Algebra z geometrią analityczną zadania z odpowiedziami

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algebra z geometrią analityczną zadania z odpowiedziami"

Transkrypt

1 Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5 IV Wielomiany i funkcje wymierne 7 V Macierze i wyznaczniki 8 VI Układy równań liniowych 11 VII Geometria analityczna w R 12 VIII Iloczyn skalarny i odległość w R n 14 IX Przestrzenie i przekształcenia liniowe 15 X Powtórzenie 17 1

2 XI Pierwsze kolokwium 20 Zestaw A 20 Zestaw B 20 Zestaw C 21 Zestaw D 21 Zestaw E 22 Zestaw F 22 Zestaw G 2 Zestaw H 2 XII Drugie kolokwium 2 Zestaw A 24 Zestaw B 24 Zestaw C 25 Zestaw D 25 Zestaw E 26 Zestaw F 26 Zestaw G 27 Zestaw H 27 XIII Egzamin 28 Zestaw A 28 Zestaw B 29 Zestaw C 0 2

3 Część I Wyrażenia algebraiczne, indukcja matematyczna 1. Uprość wyrażenie a b ( a ) (a) a 2 2ab + b 2 b 1, ( ) b a b (b) a 2 b 2 a + 1, (c) a4 + a b + a 2 b 2 a b ( ) b 2 a W rozwinięciu dwumianowym wyrażenia f(x) wyznacz współczynnik przy x m, jeśli ( (a) f(x) = x ) 10, m = 9, x (b) f(x) = k=0 ( x 4 1 x 2 ) 9, m = 24.. Zapisz w prostszej postaci liczbę n ( ) n (a) k, k k=0 n ( ) n (b) ( 2) k. k 4. Za pomocą indukcji matematycznej udowodnij, że dla wszystkich liczb naturalnych dodatnich n N + : (a) n 2 = (b) 4 n 1 n 2, n(n + 1)(2n + 1), 6 (c) liczba 7 n 4 n jest podzielna przez. 1. (a) 1 b, (b) 1 a, (c) a b.

4 2. (a) a 2 = ( 10 2 ) = 45, (b) a 2 = ( 9 2) = 6.. (a) 4 n, (b) ( 1) n. 4. Najpierw przez podstawienie sprawdź, że teza zachodzi dla n = 1; prawdziwe zatem jest twierdzenie T 1. Następnie z prawdziwości twierdzeń T 1, T 2,..., T n (może wystarczyć użycie tylko T n ) wywnioskuj prawdziwość twierdzenia T n+1, gdzie n N +. Część II Geometria analityczna w R 2 1. Wyznacz w mierze łukowej kąt pomiędzy wektorami u, v, jeśli ( (a) u = 1, ) (, v = 1, ), ( (b) u = ) (, 1, v = 1, ), ( ) ( (c) u = 2, 2, v = 1, ), ( (d) u = 2, ) ( ) 2, v =, 1. Wskazówka: dla dwóch ostatnich przykładów wyniki można otrzymać jako sumy lub różnice odpowiednich kątów. 2. Wyznacz kąt przy wierzchołku C w trójkącie o wierzchołkach A = (1, 1), B = (, 2 + ), C = (1 +, 2).. Oblicz długość wysokości opuszczonej z wierzchołka B w trójkącie o wierzchołkach A = (, 5), B = (0, 6) oraz C = (2, 2). 4. Wyznacz punkt przecięcia oraz { kąt, pod jakim przecinają { się proste, określone przez układy równań oraz x = 2 t, x = s, y = 5 + t y = 1 s, gdzie t, s R. 5. Wyznacz równanie okręgu przechodzącego przez punkty (4, 6), (5, 5) i ( 2, 2). 6. Nazwij i opisz równaniem zbiór tych punktów z płaszczyzny, których odległość od punktu A = (1, 2) jest dwa razy większa od odległości od punktu B = (4, 5). 7. Wyznacz równanie takiego okręgu o środku w punkcie S, którego jedną ze stycznych jest prosta przechodząca przez punkty A, B, jeśli 4

5 (a) S = (1, ), A = ( 1, 2), B = (2, 4), (b) S = ( 2, 1), A = (1, 2), B = (4, 1). 8. Napisz równania tych stycznych do okręgu o równaniu x 2 +2x+y 2 = 0, które przecinają się z prostą x y + 1 = 0 pod kątem π. 1. (a) π, 2. π 2. (b) π 6, (c) π, (d) 7 12 π Proste przecinają się pod kątem π 6 w punkcie (, 4). 5. (x 1) 2 + (y 2) 2 = okrąg (zwany okręgiem Apoloniusza), o równaniu (x 5) 2 + (y 6) 2 = (a) (x 1) 2 + (y + ) 2 = 192 1, (b) (x + 2) 2 + (y + 1) 2 = y = 2, y = 2, y = x , y = x Część III Liczby zespolone 1. Zapisz w postaci algebraicznej liczbę zespoloną (a) z = 1 + i 2 i, (b) z = 2 + i 4 + 5i. 2. Opisz oraz zaznacz na płaszczyźnie zbiór A liczb zespolonych z spełniających warunek (a) Re( 2iz + 4) 0, (b) Im(z i) = Im((2 i)z + i), (c) Re ( z 2) = [Im(iz)] 2 4, 5

6 (d) iz + 2 = iz 2i, (e) 2z = 4z 4.. Zapisz w postaci algebraicznej liczbę zespoloną (a) z = (1 + i) 20 (1 i) 40, (b) z = (c) z = (1 + i)40 ( i) 20, ( i) 24 (1 i) 14 (1 i) Opisz oraz zaznacz na płaszczyźnie zbiór A liczb zespolonych z spełniających warunek (a) 0 arg(1 + iz) π/2, (b) Im ( z 4) < Zapisz w postaci algebraicznej wszystkie pierwiastki trzeciego stopnia z liczby (a) z = 1, (b) z = i, (c) z = 2 + 2i, (d) z = 1 + i. 6. W zbiorze liczb zespolonych rozwiąż równanie (a) z 2 2z + 4 = 0, (b) z 4 = ( 1 + 2z) Wyznacz pole figury F = {z C : Im ( z ) 0 1 Im(z) < 0}. 1. (a) z = i, (b) z = i. 2. (a) półpłaszczyzna y 2, (b) prosta y = 1 x 2, (c) proste y = 2, y = 2, (d) prosta y = x, (e) okrąg o środku w punkcie ( 4, 0) i promieniu 2. 6

7 . (a) i, (b) i, (c) i. 4. (a) Zbiór A składa się z liczb zespolonych z, określonych przez warunki Re(z) 0 Im(z) 1 z i (przesunięta o wektor (0, 1) czwarta ćwiartka układu współrzędnych, z brzegiem i bez punktu (0, 1)), (b) arg(z) ( π 4, ) ( π 2 π 4, π) ( 5π 4, ) ( π 2 7π 4, 2π), co na płaszczyźnie przedstawia sumę wnętrz czterech kątów. 5. (a) w 0 = , w 1 = 1, w 2 = 1 2 2, (b) w 0 = i, w 1 = i, w 2 = i, (c) w 0 = 1 + i, w 1 = 1 ( ) 2 + i, w 2 = ( 1 ) 2 i, 2 (d) w 0 = Wskazówka: cos ( π (a) z { 1 + i, 1 i }, (b) z { 1, i, 1, i}. 2 2 i, w 1 = i, w 2 = 1 ) 1+cos(2 12 = 12) π 2 = i = , sin ( π 12) = 7.. Część IV Wielomiany i funkcje wymierne 1. Wyznacz iloraz i resztę z dzielenia wielomianu P (x) przez Q(x), jeśli (a) P (x) = x 5 x 4 + x + x + 7, Q(x) = x + x + 1, (b) P (x) = x 4 + 2x + x 2 + x + 1, Q(x) = x 2 + x Rozłóż na nierozkładalne czynniki rzeczywiste wielomian W (x) = x 4 + x x 2 4x 4.. Nie wykonując dzielenia, wyznacz resztę z dzielenia wielomianu W (x) = x 4 + x + x 2 + x + 1 przez x

8 4. Rozłóż na czynniki liniowe wielomian zespolony W (z) = z 2z 2 + 4z Rozłóż na sumę rzeczywistych ułamków prostych funkcję wymierną właściwą x 2 + (a) f(x) = x + 2x 2 + 5x + 4, x + 2 (b) f(x) = x + x 2 + 4x + 4, (c) f(x) = 2x + 4x 2 + 5x + 5 x 4 + x + x 2 + x Rozłóż na sumę wielomianu i rzeczywistych ułamków prostych funkcję wymierną f(x) = x4 5x + 5x 2 19x 1 x 5x x (a) I(x) = x 2 x + 2, R(x) = 5, (b) I(x) = x 2 + x, R(x) = x W (x) = (x + 2)(x 2) ( x 2 + x + 1 ).. R(x) = 2x W (z) = (z 2)(z + 2i)(z 2i). 5. (a) f(x) = 1 x 2 +x x+1, (b) f(x) = x x 2 +x x+2, (c) f(x) = 1 x x x f(x) = x + 1 x x Część V Macierze i wyznaczniki 1. Wyznacz macierz A wymiaru, której wyrazy określone są za pomocą wzoru a ij = i 2j. 2. Podaj przykład dwóch macierzy wymiaru 2 2 dowodzący, że mnożenie macierzy nie jest przemienne.. Rozwiąż równanie macierzowe A T =

9 4. Wyznacz iloczyn A = ( x y 1 ) a h g h b f x y, a następnie g f c 1 z jego pomocą, w notacji macierzowej zapisz równanie okręgu x 2 + y 2 + 4x + 6y 12 = 0. Zaznacz ten okrąg na płaszczyżnie. 5. Rozłóż na iloczyn cykli rozłącznych, a następnie transpozycji permutację ( ) (a) σ =, ( ) (b) σ = Określ parzystość i znak permutacji σ. W rozkładach zastosuj zapis cykliczny. 6. Za pomocą permutacyjnej definicji wyznacznika wyprowadź wzory na wyznaczniki macierzy stopnia 2 i (wzór Sarrusa). 7. Dwoma sposobami, za pomocą rozwinięcia Laplace a oraz przez sprowadzenie do wyznacznika macierzy trójkątnej, a dodatkowo w podpunkcie (a) ze wzoru, w podpunkcie (b) ze wzoru Sarrusa, oblicz wyznacznik (a) 1 2 5, (b) (c) , Dla jakich wartości parametru a R macierz ( ) a a (a) A =, 2 a a 1 1 (b) A = 1 1 a, 1 a 1 a (c) B = 1 a a 1 1 a 1 jest nieosobliwa? 9

10 9. Dwoma sposobami, za pomocą dopełnień algebraicznych oraz przez przekształcanie razem z macierzą jednostkową, wyznacz macierz odwrotną do macierzy ( ) 1 1 (a) A =, 1 4 (b) B = (c) C = A = ( ) np. 0 1 ( ) ( A = ( ). ), = ( ) ( A = ( ax 2 + 2hxy + by 2 + 2gx + 2fy + c ), ( x y 1 ) ) = ( ) x y = ( 0 ) ; równanie przedstawia okrąg o środku w punkcie ( 2, ) 1 i promieniu (a) Przykładowy zapis: σ = (1 2 4) ( 6) = (1 4) (1 2) ( 6), permutacja nieparzysta, znak sgn(σ) = 1, (b) przykładowy zapis: σ = (1 7 4) (2 5) = (1 4) (1 ) (1 7) (2 5), permutacja parzysta, znak sgn(σ) = Dla n = 2 są dwie permutacje, zatem dwa składniki w sumie. Permutacji zbioru trzyelementowego jest (a) 1, (b) 2, (c) 1. 10

11 8. (a) a R \ {0, 2}, (b) a R \ { 2, 1}, (c) a R \ {, 1}. 9. (a) A 1 = ( (b) B 1 = (c) C 1 = ), , Część VI Układy równań liniowych 1. Metodą eliminacji Gaussa rozwiąż układ równań { x + y = (a) x y = 5, (b) (c) (a) x + y + z = 0 x y + z = 0 x + y z = 2, x + y + z t = 4 x + y z + t = 4 x y + z + t = 2 x + y + z + t = 2. Dodatkowo, układ (a) rozwiąż za pomocą wzorów Cramera oraz metodą macierzy odwrotnej. 2. Rozwiąż układ równań (b) x y + z + t = 4 x y z + t = 0 x y z t = 8, x + y + z = 1 2x + y + 2z = 1 x + 2y + z =.. Dla jakich wartości parametru a R układ równań x + y + az = 1 x + ay + z = a ax + y + z = a 1 ma nieskończenie wiele rozwiązań? 11

12 1 dla x (, 0) 4. Niech sgn(a) = 0 dla x = 0 1 dla x (0, ) Wyznacz te wartości a, dla których układ równań x + 2y + z = 2 x + y + 2z = sgn(a) 1 2x + y + z = 2 2y + 2z = 0 nie ma rozwiązań. 1. (a) x = 1, y = 2, (b) x = 1, y = 0, z = 1, (c) x = 1, y = 1, z = 2, t = (a) y = 2, t = 4, z = x + 2, z dowolne, (b) układ sprzeczny (brak rozwiązań).. a = a (, 0]. oznacza znak liczby a R. Część VII Geometria analityczna w R 1. Dla jakich wartości parametru a R równoległościan o trzech kolejnych wierzchołkach podstawy A = ( 5, 2, 1), B = (2, 1, 2), C = (, a 2, ) i wierzchołku E = ( a 5, 4, 18) nad A, jest prostopadłościanem? 2. Dla jakich wartości parametru a R kąt pomiędzy wektorami u = (a, 16, 4) oraz v = (2a, 1, 4) jest prosty?. Za pomocą iloczynu wektorowego wyznacz te wartości parametru a R, dla których wektory u = (1, a 2, 1), v = (, 12, ) są równoległe. 4. Podaj przykład równania ogólnego płaszczyzny (a) przechodzącej przez punkty A = ( 1, 1, 1), B = (0, 1, 2), C = (, 0, 5), x = 1 + t + s (b) o równaniu parametrycznym y = 2 + t s gdzie t, s R. z = 1 + t + s, 5. Podaj przykład równania parametrycznego płaszczyzny o równaniu ogólnym x + y + 2z + 1 = 0. 12

13 6. Podaj{ przykład równania parametrycznego prostej o równaniu krawędziowym x + y + z 1 = 0 x + 2y + z 2 = Podaj przykład równania krawędziowego prostej o równaniu parametrycznym y = 2 t gdzie t R. x = 1 + t z = 4 + t, 8. Podaj przykład równania parametrycznego prostej prostopadłej do prostych o równaniach y = 1 y = 2 + s gdzie t, s R. w punkcie x = t x = s z = 1 + t, z = 1 s, ich przecięcia. 9. Wyznacz kąt pomiędzy płaszczyznami π 1, π 2, jeśli π 1 jest określona równaniem parametrycznym y = t s gdzie t, s R, a π x = 1 + t + s 2 równaniem z = t + s, ogólnym y z 1 = 0. { x + y + z + 2 = Wyznacz kąt pomiędzy prostą l : x y + z + = 0 i płaszczyzną π : x + y + 5 = Wyznacz pole (a) równoległoboku o kolejnych wierzchołkach A = (2, 2, 4), B = (0, 2, 2), C = (2, 1, 2), (b) równoległoboku o środku w punkcie O = (2, 1, 2) i końcach jednego z boków A = (2, 2, 4), B = (0, 2, 2), (c) trójkąta o wierzchołkach A = ( 2, 2, 4), B = (0, 2, 2), C = ( 2, 1, 2). 12. Wyznacz objętość (a) czworościanu o wierzchołkach A = (1, 1, 1), B = (2, 2, 2), C = (1, 2, 2) i D = ( 1, 1, 1), (b) równoległościanu rozpietego na wektorach u = (1, 1, 1), v = (1, 1, 2) oraz w = ( 1, 1, ) (1, 2, ). 1. a =. 2. a = 4 lub a = 4.. a = 2 lub a = (a) x z + 2 = 0, 1

14 5. (b) x z = 0. x = 1 + t + 2s y = t z = s. x = 1 + t 6. y = 1 2t z = 1 + t. { x + y 4 = 0 7. y + z 6 = 0. x = 1 + t 8. y = 1 z = 2 t. 9. π. 10. π (a) 2 6, (b) 4 5, (c) (a) 1, (b) 15. Część VIII Iloczyn skalarny i odległość w R n 1. Wyznacz odległość pomiędzy punktami P, Q R n, jeśli (a) n = 4, P = (1, 2,, 2), Q = (2, 1, 4, ), (b) n = 8, P = (5,, 2, 7, 9, 11, 1, 2), Q = (, 4,, 5, 9, 9, 2, 1). 2. Wyznacz kosinus kąta pomiędzy wektorami u, v R n, jeśli (a) n = 5, u = (1, 0, 2, 2, 0), v = ( 1, 1, 1, 1, 0), (b) n = 7, u = (1, 2, 0,, 1, 0, 1), v = 2 (1, 1, 1, 1, 1, 2, 5) ( 1, 1, 0, 0, 0,, 10). 14

15 1. (a) 2, (b) (a) 1 6, (b) Część IX Przestrzenie i przekształcenia liniowe 1. Zbadaj liniową niezależność układu złożonego z wektorów (a) (1, 2), (, 4) R 2, (b) (1, 2, ), (, 4, 5) R, (c) (1, 2, ), (, 4, 5), (4, 6, 8) R, (d) (1, 0, 2, 2, 0), ( 1, 1, 1, 1, 0), (1, 2, 0, 5, 7) R 5, (e) (1, 2, 0,, 1, 0, 1), (, 1, 2, 2, 2,, 0), (1, 1, 1, 1, 1, 2, 5), ( 1, 1, 0, 0, 0,, 10) R Zbadaj, czy układy niezależne w poprzednim zadaniu tworzą bazy danej przestrzeni, a jeśli nie, to uzupełnij do bazy.. Załóżmy, że przekształcenie liniowe f : R n R m jest określone wzorem (a) f(x, y, z, t) = (x y, x + y + z + 2t), (b) f(x, y, z) = (x y, x + y + z, x + y, x z), gdzie x, y, z, t R. Wyznacz n, m N +, a następnie zapisz w standardowych bazach macierz A f przekształcenia f. 4. Wyznacz jądro, obraz i rząd przekształceń f z poprzedniego zadania. 5. Załóżmy, że macierz A f przekształcenia liniowego f : R n R m ma postać ( ) (a) A f =, (b) A f =

16 Wyznacz n, m N +, a następnie zapisz przekształcenie f za pomocą wzoru. 6. Wyznacz, o ile istnieją, macierze złożeń f g oraz f g w bazach standardowych, jeżeli f : R R 5 oraz g : R 4 R są przekształceniami linowymi, danymi wzorami: f(x, y, z) = (x, x+y, x+y +z, x+z, y +z), g(s, t, u, v) = (u + v, t + u + v, s + t + u + v). 7. Wyznacz wartości własne i odpowiadające im wektory własne przekształcenia liniowego f : R 2 R 2, jeśli (a) f(x, y) = ( y, 6x 5y), (b) f(x, y) = ( x + y, 2x). 1. (a) liniowo niezależny, (b) liniowo niezależny, (c) liniowo zależny, (d) liniowo niezależny, (e) liniowo zależny. 2. Bazą jest tylko układ z pierwszego podpunktu. ( ) (a) n = 4, m = 2, A f =, (b) n =, m = 4, A f = (a) Ker(f) = {(x, x, 2t 2x, t) : x, t R} = {x(1, 1, 2, 0) + t(0, 0, 2, 1) : x, t R}(jedna z możliwości zapisu), Im(f) = R 2, Rz(f) = 2, (b) Ker(f) = {(0, 0, 0)}, Im(f) = {x(1, 1, 1, 1) + y( 1, 1, 1, 0) + z(0, 1, 0, 1) : x, y, z R}, Rz(f) =. 5. (a) n = 5, m = 2, f(x, y, z, t, u) = (5x y z, 8x 4y + z + t + u), (b) n =, m = 4, f(x, y, z) = (x y, x + y + 2z, x + 4y + 6z, x + 5y + 7z). 6. Złożenie g f nie istnieje. Macierz złożenia f g ma postać M f g = M f M g = =

17 7. (a) Wartości własnej a 1 = 2 odpowiadają wektory własne postaci v 1 = α(1, 2), wartości własnej a 2 = odpowiadają wektory własne postaci v 2 = α(1, ), gdzie α R \ {0}, (b) wartości własnej a 1 = 1 odpowiadają wektory własne postaci v 1 = α(1, 2), wartości własnej a 2 = 2 odpowiadają wektory własne postaci v 2 = α(1, 1) dla α R \ {0}. Część X Powtórzenie 1. Oblicz długość wysokości opuszczonej z wierzchołka A w trójkącie o wierzchołkach A = ( 1, 5), B = (2, 4) oraz C = (1, 1). 2. Wyznacz w mierze łukowej kąt przy wierzchołku ( C w trójkącie o wierzchołkach A = (2, 1), B = (, 2) oraz C = 2, 1 + ).. Wyznacz punkt przecięcia oraz kąt, pod jakim przecinają { się proste na x = t, oraz y = t płaszczyźnie, określone równaniami parametrycznymi { x =, gdzie t, s R y = 1 + s, 4. Wyznacz macierz odwrotną do macierzy A = Zbadaj, dla jakich rzeczywistych parametrów a R istnieje macierz odwrotna A 1 do macierzy A = 1 2 1, 1 1 a a następnie wyznacz ogólny wzór na A Dla jakich wartości parametru a R układ równań 2x + (1 + a)y + (1 + a)z = 1 + a x + ay + z = a ma nieskończenie wiele rozwiązań? ax + y + z = a 1 7. W zależności od rzeczywistego parametru a R, rozwiąż układ równań 2x + y z = 1 x ay + 2z = 2x ay + z = Wyznacz równanie ogólne płaszczyzny o równaniu parametrycznym x = 1 + t + s y = t + s gdzie t, s R. z = 1 t + 2s, 17

18 x = 1 + t x = s 9. Wyznacz punkt przecięcia prostych y = 1 oraz y = s z = 1 + t z = 5 s, a następnie napisz równanie ogólne płaszczyzny zawierającej te proste. 10. Wyznacz odległość punktu P = (1, 2, 1) od płaszczyzny π, zadanej w x = 1 + s + t postaci parametrycznej y = 2 + s z = 1 + s t. 11. Opisz oraz zaznacz na płaszczyżnie zbiór liczb zespolonych z spełniających warunek (a) 0 arg(2 iz) π 2, (b) Im ( z 4) > Zapisz w postaci algebraicznej liczbę zespoloną (a) z = ( + i) 12 (1 i) 24, (b) z = (1 i ) 700 ( 1 + i) Zapisz w postaci algebraicznej wszystkie pierwiastki trzeciego stopnia z liczby z = Rozłóż na nierozkładalne czynniki rzeczywiste wielomian W (x) = x 4 + 2x x Rozłóż na sumę rzeczywistych ułamków prostych funkcję wymierną f(x) = x2 + 5x + 1 x + x 2 + x Wyznacz jądro, obraz i rząd przekształcenia f : R 4 R 2, określonego wzorem f(x, y, z, t) = (z y, x + y + z + 2t), gdzie x, y, z, t R. 17. Wyznacz, o ile istnieją, macierze złożeń f g oraz g f w bazach standardowych, jeżeli f : R R 2 oraz g : R 2 R 5 są przekształceniami linowymi, danymi wzorami: f(x, y, z) = (x 2y, x + y + z), g(u, v) = (u + v, v, u 2v, u, u) π P 0 = (, 1 ), ϕ = 2 π. 18

19 4. A 1 = Macierz odwrotna istnieje dla a R \ {1}, 2a 1 1 wtedy A 1 a 1 1 a 1 = a = a 1 0 a 1 7. Dla a R\{1} układ ma dokładnie jedno rozwiązanie x = 1, y = 0, z = 1, x = 2 z, a dla a = 1 nieskończenie wiele rozwiązań postaci y = 1 + z, z R. 8. x + y 2z + 1 = Punktem wspólnym prostych jest P = (2, 1, 4) (dla t = i s = 1), a płaszczyzna ma równanie x + z 2 = Równaniem ogólnym płaszczyzny jest x + 2y z 4 = 0, a odległość 2 d(p, π) =. 11. (a) Jest to zbiór {z C : Rez 0 Imz 2 z 2i}, ( (b) arg(z) 0, π ) ( π 4 2, π ) ( π, 5π ) ( π 4 4 4, 7π ), co na płaszczyźnie jest sumą wnętrz czterech 4 kątów. 12. (a) z = 1, 1. (b) z = i i 2, 2, 2 i W (x) = (x 1)(x + 2)(x 2 + x + 1). 15. f(x) = 2x x 2 + x x Ker(f) = {(z, z, 2t 2z, t) : z, t R} = {z(1, 1, 2, 0) + t(0, 0, 2, 1) : z, t R}(jedna z możliwości zapisu), Im(f) = R 2, Rz(f) = Złożenie f g nie istnieje. Macierz złożenia g f mapostać ( ) M g f = M g M f = =

20 Część XI Pierwsze kolokwium Zestaw A 1. Oblicz długość wysokości opuszczonej z wierzchołka A w trójkącie o wierzchołkach A = ( 2, 2), B = (2, 4) oraz C = (7, 1). 2. Zapisz w postaci algebraicznej liczbę zespoloną z = ( + i) 25 (1 i) 50.. Rozłóż na sumę rzeczywistych ułamków prostych funkcję wymierną f(x) = 2x2 + 5 x + 4x h = z = i.. f(x) = 1 x 1 + Zestaw B x x 2 +x Wyznacz w mierze łukowej kąt przy wierzchołku ( C w trójkącie o wierzchołkach A = (2, 6), B = (, 7) oraz C = 2, 6 + ). 2. Zapisz w postaci algebraicznej liczbę zespoloną z = (1 i ) 50 ( 1 + i) Rozłóż na sumę rzeczywistych ułamków prostych funkcję wymierną f(x) = x2 + 6x + x + x 2 + x π z = i.. f(x) = 1 x+2 + 2x+1 x 2 +x+1. 20

