Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI"

Transkrypt

1 Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma: I stopień*, stacjonarna / niestacjonarna* Rodzaj przedmiotu: obowiązkowy / wybieralny / ogólnouczelniany * Kod przedmiotu MAP1073 Grupa kursów TAK / NIE* Liczba godzin zajęć zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego nakładu pracy studenta (CNPS) Forma zaliczenia Wykład Ćwiczenia Laboratorium Projekt Seminarium Zaliczenie na ocenę Zaliczenie na ocenę Dla grupy kursów zaznaczyć kurs końcowy (X) Liczba punktów ECTS 1 w tym liczba punktów odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS odpowiadająca zajęciom wymagającym bezpośredniego kontaktu (BK) ,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zna rachunek różniczkowy funkcji jednej i wielu zmiennych.. Zna i umie stosować całkę nieoznaczoną i oznaczoną funkcji jednej zmiennej. 3. Rozumie podstawowe pojęcia dotyczące szeregu liczbowego i potęgowego oraz umie badać zbieżność szeregów. 4. Potrafi posługiwać się w obliczeniach liczbami zespolonymi. 5. Zna podstawowe pojęcia algebry liniowej. CELE PRZEDMIOTU C1 Opanowanie umiejętności rozwiązywania podstawowych typów równań różniczkowych zwyczajnych rzędu pierwszego i wyższych. C. Poznanie podstawowych metod rozwiązywania układów równań różniczkowych liniowych oraz elementów teorii stabilności. C3. Opanowanie umiejętności stosowania znanych praw fizyki do układania równań różniczkowych będących modelami matematycznymi dla rozmaitych zagadnień nauki i techniki. C4. Zdobycie podstawowej wiedzy dotyczącej funkcji zespolonych, w szczególności poznanie własności najważniejszych funkcji elementarnych oraz pojęcia funkcji holomorficznej. 1

2 C5. Poznanie podstawowych własności i metod obliczania całek krzywoliniowych zespolonych. C6. Poznanie podstawowych własności przekształcenia Laplace'a i opanowanie umiejętności jego stosowania do rozwiązywania równań różniczkowych liniowych o stałych współczynnikach oraz układów takich równań. C7. Zdobycie podstawowej wiedzy o szeregach zespolonych liczbowych i potęgowych C8. Opanowanie podstawowej wiedzy dotyczącej punktów osobliwych i residuów oraz opanowanie umiejętności stosowania residuów do obliczania całek i znajdywania oryginału transformaty Laplace'a. *niepotrzebne skreślić PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Z zakresu wiedzy student: PEK_W01 zna podstawowe typy równań różniczkowych zwyczajnych i metody ich rozwiązywania PEK_W0 ma podstawową wiedzę na temat układów równań różniczkowych zwyczajnych, metod rozwiązywania układów równań liniowych oraz badania punktów równowagi PEK_W03 zna własności najważniejszych funkcji zmiennej zespolonej oraz pojęcie funkcji holomorficznej PEK_W04 zna własności całki krzywoliniowej zespolonej i sposoby jej obliczania PEK_W05 ma podstawową wiedzę o zespolonych szeregach liczbowych i potęgowych PEK_W06 ma podstawową wiedzę o residuach i ich zastosowaniach PEK_W07 zna podstawowe własności przekształcenia Laplace'a i rozumie ideę rachunku operatorowego Z zakresu umiejętności student: PEK_U01 potrafi rozwiązywać podstawowe typy równań różniczkowych zwyczajnych rzędu pierwszego i wyższych PEK_U0 potrafi rozwiązywać układy równań różniczkowych liniowych o stałych współczynnikach oraz badać stabilność punktów równowagi układów autonomicznych PEK_U03 umie układać równania różniczkowe na podstawie praw fizyki oraz rozwiązywać zagadnienia praktyczne i techniczne PEK_U04 potrafi wykonywać obliczenia z zastosowaniem funkcji zespolonych i obliczać całki zespolone PEK_U05 potrafi rozwinąć funkcję zespoloną w szereg potęgowy i posłużyć się nim w obliczeniach PEK_U06 potrafi wyznaczać residua i umie je stosować PEK_U07 umie stosować rachunek operatorowy do rozwiązywania równań różniczkowych liniowych o stałych współczynnikach Z zakresu kompetencji społecznych student: PEK_K01 potrafi wyszukiwać i korzystać z literatury zalecanej do kursu oraz samodzielnie zdobywać wiedzę PEK_K0 rozumie konieczność systematycznej i samodzielnej pracy nad opanowaniem materiału kursu Wy1 TREŚCI PROGRAMOWE Forma zajęć - wykłady Równanie różniczkowe zwyczajne rzędu pierwszego. Przykłady i pojęcia wstępne. Interpretacja geometryczna równania. Równania o Liczba godzin

3 Wy Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy1 Wy13 Wy14 Wy15 zmiennych rozdzielonych. Równania jednorodne. Równanie różniczkowe zwyczajne liniowe pierwszego rzędu. Równanie Bernoulliego. Przykłady zagadnień prowadzących do równań różniczkowych zwyczajnych rzędu pierwszego. Równanie różniczkowe zwyczajne n-tego rzędu. Pojęcia wstępne. Równanie liniowe n-tego rzędu. Obniżanie rzędu równania. Równanie różniczkowe zwyczajne liniowe n-tego rzędu niejednorodne. Metoda uzmienniania stałych. Równanie liniowe n- tego rzędu o stałych współczynnikach. Metoda współczynników nieoznaczonych. Przykłady zagadnień prowadzących do równań różniczkowych liniowych drugiego rzędu. Układ równań różniczkowych zwyczajnych. Pojęcia wstępne. Układ jednorodny równań liniowych. Układ równań liniowych o stałych współczynnikach (jednokrotne wartości własne). Metoda uzmienniania stałych dla niejednorodnego układu równań liniowych. Elementy teorii stabilności. Informacja o metodzie linearyzacji. Funkcje zmiennej zespolonej: dziedzina, część rzeczywista i urojona. Funkcje elementarne: wielomian, funkcja wymierna, funkcje trygonometryczne, funkcja wykładnicza, funkcja logarytmiczna. Podstawowe własności tych funkcji. Płaszczyzna zespolona domknięta. Odwzorowania zbiorów na płaszczyźnie zespolonej za pomocą funkcji zespolonych. Pochodna funkcji zmiennej zespolonej. Równania Cauchy\'ego-Riemanna. Warunek konieczny i warunek wystarczający istnienia pochodnej zespolonej. Pochodne funkcji elementarnych. Pojęcie funkcji holomorficznej. Krzywa na płaszczyźnie zespolonej. Łuk zwykły, łuk gładki, krzywa Jordana. Równania ważniejszych krzywych. Całka funkcji zespolonej zmiennej rzeczywistej. Całka krzywoliniowa funkcji zmiennej zespolonej. Twierdzenie o funkcji pierwotnej. Twierdzenie całkowe Cauchy\'ego i jego uogólnienia. Wzór całkowy Cauchy\'ego i jego uogólnienia. Zastosowanie do obliczania całek. Przekształcenie Laplace\'a i przekształcenie odwrotne: definicje, obszar zbieżności całki Laplace\'a. Przykłady obliczania transformat Laplace\'a prostych funkcji. Własności przekształcenia Laplace\'a. Holomorficzność transformaty. Idea rachunku operatorowego. Obliczanie transformaty odwrotnej metodą rozkładu na ułamki proste. Przykłady zastosowania przekształcenia Laplace\'a. Transmitancja. Splot funkcji. Twierdzenie Borela. Szeregi o wyrazach zespolonych. Szeregi potęgowe. Szereg Taylora. Twierdzenie o rozwijalności funkcji holomorficznej w szereg potęgowy. Punkty zerowe funkcji holomorficznej. Residuum funkcji. Twierdzenie całkowe o residuach. Suma godzin 30 3

4 Forma zajęć - ćwiczenia Liczba godzin Ćw1 Rozwiązywanie podstawowych typów równań różniczkowych 3 zwyczajnych rzędu pierwszego oraz zagadnień początkowych. Rozwiązywanie zagadnień prowadzących do równań różniczkowych zwyczajnych rzędu pierwszego i nabywanie umiejętności układania takich równań na podstawie praw fizyki. Ćw Rozwiązywanie równań liniowych jednorodnych wyższych rzędów o 3 stałych współczynnikach. Stosowanie metody obniżania rzędu. Rozwiązywanie równań liniowych niejednorodnych metodą uzmienniania stałych oraz współczynników nieoznaczonych. Rozwiązywanie zagadnień prowadzących do równań różniczkowych rzędu drugiego. Ćw3 Rozwiązywanie układów równań liniowych metodą podstawienia. Rozwiązywanie układów równań liniowych o stałych współczynnikach metodą Eulera. Rozwiązywanie układów liniowych niejednorodnych metodą uzmienniania stałych. Ćw4 Obliczenia z zastosowaniem funkcji zespolonych. Stosowanie równań Cauchy'ego-Riemanna. Obliczanie całek krzywoliniowych zespolonych metodą zamiany na całkę zmiennej rzeczywistej oraz z zastosowaniem wzoru Cauchy'ego. Ćw5 Wyznaczanie transformaty Laplace'a funkcji oraz znajdywanie oryginałów. Wyznaczanie transmitancji operatorowej. Rozwiązywanie równań różniczkowych liniowych o stałych współczynnikach oraz układów takich równań metodą operatorową. Ćw6 Obliczanie residuów w punktach osobliwych funkcji. Obliczanie 1 całek zespolonych po konturach oraz całek rzeczywistych niewłaściwych metodą residuów. Ćw7 Kolokwium. Suma godzin 15 STOSOWANE NARZĘDZIA DYDAKTYCZNE 1. Wykład metoda tradycyjna. Ćwiczenia problemowe i rachunkowe metoda tradycyjna 3. Konsultacje 4. Praca własna studenta przygotowanie do ćwiczeń. OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW KSZTAŁCENIA Oceny (F formująca (w trakcie semestru), P podsumowująca (na koniec semestru) P-Ćw P-Wy Numer efektu kształcenia PEK_U01-PEK_U07, PEK_K01,PEK_K0 PEK_W01-PEK_W07, PEK_K0 Sposób oceny osiągnięcia efektu kształcenia Odpowiedzi ustne, kolokwia Kolokwium zaliczeniowe 4

5 LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA LITERATURA PODSTAWOWA: [1] M. Gewert, Z. Skoczylas, Równania różniczkowe zwyczajne, Teoria, przykłady, zadania, Oficyna Wydawnicza GiS, Wrocław 007. [] J. Długosz, Funkcje zespolone, Teoria, przykłady, zadania, Oficyna Wydawnicza GiS, Wrocław, 005. [3] E. Kącki, L. Siewierski, Wybrane działy matematyki wyższej z ćwiczeniami, PWN, Warszawa LITERATURA UZUPEŁNIAJĄCA: [1] F. Bierski, Funkcje zespolone, Wydawnictwa AGH, Kraków [] M. Tenenbaum, H. Pollard, Ordinary differential equations, Dover Publications, New York [3] W. Żakowski, W. Leksiński, Matematyka, Cz. IV, WNT, Warszawa 00. OPIEKUN PRZEDMIOTU (IMIĘ, NAZWISKO, ADRES ) Dr Jolanta Długosz Komisja programowa Instytutu Matematyki i Informatyki 5

6 MACIERZ POWIĄZANIA EFEKTÓW KSZTAŁCENIA DLA PRZEDMIOTU RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE MAP1073 Z EFEKTAMI KSZTAŁCENIA NA KIERUNKU ***** I SPECJALNOŚCI.. Przedmiotowy efekt kształcenia Odniesienie przedmiotowego efektu do efektów kształcenia zdefiniowanych dla kierunku studiów i specjalności (o ile dotyczy) Cele przedmiotu** Treści programowe** Numer narzędzia dydaktycznego** PEK_W01 (wiedza) C1,C3 Wy1-Wy5 1,3,4 PEK_W0 C,C3 Wy6,Wy7 1,3,4 PEK_W03 C4 Wy8,Wy9 1,3,4 PEK_W04 C5 Wy10,Wy11 1,3,4 PEK_W05 C7 Wy14 1,3,4 PEK_W06 C8 Wy15 1,3,4 PEK_W07 C6 Wy1,Wy13 1,3,4 PEK_U01 (umiejętności) C1,C3 Ćw1,Ćw,3,4 PEK_U0 C,C3 Ćw3,3,4 PEK_U03 C3 Ćw1-Ćw3,3,4 PEK_U04 C4,C5 Ćw4,3,4 PEK_U05 C7 Wy14 3,4 PEK_U06 C8 Ćw6,3,4 PEK_U07 C6 Ćw5,3,4 PEK_K01- C1-C8 Wy1-Wy15, 1-4 PEK_K0 Ćw1-Ćw7 (kompetencje) ** - z tabeli powyżej

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU Zał. nr 4 do ZW Nazwa w języku polskim: FUNKCJE ZESPOLONE Nazwa w języku angielskim: Complex functions Kierunek studiów (jeśli dotyczy): Automatyka i Robotyka Specjalność

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Wykład Ćwiczeni a 15 30

Wykład Ćwiczeni a 15 30 Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA AiR Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim Analiza matematyczna Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Inżynieria zarządzania

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim WSTĘP DO TEORII RÓWNAŃ RÓŻNICZKOWYCH Nazwa w języku angielskim INTRODUCTION TO DIFFERENTIAL EQUATIONS THEORY

Bardziej szczegółowo

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA PRZEDMIOTU CELE PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

1. Algebra 2. Analiza Matematyczna. Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

1. Algebra 2. Analiza Matematyczna. Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim FUNKCJE ANALITYCZNE Nazwa w języku angielskim Analytic Functions Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 Nazwa w języku polskim: Analiza matematyczna.1 Nazwa w języku angielskim: Mathematical analysis.1 Kierunek

Bardziej szczegółowo

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ Geoinżynierii, Górnictwa i Geologii KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do analizy i algebry Nazwa w języku angielskim Introduction to analysis and algebra Kierunek studiów

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim PODSTAWY TEORII INFORMACJI Nazwa w języku angielskim Introduction to Information Theory Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: PROBABILISTYKA NIEPRZEMIENNA Nazwa w języku angielskim: NONCOMMUTATIVE PROBABILITY Kierunek studiów (jeśli dotyczy): MATEMATYKA

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek

Bardziej szczegółowo

Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU

Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ELEMENTY TEORII GIER Nazwa w języku angielskim ELEMENTS OF GAME THEORY Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): MATEMATYKA

Bardziej szczegółowo

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę* WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę* WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim Urządzenia techniki komputerowej Nazwa w języku angielskim Computer technique devices Kierunek studiów

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA STOSOWANA II 2. Kod przedmiotu: Ma2 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Zastosowanie informatyki

Bardziej szczegółowo

AiRZ-0531 Analiza matematyczna Mathematical analysis

AiRZ-0531 Analiza matematyczna Mathematical analysis KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA KURSU/GRUPY KURSÓW

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA KURSU/GRUPY KURSÓW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA KURSU/GRUPY KURSÓW Nazwa w języku polskim: UBEZPIECZENIA ŻYCIOWE Nazwa w języku angielskim: LIFE INSURANCE Kierunek studiów (jeśli dotyczy): MATEMATYKA Specjalność

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 30 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim Równania różniczkowe cząstkowe i ich zastosowania. Nazwa w języku angielskim Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

1,2 1,2. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak

1,2 1,2. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak Zał. nr 4 do ZW 33/01 WYDZIAŁ Podstawowych Problemów Techniki KARTA PRZEDMIOTU Nazwa w języku polskim Podstawy Chemii Ogólnej Nazwa w języku angielskim General Chemistry Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

1,5 1,5. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Analiza matematyczna M1 2. Wstęp do logiki i teorii mnogości

1,5 1,5. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Analiza matematyczna M1 2. Wstęp do logiki i teorii mnogości WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim TOPOLOGIA Nazwa w języku angielskim TOPOLOGY Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli dotyczy): Matematyka

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: STATYSTYKA W MODELACH NIEZAWODNOŚCI I ANALIZIE PRZEŻYCIA Nazwa w języku angielskim: STATISTICS IN RELIABILITY MODELS AND

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI KARTA KURSU/GRUPY KURSÓW UBEZPIECZENIA ŻYCIOWE

WYDZIAŁ MATEMATYKI KARTA KURSU/GRUPY KURSÓW UBEZPIECZENIA ŻYCIOWE WYDZIAŁ MATEMATYKI KARTA KURSU/GRUPY KURSÓW UBEZPIECZENIA ŻYCIOWE Kierunek studiów (jeśli dotyczy): MATEMATYKA Specjalność (jeśli dotyczy): MATEMATYKA FINANSOWA I UBEZPIECZENIOWA Stopień studiów i forma:

Bardziej szczegółowo

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Zaliczenie

Wykład Ćwiczenia Laboratorium Projekt Seminarium Zaliczenie Zał. nr 4 do ZW 33/0 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI POLITECHNIKI WROCŁAWSKIEJ / FIZYKA TECHNICZNA KARTA PRZEDMIOTU Nazwa w języku polskim Obwody Elektryczne Nazwa w języku angielskim Electric

Bardziej szczegółowo

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Calculus Obowiązuje

Bardziej szczegółowo

Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim TOPOLOGIA OGÓLNA Nazwa w języku angielskim GENERAL TOPOLOGY Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim BADANIA OPERACYJNE Nazwa w języku angielskim Operational research Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Analiza i modelowanie systemów. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek stopień tryb język status przedmiotu AiR I Stacjonarne/Niestacjonarne

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PODSTAWY GEOMETRII RÓŻNICZKOWEJ Nazwa w języku angielskim INTRODUCTION TO DIFFERENTIAL GEOMETRY Kierunek

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Matematyka I Mathematics I Kierunek: biotechnologia Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy dla wszystkich I stopnia specjalności Rodzaj zajęć: Liczba godzin/tydzień: wykład,

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 30 Zał. nr do ZW 33/01 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim Podstawy fizyki kwantowej Nazwa w języku angielskim Fundamental of Quantum Physics Kierunek studiów (jeśli

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

KIERUNEK STUDIÓW: ELEKTROTECHNIKA 1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Wybrane aspekty ubezpieczeń i reasekuracji Nazwa w języku angielskim: Selected Aspects Of Insurance And Reinsurance Kierunek

Bardziej szczegółowo

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika analityczna Nazwa w języku angielskim: Analytical Mechanics Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Specjalność

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim Analiza sygnałów Nazwa w języku angielskim Signal analysis Kierunek studiów (jeśli dotyczy): Matematyka stosowana

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Mechatronika Linear algebra and analytical geometry Kod przedmiotu: A01 Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Poziom

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17 2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYCZNA ANALIZA DANYCH Nazwa w języku angielskim STATISTICAL DATA ANALYSIS Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1 Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Podstawowy obowiązkowy Rodzaj zajęć: wykład, ćwiczenia Inżynieria Materiałowa Poziom studiów: studia I stopnia MATEMATYKA MATHEMATICS Forma studiów: studia

Bardziej szczegółowo

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę* 0,5 0,5

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę* 0,5 0,5 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim..lasery Nazwa w języku angielskim.lasers Kierunek studiów (jeśli dotyczy): Optyka Specjalność (jeśli

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim Techniki świetlne Nazwa w języku angielskim Light techniques Kierunek studiów (jeśli dotyczy):..optyka

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni Zał. nr do ZW 33/01 WYDZIAŁ PODSTAWOWYCH ROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim TEORIA ESTYMACJI Nazwa w języku angielskim ESTIMATION THEORY Kierunek studiów (jeśli dotyczy): MATEMATYKA

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Teoria potencjału procesów Markowa Nazwa w języku angielskim: Potential theory of Markov processes Kierunek studiów (jeśli

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr 4 do ZW /01 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : AUTOMATYKA I ROBOTYKA Nazwa w języku angielskim: AUTOMATION AND ROBOTICS Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Inżynieria biomedyczna Linear algebra and analytical geometry forma studiów: studia stacjonarne Kod przedmiotu: IB_mp_ Rodzaj przedmiotu:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA DANYCH ANKIETOWYCH Nazwa w języku angielskim: Categorical Data Analysis Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Specjalność

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1 WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli

Bardziej szczegółowo

KARTA PRZEDMIOTU. Egzamin / zaliczenie. Egzamin / zaliczenie. ocenę*

KARTA PRZEDMIOTU. Egzamin / zaliczenie. Egzamin / zaliczenie. ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim: Programowanie w języku C Nazwa w języku angielskim C language programming Kierunek studiów (jeśli

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę* WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Nie ma wymagań wstępnych

Egzamin / zaliczenie na ocenę* WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Nie ma wymagań wstępnych Zał. nr 4 do ZW 33/202 WYDZIAŁ Chemiczny / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Ekonomiczno - prawne aspekty przedsiębiorczości Nazwa w języku angielskim The economic and legal aspects of entrepreneurship

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Przedmiot: Matematyka I Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Kod przedmiotu: E05_1_D Typ przedmiotu/modułu: obowiązkowy X obieralny Rok: pierwszy Semestr: pierwszy

Bardziej szczegółowo

INP002018W, INP002018L

INP002018W, INP002018L WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim TECHNOLOGIE SIECIOWE Nazwa w języku angielskim NETWORK TECHNOLOGIES Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus)

Opis poszczególnych przedmiotów (Sylabus) Opis poszczególnych przedmiotów (Sylabus) Nazwa Przedmiotu: Analiza matematyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: podstawowy Rok studiów, semestr: rok pierwszy, semestr I

Bardziej szczegółowo

KARTA PRZEDMIOTU 2 1,5

KARTA PRZEDMIOTU 2 1,5 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW /2012 KARTA PRZEDMIOTU Nazwa w języku polskim Fizyka F1 Nazwa w języku angielskim Physics F1 Kierunek studiów (jeśli dotyczy): Optyka Specjalność (jeśli

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA FUNKCJONALNA Nazwa w języku angielskim FUNCTIONAL ANALYSIS Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS Zał. nr 4 do ZW WYDZIAŁ ** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Wykład Ćwiczenia Laborat orium. Zaliczenie na ocenę

Wykład Ćwiczenia Laborat orium. Zaliczenie na ocenę Wydział Elektroniki PWr KARTA PRZEDMIOTU Nazwa w języku polskim: Robotyka 1 Nazwa w języku angielskim: Robotics 1 Kierunek studiów: Automatyka i Robotyka Stopień studiów i forma: I stopień, stacjonarna

Bardziej szczegółowo

KARTA PRZEDMIOTU. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak

KARTA PRZEDMIOTU. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW KARTA PRZEDMIOTU Nazwa w języku polskim: Metody statystyczne w badaniu wzroku Nazwa w języku angielskim: Statistical methods in eye research Kierunek

Bardziej szczegółowo

Zał. nr 4 do ZW. Wykład Ćwiczenia Laboratorium Projekt Seminarium

Zał. nr 4 do ZW. Wykład Ćwiczenia Laboratorium Projekt Seminarium WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: OPTYKA NIELINIOWA Nazwa w języku angielskim: Nonlinear optics Kierunek studiów (jeśli dotyczy): Fizyka Techniczna Specjalność

Bardziej szczegółowo

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę* WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę* WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW /0 KARTA PRZEDMIOTU Nazwa w języku polskim Elementy biologii układu wzrokowego Nazwa w języku angielskim Biology of visual system selected issues

Bardziej szczegółowo

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 Z-LOG-476I Analiza matematyczna I Calculus I A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium

Wykład Ćwiczenia Laboratorium Projekt Seminarium WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim: Kontroling Nazwa w języku angielskim: Controlling Kierunek studiów: Zarządzanie Specjalność: - Stopień studiów i forma: II stopień,

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę* 0,5 0,5

Egzamin / zaliczenie na ocenę* 0,5 0,5 Zał. nr 4 do ZW 33/01 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim: Technologia przetwarzania danych Nazwa w języku angielskim: Data processing technology Kierunek studiów

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów

Bardziej szczegółowo

Opis przedmiotu: Matematyka I

Opis przedmiotu: Matematyka I 24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność

Bardziej szczegółowo

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo