RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:

Wielkość: px
Rozpocząć pokaz od strony:

Download "RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:"

Transkrypt

1 RUCH DRGAJĄCY Ruch haroniczny Ruch, tóry owtarza się w regularnych odstęach czasu, nazyway ruche oresowy (eriodyczny). Szczególny rzyadie ruchu oresowego jest ruch haroniczny: zależność rzeieszczenia od czasu wyrażona jest rzez funcję sinus lub osinus. Co więcej, wyazuje się, że dowolny ruch oresowy ożna wyrazić jao odowiednią suę (szereg) ruchów haronicznych. Ułade, tóry wyonuje ruch haroniczny jest oscylator haroniczny. Przyłady oscylatora haronicznego: Mechaniczne: asa na srężynie, wahadło. Eletryczny: obwód LC (tutaj wychylenie jest n. naięcie, rąd lub ładune eletryczny). Jaie cechy usi ieć uład echaniczny (n. asa na srężynie), aby był oscylatore haroniczny? Są one nastęujące: a) Drgające ciało osiada unt równowagi trwałej, b) Siła działająca na ciało wynosi: F= - x (x jest wychylenie z ołożenia równowagi, jest stałą srężystości srężyny), c) Zasada liniowości: wychylenie ciała wsute działania wielu sił równe jest suie wychyleń jaie wywołują oszczególne siły, d) Częstość ruchu nie zależy od alitudy drgań. x x=0 Naiszy równanie ruchu oscylatora haronicznego, tóry jest asa na srężynie. Z II zasady dynaii: F = a d x x = A zate równanie różniczowe ruchu oscylatora a ostać: d x = x ()

2 Rozwiązanie Równ. () jest: x(t) = x0 cos( ωt + ϕ) () gdzie x 0 jest alitudą drgań, ω jest tzw. częstością ołową, zaś ϕ jest fazą oczątową (alitudę x 0 ja i ąt ϕ dobieray z warunu oczątowego, ówiącego jaie było wychylenie x w chwili t=0). Podstawiając rozwiązanie () do Równ. (), łatwo srawdzić, że istotnie jest to dobre rozwiązanie. Co więcej, doonując tego srawdzenia, znajdujey nastęujący związe iędzy stałyi: (3) ω = Ja już wsoniano, ω jest częstością ołową drgań (rzy czy ω=πν gdzie ν jest częstotliwością drgań). Definiuje się taże ores drgań, T; jest to czas wyonania jednego ełnego drgania. Oczywiście: π T = = ν ω Wyorzystując Równ. (3), ores drgań oscylatora haronicznego wynosi: (4) T = π Na oniec zauważy, że uwzględniając relację (3), równanie ruchu oscylatora (Równ. ()) ożna rzedstawić w charaterystycznej forie: d x (5) = ω x Związe ruchu haronicznego z ruche o oregu Znaczenie częstości ołowej stanie się dla nas jaśniejsze, gdy uświadoiy sobie związe ruchu haronicznego z jednostajny ruche obrotowy ciała o oręgu. y r α(t) x W czasie t ciało zatoczyło ąt α: α(t)=ωt + ϕ. Rzuty wetora wodzącego (wsazującego atualne ołożenie ciała) na oś x i y wynoszą:

3 x = r cosα = r cos( ωt + ϕ) y = rsin α = rsin( ωt + ϕ) Widziy zate, że rzut ciała rążącego o oręgu na dowolną oś leżącą w jego łaszczyźnie, jest ruche haroniczny. W równaniu owyższy ω oznacza rędość ątową ruch ciała o oręgu, odczas gdy w Równ. (3) lub (5) ten sa sybol oznaczał częstość ołową. Ta więc częstość ołowa w ruchu haroniczny oże być utożsaiona z rędością ątową odowiadającego u ruchu o oręgu. Przyonijy raz jeszcze odstawową cechę ruchu haronicznego: ores drgań (lub jego częstotliwość) nie zależą od alitudy ruchu. Wahadło Wahadło fizyczne Rozatrzy od razu ogólny rzyade wahadła czyli tzw. wahadło fizyczne. Wahadło fizyczne to dowolne ciało ogące się obracać woół jaiejś ustalonej osi, nie rzechodzącej jedna rzez środe asy. 0 l 0' g Na owyższy rysunu wahadło wyonuje drgania woół osi 0; jest ona odległa o l od środa asy (0 ). Załóży, że w danej chwili wahadło wychylone jest z ołożenia równowagi o ąt θ. Na wahadło działa oent siły, ochodzący od siły ciężości o wartości g, zaczeionej w środu asy 0. Zgodnie z definicją oentu siły, oent ten wynosi: θ Wartość oentu siły wynosi: M = l g M = glsin θ Zna inus w owyższy równaniu ochodzi stąd, że oent siły i ąt θ ają zawsze rzeciwny zna (onao, zauważy, że funcja sinus jest funcją niearzystą, więc rzy zianie znau ąta θ zienia się taże zna oentu siły). Pisanie równania ruchu rozoczynay zawsze od II zasady dynaii (w ty wyadu oczywiście dla ruchu obrotowego): d θ M = I 3

4 Po odstawieniu wyrażenia na oent siły i o odzieleniu obustronnie rzez I: d θ gl (6) = sin θ I Równanie owyższe jest równanie ruchu wahadła fizycznego dla dowolnie dużych wychyleń (tzn. dla dowolnych ątów θ). Rozwiązanie tego równania jest ruch oresowy. Nie jest on jedna ruche haroniczny, gdyż równanie owyższe nie jest równanie ruchu oscylatora haronicznego (atrz Równ. 5). Równanie 6 ulega znaczneu uroszczeniu, jeśli założyy, że wahadło wyonuje drgania o ałych wychyleniach; inaczej ówiąc rozważay ałe ąty θ (n. nie więsze niż 0 o ). Wtedy sin θ ożey zastąić say ąte θ (wyrażony oczywiście w ierze łuowej). Ta uroszczone równanie: d θ gl (7) = θ I a identyczną ostać ateatyczną ja Równ. 5, będące równanie ruchu oscylatora haronicznego. Z orównania z Równ. 5 znajdujey od razu częstość ołową drgań wahadła fizycznego: gl (8) ω = I Ores drgań T = π wahadła fizycznego wynosi: ω T = π I gl Przez orównanie z rozwiązanie równania ruchu oscylatora haronicznego (Równ. ) znajdujey od razu rozwiązanie dla wahadła fizycznego: θ ( t) = θ0 cos( ωt + ϕ) (0) Ruch wahadła, będący ruche oresowy, osłużył jao liczni stałych orcji czasu w zegarach i zegarach echanicznych. Szczególnie w tych ierwszych, najczęściej rzeszlonych (obecnych jeszcze w doach nietórych z Państwa) zauważyć ożna łatwo ruch wahadła, odierzającego olejne seundy... Wahadło ateatyczne Szczególny rzyadie wahadła fizycznego jest tzw. wahadło ateatyczne. Jego dobry rzybliżenie jest ała ula stalowa zawieszona na leiej i długiej nitce. (Chodzi o rostu o to, aby wahadło to ożna było rzedstawić jao asę untową na nieważiej nici). (9) 4

5 0 l θ g W tai szczególny rzyadu od razu ożey wyliczyć oent bezwładności I: I=l ; odstawiając to wyrażenie do Równ. 9, otrzyujey ores wahań wahadła ateatycznego: l () T = π g Przyonijy raz jeszcze, że uzysane rozwiązania równania ruchu ja i wyrażenia na częstość ołową i ores wahań są słuszne rzy założeniu ałych wychyleń ątowych (najwyżej 0-0 stoni wtedy wynii są orawne w granicach błędu nie rzeraczającego - %). Przy więszych wychyleniach, trzeba rozwiązywać ogólniejsze równanie ruchu (Równ. 6); wtedy nie ay już jedna do czynienia z oscylatore haroniczny, lecz z ciałe wyonujący ruch oresowy. Odowiednie rozwiązania są już jedna bardziej soliowane. Energia w ruchu haroniczny Zastanówy się, jaą energię osiada drgający oscylator haroniczny. Dla uroszczenia, rozważy znów oscylator w ostaci asy na srężynie. 0' -x 0 x 0 x x=0 Energia otencjalna rozciągniętej srężyny (E ) jest racą, jaą ona wyona wracając do ołożenia równowagi. Z zasady zachowania energii wynia, że energię otencjalną srężyny ożey taże wyliczyć jao racę W jej rozciągnięcia o długość x. Obliczenie to zrobiliśy już orzednio, a zate: E = W = x Jeśli srężyna naciągnięta jest do wychylenia asyalnego x 0, to rędość ja i energia inetyczna drgającej asy są zerowe; w tai oencie cała energia echaniczna oscylatora jest jego energią otencjalną (tóra jest wtedy asyalna): 5

6 E = (ax) Z drugiej strony, gdy oscylator rzechodzi rzez unt równowagi (x=0), jego rędość jest asyalna (v ax ) i cała jego energia echaniczna a ostać energii inetycznej (E = ½ v ), tóra jest wtedy asyalna: E = (ax) W ażdy inny, dowolny oencie, energia echaniczna oscylatora rozłada się na energię otencjalna i inetyczną, rzy czy z zasady zachowania energii wynia, że energia całowita E: E = E x v 0 ax + E = v + x Energię całowita ożey też wyrazić jao: E = E = E () (ax) (ax) Oczywiście roorcja energii inetycznej do otencjalnej jest inna w ażdej chwili czasu. Ponieważ: E = E + E oraz energia całowita, E, a wartość stałą, usi być sełniony nastęująca zaleznosc dla wartości średnich: E =< E > + < E > ( a) Sybol <...> oznacza średniowanie o czasie. Wyliczy teraz średnią (względe czasu) energię inetyczną i otencjalną. Energia otencjalna: (3) < E >= < x >= x0 < (cosωt) > W równaniu ty odstawiliśy (Równ.) wyrażenie na wychylenie oscylatora (rzyjując ϕ=0): x(t)=x 0 cosωt. Podobnie wyliczyy średnią energię inetyczną: (3 a) < E >= < v >= x0 < (sin ωt) > Podstawiliśy tutaj wyrażenie na rędość oscylatora v(t)= - x 0 ωsinωt, tórą uzysujey ze zróżniczowania relacji na wychylenie x(t). Średnie o czasie, tóre wystęują w Równ. 3 i 3a: <(sinωt) > oraz <(cosωt) > są sobie oczywiście równe, gdyż funcje sinus i osinus ają tai sa ształt, tylo są rzesunięte w fazie o A zate: Ponao, na odstawie Równ. a ay: < E >=< E > (4) 6

7 < E >=< E >= E A zate średnie energie inetyczna i otencjalna są sobie równe i ażda z nich równa jest ołowie energii całowitej. (4 a) Ruch drgający tyu oscylatora haronicznego nie jest wyłącznie cechą uładu asa + srężyna. Również atoy w rysztale zachowują się w dobry rzybliżeniu ja oscylatory haroniczne. Porównajy wyres energii otencjalnej od wychylenia atou oddziaływującego z inny atoe (o rawej) z zależnością jaą iałby on będąc lasyczny oscylatore haroniczny (o lewej). Widziy, że w odległości r 0 ato jest w stanie równowagi, tóry odowiada iniu energii otencjalnej. W zaresie ałych wychyleń rzebieg energii otencjalnej (otencjału) dla atou jest odobny ja dla asy na srężynie. Używając odowiedniej zależności na rzebieg otencjału atou (znanej w fizyce atoowej) uzysuje się częstotliwość drgań atoów: ν 0 4 Hz. Atoy drgające z tą częstotliwością wytwarzają roieniowanie odczerwone (fragent wida eletroagnetycznego). Dodajy jeszcze, że jeśli wytworzyy w jaiś uncie ośroda aterialnego drgania jego cząste, to na ogół drgania te rzenoszą się w innych ierunach; w ten sosób owstaje fala. Zagadnienia ruchu falowego oówione będą w jedny z nastęnych rozdziałów. Ruch haroniczny tłuiony Do tej ory nie wzięliśy od uwagę siły tarcia, tóra rawie zawsze towarzyszy wszeli rucho (wyjątową sytuacją, w tórej nie a siły tarcia jest zjawiso nadciełości, wystęujące w cieły helu w obliżu teeratury 0 K). Siła tarcia: F t v, zaś dx v =, zate: 7

8 dx (5) F t = b (zna inus uzysławia, że zwrot siły tarcia jest rzeciwny do zwrotu rędości). Na odstawie drugiej zasady dynaii (F = a): dx d x = - x - b (6) Po uorządowaniu otrzyujey: d x dx + b + x = 0 (7) Jest to równanie różniczowe ruchu haronicznego tłuionego. Jeśli b jest ałe (b/ < ω), to rozwiązanie a ostać: lub: gdzie: x = Ae bt / cos( ω t + δ) (8) βt x = Ae cos( ω t + δ) (9) ω = πν = b - ( ) = ω -β oraz : ω jest częstotliwością w ruchu tłuiony, zaś β jest wsółczynniie tłuienia. Zauważy, że drgania tłuione są drganiai o częstotliwości ω (niejszej niż ω dla ruchu nietłuionego) oraz, że ich alituda szybo aleje. O szybości zniejszania się alitudy drgań decyduje wsółczynni tłuienia β. β = b (0) Na rysunu owyższy rzedstawiono wychylenie x(t) dla ruchu haronicznego tłuionego (dla δ=0) ; oazano też wyres esonencjalnej funcji, tóra tłui alitudę ruchu 8

9 haronicznego. Podane rozwiązanie na ruch haroniczny tłuiony jest orawne, jeśli tarcie nie jest zbyt wielie. Zauważy bowie, że z Równ. 0 ( ω ' = ω β ω =0 i rozwiązanie równania ruchu (Równ. 9) rzyjuje ostać: ) wynia iż jeśli β=ω, to wtedy: x = A'e Jest to rzyade tzw. tłuienia rytycznego; nie ay wtedy żadnych oscylacji, jedynie esonencjalne zaninięcie wychylenia oczątowego. βt () Widziy zate, że aby rozwiązanie iało charater oisany Rów. 9, wsółczynni tłuienia usi sełniać warune: β<ω. Drgania wyuszone i rezonans Dotychczas oawialiśy jedynie naturalne drgania ciała, tzn. drgania, tóre ojawiają się wtedy, gdy oscylator zostaje wychylony z ołożenia równowagi i uszczony swobodnie. Przyonijy, że dla drgań bez tarcia: ω = πν = Jeśli zaś wystęuje tarcie (i siły tarcia są niewielie), to: ω = πν = b - ( Załóży teraz, że wystęuje jeszcze wyuszenie zewnętrzne w ostaci siły oresowej: F = F cosω t. Jej wartość ulsuje z częstotliwością ν (lub z częstością ołową: ω =πν ). Równanie ruchu a ostać analogiczną ja w rzyadu owyższy (Równ. 6), jedynie dodajey jeszcze siłę wyuszającą: x dx d = - x - b + Fcosω t () lub: ) 9

10 x dx d + b + x = Fcosω t (3) Można wyazać, że rozwiązanie tego równania jest: F x = sin( ω t - δ) (4) G bω'' gdzie: G = ( ω ω' ' ) + b ω' ' oraz δ = arccos. G Widziy zate, że w obecności siły wyuszającej, częstotliwość drgań jaa ustala się w uładzie, równa jest częstotliwości siły wyuszającej. Bardzo interesujący wniose wynia z analizy alitudy drgań uładu (F /G). Osiąga ona asiu, gdy G osiąga iniu. Wartość G zależy od wzajenej relacji ω i ω. Szczególny rzyade a iejsce wtedy, gdy częstotliwość siły wyuszającej równa jest częstotliwości własnej uładu. Sytuacja taa to: REZONANS: ω = ω Jeśli w sytuacji rezonansu nie wystęowałoby tarcie (b=0), to G=0 i ja łatwo zauważyć alituda drgań dążyłaby do niesończoności!!!. W rzeczywistości zawsze wystęuje tarcie, a więc odczas rezonansu (ω = ω) alituda drgań osiąga sończone asiu. Sytuacje taie znay z własnych obserwacji: jeśli chcey rozhuśtać huśtawę czy ładę nad struienie, to odświadoie wytwarzay iulsy siły o częstotliwości własnej uładu (tórą szybo wyczuway). Nieożądany efete rezonansu oże być ęnięcie części aszyny, zerwanie ostu lub innej onstrucji; wywołać go ogą wibracje silnia lub nawet orywy wiatru. Rezonans jest zjawisie ogólny, nie dotyczy tylo zjawis echanicznych. Z rezonanse ay do czynienia n. w obwodach eletrycznych czy też w reacjach jądrowych. Rysune oniższy oazuje ja zależy alituda drgań uładu (A=F /G) od stosunu częstotliwości siły wyuszającej do częstotliwości własnej. 0

11

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne,

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne, sg M 6-1 - Teat: Prawo Hooe a. Oscylacje haroniczne. Zagadnienia: prawa dynaii Newtona, siła sprężysta, prawo Hooe a, oscylacje haroniczne, ores oscylacji. Koncepcja: Sprężyna obciążana różnyi asai wydłuża

Bardziej szczegółowo

MGR 2. 2. Ruch drgający.

MGR 2. 2. Ruch drgający. MGR. Ruch drgający. Ruch uładów drgających (sprężyny, guy, brzeszczou, ip.). Badanie ruchu ciała zawieszonego na sprężynie. Wahadło aeayczne. Wahadło fizyczne. Rezonans echaniczny. Ćw. 1. Wyznaczanie oresu

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

7. Drgania i fale. Drgania

7. Drgania i fale. Drgania 7 Drgania i fale Drgania Ruche drgający okresowy nazyway taki ruch w który układ po upływie pewnego czasu nazywanego okrese drgania wraca do stanu wyjściowego Drganie haroniczne proste W ujęciu geoetryczny

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla

Bardziej szczegółowo

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii:

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami 8 Liczba 9 jest równa A. B. C. D. 9 5 C Przykładowe zadania z matematyki na oziomie odstawowym wraz z rozwiązaniami Zadanie. (0-) Liczba log jest równa A. log + log 0 B. log 6 + log C. log 6 log D. log

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naleję MFA-P1_1P-08 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 10 inut MAJ ROK 008 Instrucja

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

Piezoelektryki. Piezoelektryczność. Trochę historii. Zjawisko piroelektryczne. Zjawiska: Ferroelektryczne Piroelektryczne Piezoelektryczne + - + - + -

Piezoelektryki. Piezoelektryczność. Trochę historii. Zjawisko piroelektryczne. Zjawiska: Ferroelektryczne Piroelektryczne Piezoelektryczne + - + - + - Ą Ś Trochę historii Coulob ierwszy zasugerował wystęowanie iezoeletryczności Bracia Curie (Jacques i Pierre) w 1880r. zaroonowali nazwę iezoeletryczność dla zjawisa, tóre zaobserwowali (generowanie ładunu

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali świetlnej, promienia rzywizny soczewi płaso-wypułej

Bardziej szczegółowo

Wyznaczanie rozmiaro w przeszko d i szczelin za pomocą s wiatła laserowego

Wyznaczanie rozmiaro w przeszko d i szczelin za pomocą s wiatła laserowego Ćwiczenie v.x3.1.16 Wyznaczanie rozmiaro w przeszo d i szczelin za pomocą s wiatła laserowego 1 Wstęp teoretyczny Wyznaczanie rozmiarów szczelin i przeszód za pomocą światła oparte jest o zjawisa dyfracji

Bardziej szczegółowo

OBLICZENIA W POMIARACH POŚREDNICH

OBLICZENIA W POMIARACH POŚREDNICH ROZDZAŁ 6 OBLCZENA W POMARACH POŚREDNCH Stefan ubisa Zachodniopoorsi niwersytet Technologiczny. Wstęp Poiar pośredni to tai w tóry wartość wielości ierzonej wielości wyjściowej ezurandu y oblicza się z

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Politechnika Warszawska Wydział Fizyki. Proponowane rozwiązania Matura 2013 FIZYKA Poziom podstawowy

Politechnika Warszawska Wydział Fizyki. Proponowane rozwiązania Matura 2013 FIZYKA Poziom podstawowy Politechnika Warszawska Wydział Fizyki Proponowane rozwiązania Matura 013 FIZYKA Pozio podstawowy Autorzy: prof. dr hab. Jerzy Jasiński Andżelika Sason Przeysław Dzięgielewski Robert Chudek Warszawa, aj

Bardziej szczegółowo

Badanie układów RL i RC w obwodzie prądu przemiennego

Badanie układów RL i RC w obwodzie prądu przemiennego E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM Badanie kładów i C w obwodzie rąd rzeiennego Cel ćwiczenia: Przyrządy: Zagadnienia:

Bardziej szczegółowo

OCENA PORÓWNAWCZA OPORÓW RUCHU TOCZNEGO KULI W BIEŻNIACH O WYBRANYCH KSZTAŁTACH

OCENA PORÓWNAWCZA OPORÓW RUCHU TOCZNEGO KULI W BIEŻNIACH O WYBRANYCH KSZTAŁTACH Szybobieżne Pojazdy Gąsienicowe (19) nr 1, 2004 lesander KOWL OCEN PORÓWNWCZ OPORÓW RUCHU TOCZNEGO KULI W BIEŻNICH O WYBRNYCH KSZTŁTCH Streszczenie: Przedstawiono model sił reacji podłoża przy ruchu uli

Bardziej szczegółowo

Analiza falkowa oddziaływania drgań komunikacyjnych na łącza światłowodowe do transferu sygnałów czasu i częstotliwości

Analiza falkowa oddziaływania drgań komunikacyjnych na łącza światłowodowe do transferu sygnałów czasu i częstotliwości 1 Analiza falowa oddziaływania drgań omuniacyjnych na łącza światłowodowe do transferu sygnałów czasu i częstotliwości P. Kalabińsi, Ł. Śliwczyńsi, P. Krehli Streszczenie W racy rzedstawiono badania oddziaływania

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

LABORATORIUM: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego Wprowadzenie

LABORATORIUM: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego Wprowadzenie Utwozenie: PRz, 1, Żabińsi Tomasz Modyfiacja: PRz, 15, Michał Maiewicz LABORATORIUM: Steowanie zeczywistym sewomechanizmem z modułem zemieszczenia liniowego Wowadzenie Celem ćwiczenia jest identyfiacja

Bardziej szczegółowo

Ciśnienie i nośność w płaskim łożysku ślizgowym przy niestacjonarnym laminarnym smarowaniu

Ciśnienie i nośność w płaskim łożysku ślizgowym przy niestacjonarnym laminarnym smarowaniu TRIBOOGIA ZAGADNIENIA EKSPOATACJI MASZYN Zesyt (5) 7 PAWEŁ KRASOWSKI Ciśnienie i nośność w łasim łożysu śligowym ry niestacjonarnym laminarnym smarowaniu Słowa lucowe Płasie łożyso śligowe, laminarne niestacjonarne

Bardziej szczegółowo

2. Obwody prądu zmiennego

2. Obwody prądu zmiennego . Obwody prądu ziennego.. Definicje i wielkości charakteryzujące Spośród wielu oŝliwych przebiegów ziennych w czasie zajiey się jedynie przebiegai haronicznyi (sinusoidalnyi lub cosinusoidalnyi). Prądy

Bardziej szczegółowo

Ć W I C Z E N I E N R E-15

Ć W I C Z E N I E N R E-15 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego:

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego: ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1 Wykład 3 3. Otymalizacja z ograniczeniami Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia otymalizacyjnego: g i HxL 0, i = 1, 2,..., m (3.1)

Bardziej szczegółowo

Stosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy

Stosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy Zadania do rozdziału 6 Zad.6.. Wprowadzić równanie ruchu drgań wahadła matematcznego. Obicz okres wahadła matematcznego o długości =0 m. Wahadło matematczne jest to punkt materian (np. w postaci kuki K

Bardziej szczegółowo

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Wpływ zamiany typów eletrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Grzegorz Barzy Paweł Szwed Instytut Eletrotechnii Politechnia Szczecińsa 1. Wstęp Ostatnie ila lat,

Bardziej szczegółowo

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ Problemy Kolejnictwa Zeszyt 5 97 Prof. dr hab. inż. Władysław Koc Politechnia Gdańsa METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ SPIS TREŚCI. Wprowadzenie. Ogólna ocena sytuacji geometrycznej

Bardziej szczegółowo

Komputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d

Komputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d Komputerowa reprezentacja oraz prezentacja i graficzna edycja rzywoliniowych obietów 3d Jan Prusaowsi 1), Ryszard Winiarczy 1,2), Krzysztof Sabe 2) 1) Politechnia Śląsa w Gliwicach, 2) Instytut Informatyi

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

Relaksacja. Chem. Fiz. TCH II/19 1

Relaksacja. Chem. Fiz. TCH II/19 1 Relasaja Relasaja oznaza powrót uładu do stanu równowagi po zaburzeniu równowagi pierwotnej jaimś bodźem (wielośią zewnętrzną zmieniająą swoją wartość soowo, np. stężenie jednego z reagentów, iśnienie

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca Fizyka, klasa II Podręcznik: Świat fizyki, cz.2 pod red. Barbary Sagnowskiej 6. Praca. Moc. Energia. Lp. Temat lekcji Wymagania konieczne i podstawowe 1 Praca mechaniczna - podaje przykłady wykonania pracy

Bardziej szczegółowo

Słowniczek pojęć do Mapy Akustycznej Gliwic

Słowniczek pojęć do Mapy Akustycznej Gliwic Słowniczek ojęć do May kustycznej Gliwic Hałas Hałasem nazywamy wszystkie nieożądane, nierzyjemne, dokuczliwe i szkodliwe dźwięki; jako szkodliwy dla życia i zdrowia jest on uznawany za ważny czynnik decydujący

Bardziej szczegółowo

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych.

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych. REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzei z wyorzystaniem sztucznych sieci neuronowych. Godło autora pracy: EwGron. Wprowadzenie. O poziomie cywilizacyjnym raju, obo wielu

Bardziej szczegółowo

Wykres linii ciśnień i linii energii (wykres Ancony)

Wykres linii ciśnień i linii energii (wykres Ancony) Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

Moduł stolika liniowego

Moduł stolika liniowego Podstawy Konstrucji Urządzeń Precyzyjnych Materiały pomocnicze do ćwiczeń projetowych część 1 Moduł stolia liniowego Presrypt opracował: dr inż. Wiesław Mościci Warszawa 2014 Materiały zawierają informacje

Bardziej szczegółowo

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery Reprezentacje grup puntowych związi pomiędzy h i n a jednoznacznie wyznaczają wymiary wszystich reprezentacji grup puntowych, a związi ortogonalności jednoznacznie wyznaczają ich charatery oznaczenia:

Bardziej szczegółowo

Ćwiczenie 4. Zagadnienia: spektroskopia emisyjna, budowa i działanie spektrofluorymetru, widma. Wstęp. Część teoretyczna.

Ćwiczenie 4. Zagadnienia: spektroskopia emisyjna, budowa i działanie spektrofluorymetru, widma. Wstęp. Część teoretyczna. Ćwiczenie 4 Wyznaczanie wydajności wantowej emisji. Wpływ długości fali wzbudzenia oraz ształtu uweti i jej ustawienia na intensywność emisji i na udział filtru wewnętrznego. Zagadnienia: spetrosopia emisyjna,

Bardziej szczegółowo

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1 Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy

Bardziej szczegółowo

WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ

WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Anna Janiga-Ćmiel WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Wrowadzenie W rozwoju każdego zjawiska niezależnie od tego, jak rozwój ten jest ukształtowany rzez trend i wahania, można wyznaczyć

Bardziej szczegółowo

1 Oscylator tłumiony *

1 Oscylator tłumiony * Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskieo Funduszu Społeczneo w raach Prorau Operacyjneo Kapitał Ludzki. Kurs Plus - Fizyka ateriały

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II ...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 1 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych zadań polega

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO

PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO Mgr Beata Malec, dr Mare Biesiada, dr Anicenta Buba Instytut Medycyny Pracy i Zdrowia Środowisowego, Sosnowiec Wstęp Zagrożenia zdrowotne stwarzane

Bardziej szczegółowo

Rekonstrukcja zderzenia dwóch samochodów osobowych podstawowe zasady i praktyka ich stosowania

Rekonstrukcja zderzenia dwóch samochodów osobowych podstawowe zasady i praktyka ich stosowania Reonstrucja zderzenia dwóch saochodów osobowch podstawowe zasad i prata ich stosowania dr inŝ. Mirosław Gidlewsi Politechnia Radosa, WŜsza zoła Biznesu, RN RTiRD gr inŝ. Lesze Jeioł Politechnia Radosa

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 11. Ruch drgający i fale mechaniczne zadania z arkusza I 11.6 11.1 11.7 11.8 11.9 11.2 11.10 11.3 11.4 11.11 11.12 11.5 11. Ruch drgający i fale mechaniczne - 1 - 11.13 11.22 11.14 11.15 11.16 11.17 11.23

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(100)/2014

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(100)/2014 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(100)/2014 Michał Maowsi 1, Andrzej Reńsi 2, Janusz Poorsi 3 ANALIZA MOŻLIWOŚCI ZASTOSOWANIA RÓŻNYCH RODZAJÓW STEROWANYCH AMORTYZATORÓW W POJAZDACH SAMOCHODOWYCH 1.

Bardziej szczegółowo

3. Wahadło matematyczne

3. Wahadło matematyczne 3. Wahadło matematyczne 3.1. Silą powodująca ruch wahadła. Omówimy teraz drugi przykład ruchu harmonicznego ruch wahadła matematycznego. Wahadłem matematycznym będziemy nazywali ciało o masie m i niewielkiej

Bardziej szczegółowo

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1

Bardziej szczegółowo

Uczennica wyznaczyła objętość zabawki o masie 20 g po zanurzeniu jej w menzurce z wodą za pomocą sztywnego, cienkiego drutu (patrz rysunek).

Uczennica wyznaczyła objętość zabawki o masie 20 g po zanurzeniu jej w menzurce z wodą za pomocą sztywnego, cienkiego drutu (patrz rysunek). ZADANIA POWTÓRZENIOWE BAZA ZADAŃ ZADANIE 1 Uczniowie wyznaczali okres drgań wahadła. Badali ruch wahadeł o tej samej długości, ale o różnych masach, wychylając je o ten sam kąt. Na które z poniższych pytań

Bardziej szczegółowo

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY MIEJSCE NA KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2011/2012 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań

Bardziej szczegółowo

Warunki i tryb rekrutacji na studia w roku akademickim 2014/2015 w Akademii Morskiej w Szczecinie

Warunki i tryb rekrutacji na studia w roku akademickim 2014/2015 w Akademii Morskiej w Szczecinie 1. Zasady ogólne Załącznik do uchwały nr 09/013 Senatu Akadeii Morskiej w Szczecinie z dnia 9.05.013 r. Warunki i tryb rekrutacji na studia w roku akadeicki 014/015 w Akadeii Morskiej w Szczecinie 1.1.

Bardziej szczegółowo

Do Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP

Do Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP Załączni nr Do Szczegółowych Zasad Prowadzenia Rozliczeń Transacji rzez KDPW_CCP Wyliczanie deozytów zabezieczających dla rynu asowego (ozycje w acjach i obligacjach) 1. Definicje Ileroć w niniejszych

Bardziej szczegółowo

, to niepewność sumy x

, to niepewność sumy x Wydział Fizyi UW (wersja instrucji 04.04a) Pracownia fizyczna i eletroniczna dla Inżynierii Nanostrutur oraz Energetyi i Chemii Jądrowej Ćwiczenie 6 Elementy testowania hipotez (z błędami złożonymi) oraz

Bardziej szczegółowo

Janusz Górczyński. Prognozowanie i symulacje w zadaniach

Janusz Górczyński. Prognozowanie i symulacje w zadaniach Wykłady ze statystyki i ekonometrii Janusz Górczyński Prognozowanie i symulacje w zadaniach Wyższa Szkoła Zarządzania i Marketingu Sochaczew 2009 Publikacja ta jest czwartą ozycją w serii wydawniczej Wykłady

Bardziej szczegółowo

Model Solow-Swan. Y = f(k, L) Funkcja produkcji może zakładać stałe przychody skali, a więc: zy = f(zk, zl) dla z > 0

Model Solow-Swan. Y = f(k, L) Funkcja produkcji może zakładać stałe przychody skali, a więc: zy = f(zk, zl) dla z > 0 dr Bartłomiej Roici Ćwiczenia z Maroeonomii II Model Solow-Swan W modelu lasycznym mieliśmy do czynienia ze stałą wielością czynniów producji, a zatem był to model statyczny, tóry nie poazywał nam dlaczego

Bardziej szczegółowo

Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.

Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych. Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t

Bardziej szczegółowo

= 2 + f(n-1) - n(f-1) = n + 2 - f

= 2 + f(n-1) - n(f-1) = n + 2 - f . Hofan, Wyłay z eroynaii technicznej i cheicznej, Wyział Cheiczny PW, ierune: echnologia cheiczna, se.3 05/06 WYKŁAD 5-6. F. Konseencje zasa teroynaii, c.. G. Maszyny cielne H. Oziałyania ięzycząsteczoe

Bardziej szczegółowo

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana

Bardziej szczegółowo

Artur Kasprzycki, Ryszard Knosala Politechnika Opolska, Katedra InŜynierii Produkcji artkasp@polo.po.opole.pl

Artur Kasprzycki, Ryszard Knosala Politechnika Opolska, Katedra InŜynierii Produkcji artkasp@polo.po.opole.pl MODELOWANIE ROZMYTE WIELOKRYTERIAEJ OCENY TAKTYCZNEGO PLANU PRODUKCJI Streszczenie Artur Kasrzyci, Ryszard Knosala Politechnia Oolsa, Katedra InŜynierii Produci artas@olo.o.ole.l W artyule adany est rolem

Bardziej szczegółowo

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II. Zadanie 28. Kołowrót

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II. Zadanie 28. Kołowrót SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II Zadanie 8. Kołowrót Numer dania Narysowanie sił działających na układ. czynność danie N N Q 8. Zapisanie równania ruchu obrotowego kołowrotu.

Bardziej szczegółowo

1 LWM. Defektoskopia ultradźwiękowa. Sprawozdanie powinno zawierać:

1 LWM. Defektoskopia ultradźwiękowa. Sprawozdanie powinno zawierać: L Defetosoia ultraźwięowa Srawozanie owinno zawierać:. Króti ois aaratury i metoy.. Rysune słua z zwymiarowanym ołożeniem wa. L Elastootya ynii baań elastootycznych Rzą izochromy m Siła na ońcu źwigni

Bardziej szczegółowo

Dynamiczne struktury danych: listy

Dynamiczne struktury danych: listy Dynamiczne struktury danych: listy Mirosław Mortka Zaczynając rogramować w dowolnym języku rogramowania jesteśmy zmuszeni do oanowania zasad osługiwania się odstawowymi tyami danych. Na rzykład w języku

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Porównanie nacisków obudowy Glinik 14/35-POz na spąg obliczonych metodą analityczną i metodą Jacksona

Porównanie nacisków obudowy Glinik 14/35-POz na spąg obliczonych metodą analityczną i metodą Jacksona dr inż. JAN TAK Akademia Górniczo-Hutnicza im. St. Staszica w Krakowie inż. RYSZARD ŚLUSARZ Zakład Maszyn Górniczych GLINIK w Gorlicach orównanie nacisków obudowy Glinik 14/35-Oz na sąg obliczonych metodą

Bardziej szczegółowo

Równania rekurencyjne 1 RÓWNANIA REKURENCYJNE

Równania rekurencyjne 1 RÓWNANIA REKURENCYJNE Równania reurencyjne 1 RÓWNANIA REKURENCYJNE 1 Ciągi arytmetyczne i geometryczne Z najprostszymi równaniami reurencyjnymi zetnęliśmy się już w szole Zacznijmy od przypomnienia definicji ciągu arytmetycznego

Bardziej szczegółowo

Krótki wstęp do zastosowania Metody Elementów Skończonych (MES) do numerycznych obliczeń inŝynierskich Większość inŝynierów, mając moŝliwość wyboru

Krótki wstęp do zastosowania Metody Elementów Skończonych (MES) do numerycznych obliczeń inŝynierskich Większość inŝynierów, mając moŝliwość wyboru Króti wstęp do zastosowania Metody lementów Sończonych (MS) do numerycznych obliczeń inŝyniersich Więszość inŝynierów, mając moŝliwość wyboru pomiędzy rozwiązaniem jednego złoŝonego problemu lub iludziesięciu

Bardziej szczegółowo

HIERARCHICZNY SYSTEM ZARZĄDZANIA RUCHEM LOTNICZYM - ASPEKTY OCENY BEZPIECZEŃSTWA

HIERARCHICZNY SYSTEM ZARZĄDZANIA RUCHEM LOTNICZYM - ASPEKTY OCENY BEZPIECZEŃSTWA Jace Sorupsi Hierarchiczny system Zarządzania ruchem lotniczym aspety oceny bezpieczeństwa, Logistya (ISSN 1231-5478) No 6, Instytut Logistyi i HIERARCHICZNY SYSTEM ZARZĄDZANIA RUCHEM LOTNICZYM - ASPEKTY

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Eleenty odelowania ateatycznego Systey kolejkowe. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ RZYKŁAD KOLEJKI N(t) długość kolejki w chwili t T i czas obsługi i-tego klienta Do okienka

Bardziej szczegółowo

2.1 Kinematyka punktu materialnego Pojęcie ruchu. Punkt materialny. Równania ruchu

2.1 Kinematyka punktu materialnego Pojęcie ruchu. Punkt materialny. Równania ruchu Rozdział 2 Ruch i energia 2.1 Kinematyka punktu materialnego 2.1.1 Pojęcie ruchu. Punkt materialny. Równania ruchu Kinematyka jest działem mechaniki opisującym ruch ciał bez podawania jego przyczyn. Przez

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

10. REZONANS W OBWODACH ELEKTRYCZNYCH

10. REZONANS W OBWODACH ELEKTRYCZNYCH 0. EZONANS W OBWODAH EEKTYZNYH W obwoach prąu sinusoialnego przebiegi czasowe (prąów, napięć, sem, spm, mocy) cylicznie przybieraą na przemian wartości oatnie i uemne. Przebiegi o taim charaterze noszą

Bardziej szczegółowo

ZBIÓR ZADAŃ STRUKTURALNYCH

ZBIÓR ZADAŃ STRUKTURALNYCH ZBIÓR ZADAŃ STRUKTURALNYCH Zgodnie z zaleceniami metodyki nauki fizyki we współczesnej szkole zadania prezentowane uczniom mają odnosić się do rzeczywistości i być tak sformułowane, aby każdy nawet najsłabszy

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Zbigniew Osiak ENCYKLOPEDIA FIZYKI

Zbigniew Osiak ENCYKLOPEDIA FIZYKI Zbigniew Osia ENCYKLOPEDIA FIZYKI Zbigniew Osia (Test) E CYKLOPEDIA FIZYKI Małgozata Osia (Ilustacje) 3 Copyight by Zbigniew Osia (text) and Małgozata Osia (illustations) Wszelie pawa zastzeżone. Rozpowszechnianie

Bardziej szczegółowo

2013-10-17. Bramki logiczne o specjalnych cechach. τ ~ R*C. Bramka z otwartym kolektorem.

2013-10-17. Bramki logiczne o specjalnych cechach. τ ~ R*C. Bramka z otwartym kolektorem. 23--7 Brami logiczne o specjalnych cechach U WY Brama chmitta (7432): niestandardowa brama cyrowa charaterystya zawiera pętlę histerezy H Zastosowania: L.9 V.7 V U wprowadzanie do eletronii cyrowej sygnałów

Bardziej szczegółowo

ZADANIE 8 BADANIE WAHADEŁ SPRZĘŻONYCH

ZADANIE 8 BADANIE WAHADEŁ SPRZĘŻONYCH ZADANIE 8 BADANIE WAHADEŁ SPRZĘŻONYCH WYKAZ PRZYRZĄDÓW:. Wahadło sprzężone. Linia metrowa 3. Szalka wagi 4. Statyw 5. Odważniki 6. Ostrze pryzmatyczne do wyznaczania środka ciężkości WYKONANIE ZADANIA:.

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. adanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

Wyznaczanie ciepła topnienia lodu lub ciepła właściwego wybranego ciała

Wyznaczanie ciepła topnienia lodu lub ciepła właściwego wybranego ciała dla specjalnośći Biofizya moleularna Wyznaczanie ciepła topnienia lodu lub ciepła właściwego wybranego ciała I. WSTĘP C 1 C 4 Ciepło jest wielością charateryzującą przepływ energii (analogiczną do pracy

Bardziej szczegółowo

Zastosowanie zespołów prądotwórczych do awaryjnego zasilania obiektów budowlanych mgr inż. Julian Wiatr CKSI i UE SEP

Zastosowanie zespołów prądotwórczych do awaryjnego zasilania obiektów budowlanych mgr inż. Julian Wiatr CKSI i UE SEP astosowanie zespołów prądotwórczych do awaryjnego zasilania obietów budowlanych mgr inż. Julian Wiatr CKSI i UE SE 1. odział odbiorniów energii eletrycznej na ategorie zasilania i ułady zasilania obietu

Bardziej szczegółowo

MECHANIK NR 3/2015 59

MECHANIK NR 3/2015 59 MECHANIK NR 3/2015 59 Bogusław PYTLAK 1 toczenie, owierzchnia mimośrodowa, tablica krzywych, srzężenie osi turning, eccentric surface, curve table, axis couling TOCZENIE POWIERZCHNI MIMOŚRODOWYCH W racy

Bardziej szczegółowo

Wprowadzenie do dy- 3. Dynamika ciał odkształcalnych. Dodatkowo uwzględniamy odkształcenia ciał

Wprowadzenie do dy- 3. Dynamika ciał odkształcalnych. Dodatkowo uwzględniamy odkształcenia ciał Wprowadzenie do dy- MUD 01 namiki Wprowadzenie Kiedy stosujemy podejście dynamiczne? Podejście dynamiczne stosujemy, kiedy wpływ sił bezwładności na zachowanie się konstrukcji jest istotny. A co uważamy

Bardziej szczegółowo