21 Zestaw C 1. { Wyznacz kąt pomiędzy prostymi { na płaszczyźnie, o równaniach x = t, y = x = s, t + 2 oraz y = gdzie t, s R. s 7, 2. Zapisz w postaci algebraicznej liczbę zespoloną z = ( i) 25 ( 1 + i) 50.. Rozłóż na sumę rzeczywistych ułamków prostych funkcję wymierną f(x) = 2x2 2x + 2 x 2x 2 + x π. 2. z = i.. f(x) = 1 x 1 + Zestaw D x x 2 x Wyznacz kąt pomiędzy prostą y = 1 x 5, a prostą o równaniu { x = t, y = gdzie t R. t + 11, 2. Zapisz w postaci algebraicznej liczbę zespoloną z = ( 1 + i ) 50 (1 i) Rozłóż na sumę rzeczywistych ułamków prostych funkcję wymierną f(x) = 2x2 + x + 1 x + x 2 x π z = i.. f(x) = 1 x+2 + x x 2 x+1. 21

22 Zestaw E 1. W rozwinięciu dwumianowym funkcji f(x) = wyznacz współczynnik przy 1 x 5. ( x x ) Zapisz w postaci algebraicznej liczbę zespoloną z = ( + i) 21 (1 i) 42.. Rozłóż na sumę rzeczywistych ułamków prostych funkcję wymierną x 2 + x + 10 f(x) = x + 2x 2 + 6x z = 1.. f(x) = 2 x+1 + x x 2 +x+5. Zestaw F 1. W rozwinięciu dwumianowym funkcji f(x) = wyznacz współczynnik przy 1 x 18. ( x 5 1 ) 0 x 2. Zapisz w postaci algebraicznej liczbę zespoloną z = (1 i ) 15 ( 1 + i) 0.. Rozłóż na sumę rzeczywistych ułamków prostych funkcję wymierną x 2 x 4 f(x) = x 2x 2 + 5x z = i.. f(x) = 1 x 1 + 2x x 2 x+4. 22

23 Zestaw G 1. W rozwinięciu dwumianowym funkcji f(x) = wyznacz współczynnik przy x 27. ( x + 1 x ) 0 2. Zapisz w postaci algebraicznej liczbę zespoloną z = (1 i) 21 (1 + i) 42.. Rozłóż na sumę rzeczywistych ułamków prostych funkcję wymierną f(x) = 2x2 + 7 x + 6x z = i.. f(x) = 1 x+1 + x x 2 x+7. Zestaw H 1. W rozwinięciu dwumianowym funkcji f(x) = wyznacz współczynnik przy x 17. ( ) x x 2. Zapisz w postaci algebraicznej liczbę zespoloną z = (1 + i) 15 (1 i) 0.. Rozłóż na sumę rzeczywistych ułamków prostych funkcję wymierną f(x) = 2x2 + 5 x + 4x z = i.. f(x) = 1 x 1 + x x 2 +x+5. 2

24 Część XII Drugie kolokwium Zestaw A 1. Wyznacz macierz odwrotną do macierzy A = Wyznacz równanie ogólne płaszczyzny o równaniu parametrycznym x = 5 + t + 2s y = 2 + t gdzie t, s R. z = t + s,. Dla jakich wartości parametru a R układ równań x + (1 + 2a)y + (2 + a)z = 1 + 2a x + ay + z = a nie ma rozwiązań? ax + y + z = a 1 1. A 1 = x + y 2z 11 = 0.. a = 1. Zestaw B 1. Wyznacz macierz odwrotną do macierzy A = Wyznacz równanie ogólne płaszczyzny o równaniu parametrycznym x = 5 + t + 2s y = 2 gdzie t, s R. z = t + s,. Dla jakich wartości parametru a R układ równań x + (1 + 2a)y + (2 + a)z = 1 + 2a x + ay + z = a ma nieskończenie wiele rozwiązań? ax + y + z = a 1 24

25 1. B 1 = 2. y = 2.. a = 2. Zestaw C Wyznacz równanie ogólne płaszczyzny o równaniu parametrycznym x = 1 t + 2s y = 2 t gdzie t, s R. z = t + s, 2. Dla jakich wartości parametru a R układ równań x + (1 + 2a)y + (2 + a)z = 1 + 2a x + ay + z = a nie ma rozwiązań? (1 + a)x + (1 + a)y + 2z = 1. Wyznacz, o ile istnieją, macierze złożeń f g oraz g f w bazach standardowych, jeżeli f : R R 2 oraz g : R 2 R 5 są przekształceniami linowymi, danymi wzorami: f(x, y, z) = (x 2y, x y z), g(u, v) = (u v, v, u 2v, u, u). 1. x y 2z + 5 = 0, 2. a = 1,. Istnieje wyłącznie złożenie g f, o macierzy A g f = Zestaw D Wyznacz równanie ogólne płaszczyzny o równaniu parametrycznym x = 1 + t + 2s y = 2 + s gdzie t, s R. z = t + s, 25

26 2. Dla jakich wartości parametru a R układ równań 4x + (1 + a)y + ( + a)z = 1 + a x + ay + z = a ma nieskończenie wiele rozwiązań? ax + y + z = a 1. Wyznacz, o ile istnieją, macierze złożeń f g oraz g f w bazach standardowych, jeżeli f : R R 4 oraz g : R 2 R są przekształceniami linowymi, danymi wzorami: f(x, y, z) = (x 2y, x+y+z, x, y), g(u, v) = (u+v, v, u). 1. x y + z + 5 = 0, 2. a = 2,. Istnieje wyłącznie złożenie f g, o macierzy A f g = Zestaw E Oblicz wysokość czworościanu, o wierzchołku nad podstawą D = (1, 2, 2) i podstawie trójkątnej, wyznczonej przez punkty A = (1, 1, 1), B = (2, 2, 2), C = (1, 2, ). 2. Rozwiąż układ równań x y + z + t = 4 2x 2y 2z = 8 x y z t = 8.. Zbadaj liniową niezależność układu wektorów u = (1, 1, 1, 1), v = (2, 1, 1, 1), w = (1, 2, 1, 1), m = (1, 1, 2, 1) R Równanie płaszyzny podstawy to x 2y + z = 0, wysokość h = x = z 2, y = 2, t = 4, z R.. Układ liniowo niezależny. Zestaw F 1. Wyznacz odległość punktu P = (1, 1, 1) od płaszczyzny x = 1 + t + 2s y = 1 + s gdzie t, s R. z = t + s, 26

27 x y z + t = 4 2. Rozwiąż układ równań x y z + t = 0 x y z t = 8.. Wyznacz rząd macierzy A = Równanie ogólne płaszyzny to x y + z + 1 = 0, odległość d = x = z 2, y = 2, t = 4, z R.. Rząd wynosi 2. Zestaw G 1. Oblicz wysokość czworościanu, o wierzchołku nad podstawą D = (2, 1, 1) i podstawie trójkątnej, wyznczonej przez punkty A = (1, 1, 1), B = (1, 2, 2), C = ( 1,, 1). 2. Rozwiąż układ równań x y z + t = 4 2x 2y 2z = 8 x y z t = 8.. Zbadaj liniową niezależność układu wektorów u = (1, 1, 1, 1), v = (5, 1, 1, 1), w = (1, 2, 1, 1), p = (1, 1, 2, 1) R Równanie ogólne płaszyzny podstawy to x + y z 1 = 0, wysokość h = x = z 2, y = 2, t = 4, z R.. Układ liniowo niezależny. Zestaw H 1. Wyznacz odległość punktu P = (1, 1, 1) od płaszczyzny x = 1 + t + 2s y = 1 + 5s gdzie t, s R. z = t + s, 27

28 2x 4y 2z + 4t = 4 2. Rozwiąż układ równań x y z + t = 0 x y z t = 8.. Wyznacz rząd macierzy A = Równanie ogólne płaszyzny to 5x y + 5z 2 = 0, odległość d = x = z 2, y = 2, t = 4, z R.. Rząd wynosi 2. Część XIII Egzamin Zestaw A 1. Opisz oraz zaznacz na płaszczyźnie zbiór A liczb zespolonych z, spełniających warunek Im ( z ) < 2 z. 2. Wyznacz macierz odwrotną do macierzy A = Sprawdź otrzymany wynik, wykonując mnożenie macierzy.. Oblicz wysokość (tzn. długość odcinka) w czworościanie o wierzchołkach A = (1, 1, 1), B = (2,, 4), C = (2, 5, 8), D = ( 1, 1, 1), opuszczoną z wierzchołka D. 4. Rozwiąż układ równań 5x 7y 5z + t = 20 2x 2y 2z = 8 x y z t = Wyznacz, o ile istnieją, macierze złożeń f g oraz g f w bazach standardowych, jeżeli f : R 4 R oraz g : R R 6 są przekształceniami linowymi, danymi wzorami: f(x, y, z, t) = (x 2y, x y z, x + t), g(u, v, w) = (u v, v, u 2v, u, u, u + v + w). 28

29 1. Otrzymujemy Im ( z ) = z sin(ϕ) < 2 z, stąd z 0 oraz sin(ϕ) < 2. Otrzymujemy ϕ ( 4 π, 1 π) ( 2 π, 7 π) ( 8 1 ( π, π), zatem ϕ 4 9 π, 1 9 π) ( 2 9 π, 7 9 π) ( 8 1 9π, 9 π), co przedstawia sumę wnętrz trzech kątów A 1 = Równanie x 2y + z = 0 opisuje płaszczyznę podstawy, wysokość to odległość wierzchołka D od tej płaszczyzny i wynosi h = x = z 2, y = 2, z R, t = 4 nieskończenie wiele rozwiązań. 5. Istnieje tylko złożenie g f, jego macierzą w bazach standardowych jest M g f = Zestaw B 1. Opisz oraz zaznacz na płaszczyźnie zbiór A liczb zespolonych z, spełniających warunek Re ( z ) 1 2 z. 2. Wyznacz macierz odwrotną do macierzy A = Sprawdź otrzymany wynik, wykonując mnożenie macierzy.. Wyznacz odległość punktu P = ( 2, 1, 1) od płaszczyzny x = 1 + t + 2s y = 1 + 2s gdzie t, s R. z = 2 2t + s, 4x 6y 4z + 6t = 4 4. Rozwiąż układ równań x y z + t = 0 x y z t = Wyznacz, o ile istnieją, macierze złożeń f g oraz g f w bazach standardowych, jeżeli f : R 4 R 5 oraz g : R R 4 są przekształceniami linowymi, danymi wzorami: f(x, y, z, t) = (x 2y, x + y + z, x, y, t z), g(u, v, w) = (u + v, v, u, u w). 29

30 1. Otrzymujemy Re ( z ) = z cos(ϕ) 1 2 z, stąd z = 0 lub cos(ϕ) 2. W tym drugim przypadku, ϕ [ 1 π, 1 π] [ 5 π, 7 π] [ 11 1 π, π], zatem ϕ [ 1 9 π, 1 9 π] [ 5 9 π, 7 9 π] [ π, 9 π]. Zbiór A jest sumą trzech kątów wraz z brzegami. 2. A 1 = Równanie 4x 5y +2z = 0 jest równaniem ogólnym danej płaszczyzny, odległość d = x = z 2, y = 2, z R, t = 4 nieskończenie wiele rozwiązań. 5. Istnieje tylko złożenie f g, jego macierzą w bazach standardowych jest M f g = Zestaw C 1. Zaznacz na płaszczyźnie zbiór A liczb zespolonych z, spełniających warunek 0 arg(2 iz) π 2. x = 1 + t + s 2. Wyznacz równanie ogólne płaszczyzny µ o równaniu y = t + s z = 1 t + 2s, a następnie w mierze łukowej kąt pomiędzy płaszczyzną µ i prostą l o x = 2t równaniu y = 2 6t gdzie t, s R. z = 1 + 4t,. Rozwiąż równanie macierzowe X 1 = ( ) gdzie X 1 oznacza macierz odwrotną do macierzy X. 4. Określ, dla jakich wartości parametru a R układ równań 2x + (1 + a)y + (1 + a)z = 1 + a x + ay + z = a ax + y + z = a 1 ma nieskończenie wiele rozwiązań? , 0

31 5. Wyznacz, o ile istnieją, macierze złożeń f g oraz g f w bazach standardowych, jeżeli f : R R 2 oraz g : R 2 R 4 są przekształceniami linowymi, danymi wzorami: f(x, y, z) = (x + y, y + z), g(u, v) = (u, v, u + v, u v). 1. Jest to (przesunięta) ćwiartka płaszczyzny bez wierzchołka, A = {z C : Re(z) 0 Im(z) 2} \ { 2i}. 2. x + y 2z + 1 = 0, α = π 2. ( 1 ). X = a = Istnieje tylko złożenie g f, jego macierzą w bazach standardowych jest M g f =

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez

Bardziej szczegółowo

Algebra z geometrią Lista 1 - Liczby zespolone

Algebra z geometrią Lista 1 - Liczby zespolone Algebra z geometrią Lista 1 - Liczby zespolone 1. Oblicz a) (1 + i)(2 i); b) (3 + 2i) 2 ; c) (2 + i)(2 i); d) (3 i)/(1 + i); e) (1 + i 3)/(2 + i 3); f) (2 + i) 3 ; g) ( 3 i) 3 ; h) ( 2 + i 3) 2 2. Korzystając

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Lista zadań dla kursów mających ćwiczenia co dwa tygodnie. Zadania po symbolu potrójne karo omawiane są na ćwiczeniach rzadko, ale warto też poświęcić im nieco uwagi. Przy

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

ALGEBRA I GEOMETRIA ANALITYCZNA

ALGEBRA I GEOMETRIA ANALITYCZNA ALGEBRA I GEOMETRIA ANALITYCZNA Opracowanie Marian Gewert Zbigniew Skoczylas ALGEBRA I GEOMETRIA ANALITYCZNA Kolokwia i egzaminy Wydanie piętnaste zmienione GiS Oficyna Wydawnicza GiS Wrocław 2014 Marian

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011 1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi. Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +

Bardziej szczegółowo

1 Działania na macierzach

1 Działania na macierzach 1 Działania na macierzach Dodawanie macierzy Dodawać można tylko macierze o tych samych wymiarach i robi to się następująco: [ 1 3 4 5 6 ] + [ 0 3 1 3 7 8 ] = [1 + 0 + 3 3 + 1 4 3 5 + 7 6 + 8 ] = [1 5

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Elementy geometrii analitycznej w R 3

Elementy geometrii analitycznej w R 3 Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki Spis treści Wstęp ii 1 Liczby zespolone 1 1.1 Definicja i działania, liczby sprzężone......................... 1 1.2 Moduł, argument, postać trygonometryczna..................... 2 1.3 Działania na liczbach

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

1 Geometria analityczna

1 Geometria analityczna 1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Odległośc w układzie współrzędnych. Środek odcinka.

Odległośc w układzie współrzędnych. Środek odcinka. GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA. Poziom podstawowy

GEOMETRIA ANALITYCZNA. Poziom podstawowy GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4.

Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4. Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Granice pochodne funkcji i ich zastosowania 0 4 Liczby zespolone 6 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Wskazówki do zadań testowych. Matura 2016

Wskazówki do zadań testowych. Matura 2016 Wskazówki do zadań testowych. Matura 2016 Zadanie 1 la każdej dodatniej liczby a iloraz jest równy.. C.. Korzystamy ze wzoru Zadanie 2 Liczba jest równa.. 2 C.. 3 Zadanie 3 Liczby a i c są dodatnie. Liczba

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) 2+1 Liczba

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przestrzenie liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się w podręczniku

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych. Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 KWIETNIA 204 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 2 2 3 2 3 jest równa

Bardziej szczegółowo

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

Skrypt 23. Geometria analityczna. Opracowanie L7

Skrypt 23. Geometria analityczna. Opracowanie L7 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

ALGEBRA LINIOWA 2. Lista zadań 2003/2004. Opracowanie : dr Teresa Jurlewicz, dr Zbigniew Skoczylas

ALGEBRA LINIOWA 2. Lista zadań 2003/2004. Opracowanie : dr Teresa Jurlewicz, dr Zbigniew Skoczylas ALGEBRA LINIOWA 2 Lista zadań 23/24 Opracowanie : dr Teresa Jurlewicz dr Zbigniew Skoczylas Lista pierwsza Zadanie Uzasadnić z definicji że zbiór wszystkich rzeczywistych macierzy trójkątnych górnych stopnia

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo