami z + 2 = z z = + Rz Zad. 4 Oblicz całkę 2π cos 4 t dt. Zad, 5 Wyraź cos 3x jako wielomian od cos x. Zad. 6 Znajdż wszystkie pierwiastki czwartego stopnia liczby + 2i. Zad. 7. Udowodnij, że nie istnieje podzbiór P C mający następujące własności.. jeżeli z C i z to albo z albo z należy do P ale nie oba. 2. jeżeli z, v P to zv P oraz z + v P. Zadania ćwiczebne:. Niech z, z 2, z 3 to różne liczby zespolone i niech θ arg z3 z z 2 z. Udowodnij, że z 3 z 2 2 = z 3 z 2 + z 2 z 2 2 z 3 z z 2 z cos θ. 2. Wielomian z 4 + rozłóż na czynniki liniowe (o współczynnikach zespolonych).

2 . Rozwiąż równanie (z + ) 5 = z Niech z to rozwiązanie równania (z + ) = (z ). Udowodnij, że Rz = 3. Wyznacz wszystkie liczby zespolone z takie, że ( + z)( z) jest liczbą rzeczywistą. 4. Opisz geometrycznie zbiór { z C : < Arg z + i z i < π } luty 22 Zad.. Znajdź granicę z 2 + i lim z i z 4. Zad. 2. Określamy funkcję f(z) wzorem { 2z f(z) = z+ gdy z gdy z = Zbadaj dla jakich z C jest ona określona, ciągła i które nieciągłości są usuwalne. ( ) Zad. 3. Funkcja Żukowskiego to f(z) = 2 z + z. Udowodnij, że. f(z) = f( z ) 2. f({ z = }) = [, ] 3. dla < r f({ z = r}) to elipsa u 2 ( 2 (r + r )) 2 + v 2 ( 2 (r r )) 2 =. Zad. 4. Rozpatrzmy funkcję f(z) = z 2. Udowodnij, że przeprowadza ona zbiór. x = na parabolę (podaj jej równanie) 2. xy = na prostą (podaj jej równanie) 3. z = na krzywą (zwaną kardioida) opisaną równaniem parametrycznym w = 2( + cos θ)e iθ. Zad. 5. Rozpatrzmy funkcję f(z) = e z. Na co przeprowadza ona. Zbiór Rz = 2. Zbiór Iz = π 4 3. Pas Iz π 4. 2

3 Zadania ćwiczebne:. Zbadaj w jakich punktach różniczkowalna jest funkcja f(z) = z Udowodnij, że funkcja f(z) = z przeprowadza proste na proste lub okręgi. Zbadaj dokładnie kiedy na co i wylicz dokładne wzory. 3. Zbadaj zbieżność ciągu z n = n k= ( + i k ). (Wsk. Rozpatrz moduł i argument).. Udowodnij, że odwzorowanie f(z) = z przeprowadza parabolę y = x 2 na krzywą zadaną równaniem u 2 (v + ) + v 3 = 2. Udowodnij, że funkcja Żukowskiego f(z) = 2 (z + z ) przeprowadza półpłaszczyznę Iz > w sposób jednoznaczny na C \ ((, ] [, )) (płaszczyzna bez dwu półprostych). 3. Niech a b będą liczbami zespolonymi. Udowodnij, że równanie z a = 2 z b zadaje okrąg i znajdź jego promień luty 22 Zad.. Policz bezpośrednio, że funkcja e x cos y spełnia równanie Laplace a. Uwaga: w zadaniach poniżej funkcja harmoniczna to jak na wykładzie część rzeczywista funkcji analitycznej. Zad. 2. Dla jakich a, b, c R wielomian ax 2 + bxy + cy 2 jest harmoniczny w C. Zad. 3. Funkcja Φ(x, y) jest harmoniczna w obszarze Ω i ma wszystkie pochodne. Udowodnij, że Φ x iφ y jest analityczna. Zad. 4. Jeżeli u(x, y) jest harmoniczna w Ω to u x (o ile istnieje) też jest harmoniczna. Zad. 5. Znajdź funkcję harmoniczna w {z : Rz 3} która na prostej Rz = przyjmuje wartość a na prostej Rz = 3 przyjmuje wartość 4. Zad. 6. Znajdź funkcje φ harmoniczną w z 2 taką, że φ(z) = gdy z = oraz φ(2e iθ ) = 5 cos 3θ. Zad. 7. Znajdź funkcję φ(z) harmoniczną dla z taką, że φ(e it ) = cos 2 t oraz lim z φ(z) = 2.. Znajdź funkcję harmoniczną w kącie Arg z π 4 która nie jest tozsamościowo zerem ale jest równa zeru na półprostych Arg z = i Arg z = π Znajdź funkcję analityczną f(z) taką, że Rf(x + iy) = x 3 3xy 2 + y. 4 5 marzec 22 Zad.. Napisz jako a + ib liczby sin 2i, cos( i) oraz exp( + 3πi) exp( + iπ/2). 3

4 Zad. 2. Rozwiąż równanie cos z = i sin z. Zad. 3. Udowodnij, że funkcja e z jest na każdym pasie ai < Iz < ai + 2πi dla a R. Zad. 4. Udowodnij, że sin z sin w = 2 cos z+w 2 sin z w 2. Zad. 5. Udowodnij, że sin z jest różnowartościowy na zbiorze {x + iy : π < x < π oraz y > }. Znajdź obraz tego zbioru. Zad. 6. Niech λ,..., λ n C różne liczby zespolone. Udowodnij, że funkcje e λz,..., e λnz są liniowo niezależne. Zadania ćwiczebne:. f(z) = Log(4 + i z). W jakim obszarze f(z) jest analityczne. Znajdź f (z). 2. Gdzie jest analityczna funkcja Log(z 2 + )?. Rozwiąż równanie Log(z 2 ) = iπ/2 2. Niech Ω = C \ {x + iy : x, y = x} a l(z) niech będzie gałęzią logarytmu w Ω taką, że l(e) =. Policz l( + i/2) oraz l(e + ie). Uwaga Na następnych ćwiczeniach będzie kartkówka z tych i poprzednich zadań domowych. 5 2 marca 22 Policzyć całki. Γ (x 2xyi)dz gdzie Γ =: {z = t + it2 : t } 2. C z2 dz gdzie C to brzeg kwadratu o wierzchołkach,, + i, i 3. Γ ( z + i z)dz po półokręgu z = i + e it dla t [, π] 4. z = zn dz dla n =, ±, ±2,... Udowodnij, że. z =3 (z2 i) dz 3π 4 2. Γ Log z dz π γ esin z dz gdzie γ to odcinek od do i.. Γ z z dz gdzie Γ to brzeg zbioru {z : < z < 2 i Iz > } 2. z z dz gdzie Γ to brzeg zbioru {z : z < i Iz > } Γ 4

5 6 9 marca 22 Zad.. Udowodnij, że wielomian F (z) = a + nz + z n jest różnowartościowy na z < Zad. 2 Udowodnij, że funkcja F (z) = z + e z jest różnowartościowa na Rz <. Zad. 3. jaka jest wartość całki. Γ 2. C dz +z 2 gdzie Γ to elipsa x 2 + 4y 2 = e z cos z (+z 2 ) sin z dz gdzie C to z (2 + i) = 2. Zad. 4. Γ to kontur prosty i a nie leży na Γ. Policz Γ (z a)n dz dla n =, ±, ±2,.... Zad. 5. Policz dz φ(r) = z 2 (z ) 3 z =R dla R > 2. Zad. 6. Udowodnij, że jeżeli P (z) to wielomian stopnia 2 którego wszystkie zera leżą w kole z < r to z =r P (z) dz =. Zad. 7. Jeżeli u(z) harmoniczne w z < R oraz < r < R to 2π 2π u(re iθ ) dθ = u().. Policz całkę γ zdz gdzie γ to krzywa γ(t) = (5 cos t)eit dla t 3π. 2. Policz całkę γ z dz gdzie γ to krzywa γ(t) = (5 cos t)e it dla t 3π marca 22 Kartkówka Zad.. Policz całke cos z Γ z 2 (z 3) dz po konturze narysowanym na tablicy. Zad. 2. f(z) analityczna na z = oraz wewnątrz tej krzywej a ponadto f(z) M dla z =. Udowodnij, że f() M oraz f () M. Zad. 3. γ to kontur prosty, zamknięty a g to funkcja ciągła na γ. Dla z / γ określamy g(w) dw G(z) = w z.. Udowodnij, że G(z) jest analityczna i G (z) = γ γ g(w) dw (w z) Policz G(z) dla γ(t) = e it dla t 2π oraz g(w) = w. f(z) Zad. 4. Jeżeli f(z) jest całkowita i lim z z = to f(z) jest wielomianem n stopnia < n. Zad. 5. policz całke sin z z = z dz. 2 Zad.. Policz 2π log re iθ a dθ dla r < a. Zad. 2. Policz wszystkie możliwe wartości całki dz γ z(z 2 ) gdzie γ to kontur prosty, zamkniety nie przechodzący przez, ±, ±2. 5

6 8 2 kwietnia 22 Zad.. Rozwiń e z = n= a n(z ) n Zad. 2. Udowodnij, że promień zbieżności szeregu potęgowego n= a nz n równy jest (lim sup n n a n ). Udowodnij, że jezeli α n to ograniczony ciąg liczb rzeczywistych to szereg n= a nn αn z n ma ten sam promień zbieżności co n= a nz n. Zad. 3. Jaki jest promień zbieżności szeregu Maclaurina funkcji f(z) = e z (z + i) 3 (2i z). Zad. 4. Szereg n a nz n ma promień zbieżności R a szereg n b nz n ma promień zbieżności R 2. Udowodnij, że szereg n= a nb n z n ma promień zbiezności R R 2. Zad. 5. Funkcja f(z) = n= a nz n jest rzeczywista dla z ( δ, δ) dla pewnego δ >. Udowodnij, że a n R dla n =,,.... Zad. 6. Szereg f(z) = n= a nz n ma promień zbiezności R >. Udowodnij, że dla < r < R mamy 2π f(re it ) 2 dt = 2π a n 2 r 2n. n= Zad. 7. Napisz szereg Maclaurina dla sinh z. Zad. 8. α C Udowodnij, że dla z < mamy ( + z) α = + α! α(α ) z + z 2 + 2! α(α )(α 2) z !. f(z) jest analityczne dla z <. Udowodnij, że f(z) jest parzyste (i.e. f(z) = f( z)) wtedy i tylko wtedy gdy wszystkie nieparzyste pochodne f w zerze są równe zeru. 2. Określamy F (z) = 2 e zt t 3 dt. Udowodnij, że F (z) jest całkowite i znajdź szereg Maclaurina f(z). 9 6 kwietnia 22 Kartkówka: Zad.. Jeżeli f(z) analityczne w obszarze Ω jest różna od stałej i inf z Ω f(z) jest osiągane to f ma zero w Ω. Zad. 2. Podaj przykład funkcji f(z) analitycznej w pewnym obszarze Ω takiej, że Rf(z) jest ograniczone w Ω a If(z) nie jest ograniczone. Zad. 3. Szereg f(z) = n= a nz n jest zbieżny dla z < r. Określamy Φ(z) = a nz n n= n!. Udowodnij, że Φ(z) jest funkcja całkowitą i udowodnij, że dla z < r zachodzi f(z) = 6 e t Φ(tz) dt

7 Zad. 4. Jaką funkcje przedstawia szereg k= k2 z k. Zad. 5. Znajdź sumę szeregu ( ) k k= 2k+ Zad. 6. Jaką funkcje przedstawia szereg z n n= n(n+) Zadanie ćwiczebne: Udowodnij, że dla θ < π mamy sin θ 2 sin 2θ + 3 sin 3θ = 2 θ. Jaką funkcję przedstawia szereg n= n2 + 2 n n! zn. 2. Jaką funkcję przedstawia szereg k= ( )k (3k + ). k= ( ) k 3k+ z3k+. Znajdź sumę szeregu 23 kwietnia 22 Zrobiliśmy wszystkie zadania z kolokwium należy je umieć. Robiliśmy też następującą serię zadań ale ponieważ nie robiliśmy jej zbyt dokładnie klasyfikuję ją jako Zadania ćwiczebne: Niech f(z) = π2 sin 2 (πz) a φ(z) = n Z (z n) 2.. Udowodnij, że f(z) jest analityczne w C \ Z. 2. Udowodnij, że szereg n Z (z n) 2 zbiega jednostajnie w każdym obszarze Iz > η dla η >. 3. Udowodnij, że n Z (z n) 2 zbiega jednostajnie w każdym obszarze n + η < Rz < n + η dla < η < Udowodnij, że φ(z) jest analityczne w C \ Z. 5. Udowodnij, że f(z) i φ(z) są okresowe z okresem π. 6. Oblicz współczynniki przy ujemnych potęgach z w rozwinięciu Laurenta funkcji f(z) w otoczeniu. 7. Oblicz współczynniki przy ujemnych potęgach z w rozwinięciu Laurenta funkcji φ(z) w otoczeniu. 8. Udowodnij, że funkcja f(z) φ(z) jest (rozszerza się do) funkcją całkowitą. 9. Udowodnij, że funkcja f(z) φ(z) jest ograniczona.. Udowodnij, że f(z) = φ(z) dla z C \ Z.. W jakim pierścieniu zbiega szereg n= ln( n + )2 n z n. 2. Znajdź współczynniki przy potęgach z mniejszych niż 3 w rozwinięciu Laurenta wokół zera funkcji f(z) = (e z ) 7

8 7 maja 22 Kartkówka Zad.. Opisz zera i bieguny funkcji f(z) = tan z z sin 3z Zad. 2. Opisz osobliwości izolowane funkcji z 3 z Zad. 3. Jeżeli f(z) ma w z osobliwość istotną to e f(z) też. Zad. 4. Jakiego rzędu biegun w z = ma funkcja (2 cos z 2 + z 2 ) 2 Zad. 5. f(z) ma w z osobliwość istotną a g(z) ma w z biegun. Udowodnij, że f(z)g(z) oraz f(z) + g(z) ma w z osobliwość istotną. Zad. 6. Wyznacz poziomice e z = s. Jak wyglądają one dla s =, 2,... i dla s =, 2, 3,.... Zadanie ćwiczebne:niech h(z) = sin z z + 2z z 2 π 2. Udowodnij, że dla z < 2π ma tylko osobliwości usuwalne. Znajdź cztery pierwsze współczynniki szeregu Mclaurina funkcji h(z). Jaki jest promień zbieżności tego szeregu.. Sprawdź (oczywiście bez tw. Picarda) że funkcja cos z w dowolnym otoczeniu < z < ɛ przyjmuje wszystkie wartości zespolone poza być może jedną. 2. Funkcja f(z) ma w z biegun rzędu m. Zbadaj osobliwość w z funkcji g(z) = f (z) f(z). Wyraź minus pierwszy współczynnik szeregu Laurenta funkcji g (czyli res(g, z )) przez współczynniki Laurenta funkcji f. 2 4 maja 22 Policz całki używając twierdzenia o residuach: tan z dz z =2π 2π sin 2 θ cos θ dθ z =3 π e z dz z(z 2) 3 dθ 2 cos θ e ax dx gdzie < a <. + ex Zadania do pomyslenia: Zadanie. Niech f(z) to funkcja wymierna f(z) = P (z)/q(z) gdzie deg Q 2+deg P i żadna liczba całkowita nie jest biegunem f. Udowodnij, że lim N N k= N f(k) jest równe minus suma residuów funkcji g(z) := πf(z) cot(πz) w biegunach f(z). Wskazówka:. Udowodnij, ze res(g; k) = f(k) dla k =, ±, ±2,... 8

9 2. Niech Γ N to brzeg kwadratu o wierzchołakach (N + 2 )(+i), (N + 2 )( i). (N + 2 )( + i), (N + 2 )( i). Udowodnij, że istnieje stała M taka, że cot(πz) M dla wszystkich N i z Γ N. oraz Zad. 2. Używając powyższego policz, że k 2 + = π coth(π) k= (k 2 )2 = π2. Policz całki 2π dt 2 cos t 3 2 maja 22 cos x dx ( + x 2 ) 3 Kartkówka Zad.. Policz całki Fresnela sin x 2 dx oraz cos x 2 dx całkując funkcje e z2 po odpowiednio dobranych konturach. Zad. 2. Policz całkę ln x dx log z x 2 całkując funkcję z 2. Zadania do pomyślenia:. Policz całkę e x2 cos 2λx dx gdzie λ > całkując funkcje e z2 po prostokącie o wierzchołkach, R, R + iλ, iλ. 2. Policz całkę, a > cos x dx x 2 + a 2 (to bardzo podobne do zadania domowego), oraz x sin x dx (x a 2 ) Policz całkę 2π exp(cos t) cos(nt sin t) dt całkując funkcje e z z n po okręgu. Zadań domowych nie ma; po następnych ćwiczeniach będzie więcej 4 28 maja 22 Zad.. f analityczne w z < i f(z) <. Udowodnij, że dla każdego ζ, ζ < równanie z ζf(z) = ma dokładnie jedno rozwiązanie. Zad. 2. a >. Udowodnij, że równanie z + e z = a ma dokładnie jedno rozwiązanie o dodatniej części rzeczywistej. 9

10 Zad. 3. Wielomian z 8 + 4z 3 + 5z + 7 ma dokładnie dwa zera w pierwszej ćwiartce. Zad. 4. Wielomian z 5 + 5z 3 + 2z 2 + 4z + ma dokładnie dwa pierwiastki o dodatniej części rzeczywistej. Zadania do pomyślenia:. Udowodnij, że wielomian z 5 +5z + ma dokładnie cztery zera w obszarze 3/2 < z < Jeżeli f n zbiega niemal jednostajnie w obszarze D do f i każda funkcja f n jest różnowartościowa to f jest albo róznowartościowa albo stała. 3. Udowodnij, że wszystkie zera wielomianu z 7 2z leżą w pierścieniu < z < 2

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

Funkcje analityczne. Wykład 12

Funkcje analityczne. Wykład 12 Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych. Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Funkcje Analityczne Grupa 3, jesień 2008

Funkcje Analityczne Grupa 3, jesień 2008 Funkcje Analityczne Grupa 3, jesień 2008 Czternasta porcja zadań. Uwaga: i) W każdym zadaniu można korzystać z poprzednich jego części i innych zadań, nawet, jeśli się ich nie rozwiązało. ii) Wcześniejsze

Bardziej szczegółowo

5. wykładu.) x 2 +2x+5dx. (Wskazówka: wykorzystać to, że sin = Im(exp) na osi rzeczywistej; użyć lematu Jordana.) 3. Obliczyć

5. wykładu.) x 2 +2x+5dx. (Wskazówka: wykorzystać to, że sin = Im(exp) na osi rzeczywistej; użyć lematu Jordana.) 3. Obliczyć FAN: wybór zadań przygotowawczych do egzaminu. styczeń 2014r. Egzamin będzie z całości materiału również i tej jego części, która objęta była poprzednimi zadaniami przygotowawczymi i samym kolokwium. Poniższy

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Praca domowa - seria 2

Praca domowa - seria 2 Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n. Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią. Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i

Bardziej szczegółowo

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3. Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.

Bardziej szczegółowo

6. Punkty osobliwe, residua i obliczanie całek

6. Punkty osobliwe, residua i obliczanie całek 6. Punkty osobliwe, residua i obliczanie całek Mówimy, że funkcja holomorficzna f ma w punkcie a zero krotności k, jeśli f(a) = f (a) = = f (k ) (a) = 0, f (k) (a) 0. Rozwijając f w szereg Taylora w otoczeniu

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

GAL 80 zadań z liczb zespolonych

GAL 80 zadań z liczb zespolonych GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17 41. Niech z = 5 + 4i. Dla podanych liczb m, n podać taką liczbę całkowitą k, aby 5 zachodziła równość z m z n =z k. Uwaga na sprzężenie w drugim czynniku po lewej stronie. a) m = 1, n = 1, k = 9 ; b) m

Bardziej szczegółowo

(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:

(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera: Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że 4. Równania Caucy ego Riemanna Niec Ω C będzie zbiorem otwartym i niec f : Ω C. Mówimy, że f ma w punkcie a Ω pocodną w sensie zespolonym (jest olomorficzna w a równą c C, jeśli f(z f(a lim = c. z a Piszemy

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d),

(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d), Zestaw zadań 2: Ciało liczb zespolonych Układy równań liniowych () Ile działań można określić na zbiorze n-elementowym? Ile z nich to działania przemienne? (2) Zbadaj własności działania różnicy symetrycznej

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez

Bardziej szczegółowo

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume

c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume Szeregi Laurenta, punkty osobliwe izolowane, klasyfikacja funkcji ze wzgl edu na osobliwości Dane s dwa szeregi postaci c n (z z 0 ) n i c n (z z 0 ) n. (1) n=1 1 Pierwszy z tych szeregów jest zbieżny

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y) Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

Repetytorium z matematyki ćwiczenia

Repetytorium z matematyki ćwiczenia Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa

Bardziej szczegółowo

Spis treści. Spis treści 2

Spis treści. Spis treści 2 Spis treści Spis treści Algebra. Liczby zespolone.................................................. Liczby zespolone - odpowiedzi.......................................... 5. Macierze......................................................

Bardziej szczegółowo

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka AM.2 zadania 4 Tekst poprawiony 24 kwietnia 206 r. Zadania 26, 28, 29, 3, 33, 34, 35, 36, 40, 42, 62 i inne z wykrzyknikiem obok numeru sa obowiazkowe! Zadania z numerami opatrzonymi gwiazdka można napisać

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2)

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2) Matematyka A kolokwium: godz. 18:05 0:00, 4 maja 017 r. rozwiązania 1. 7 p. Znaleźć wszystkie takie funkcje t xt, że dla każdego t π, π zachodzi równość: x t 1 + xt 1+4t 0. p. Wśród znalezionych w poprzedniej

Bardziej szczegółowo

, sin z = eiz e iz. = f (z 0 ) (równoważnie f(z 0 + h) = f(z 0 ) + f (z 0 )h + α(h), gdzie lim h 0

, sin z = eiz e iz. = f (z 0 ) (równoważnie f(z 0 + h) = f(z 0 ) + f (z 0 )h + α(h), gdzie lim h 0 A. Definicje. z = z z, z = z (cos θ + i sin θ) (argument z - każdy kąt θ spełniający tę równość; każde dwa argumenty z różnią się o całkowitą wielokrotność 2π). Ponadto dla z n z 0 Rez n Rez 0, Imz n Imz

Bardziej szczegółowo

Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =

Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) = Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,

Bardziej szczegółowo

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

Analiza I.2*, lato 2018

Analiza I.2*, lato 2018 Analiza I.2*, lato 218 Marcin Kotowski 14 czerwca 218 Zadanie 1. Niech x (, 1) ma rozwinięcie binarne.x 1 x 2.... Niech dla x, 1: oraz f() = f(1) =. Pokaż, że f: f(x) = lim sup n (a) przyjmuje wszystkie

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

Analiza matematyczna I. Pula jawnych zadań na kolokwia.

Analiza matematyczna I. Pula jawnych zadań na kolokwia. Analiza matematyczna I. Pula jawnych zadań na kolokwia. Wydział MIiM UW, 2/ 24 października 22 ostatnie poprawki: 9 czerwca 23 Szanowni Państwo, zgodnie z zapowiedzią, na każdym kolokwium w pierwszym semestrze

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki Spis treści Wstęp ii 1 Liczby zespolone 1 1.1 Definicja i działania, liczby sprzężone......................... 1 1.2 Moduł, argument, postać trygonometryczna..................... 2 1.3 Działania na liczbach

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 1 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 1 1 / 16 Literatura

Bardziej szczegółowo

Funkcje. Granica i ciągłość.

Funkcje. Granica i ciągłość. Ćwiczenia 10.1.01: zad. 344-380 Kolokwium nr 9, 11.1.01: materiał z zad. 1-380 Ćwiczenia 17.1.01: zad. 381-400 Kolokwium nr 10, 18.1.01: materiał z zad. 1-400 Konw. 10,17.1.01: zad. 401-44 Funkcje. Granica

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi. Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +

Bardziej szczegółowo

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1).

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1). Rozdział 8 Szeregi potęgowe Szeregiem potęgowym o środku w punkcie z 0 C i współczynnikach a n C nazywamy szereg a n z z 0 ) n, 8.1) gdzie z C. Z szeregami tego typu mieliśmy już do czynienia, omawiając

Bardziej szczegółowo

Liczby zespolone. Katarzyna Grabowska. Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki. Letnia Szkoła Fizyki, Płock 2008

Liczby zespolone. Katarzyna Grabowska. Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki. Letnia Szkoła Fizyki, Płock 2008 Liczby zespolone Katarzyna Grabowska Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki Letnia Szkoła Fizyki, Płock 2008 Katarzyna Grabowska (KMMF) Liczby zespolone LSF2008 1 /

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach Algebra liniowa z geometrią /4 Działania na zbiorach Zadanie Czy działanie : R R R określone wzorem (x x ) (y y ) := (x y x y x y + x y ) jest przemienne? Zadanie W dowolnym zbiorze X określamy działanie

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

Funkcja f jest ograniczona, jeśli jest ona ograniczona z

Funkcja f jest ograniczona, jeśli jest ona ograniczona z FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

KONKURS MATEMATYCZNY

KONKURS MATEMATYCZNY PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W CHEŁMIE INSTYTUT MATEMATYKI i INFORMATYKI 22-100 Chełm, ul. Pocztowa 54 tel./fax. (082) 562 11 24 KONKURS MATEMATYCZNY im. Samuela Chróścikowskiego 30 marzec 2017r. godz.

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo