RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:"

Transkrypt

1 RUCH DRGAJĄCY Ruch haroniczny Ruch, tóry owtarza się w regularnych odstęach czasu, nazyway ruche oresowy (eriodyczny). Szczególny rzyadie ruchu oresowego jest ruch haroniczny: zależność rzeieszczenia od czasu wyrażona jest rzez funcję sinus lub osinus. Co więcej, wyazuje się, że dowolny ruch oresowy ożna wyrazić jao odowiednią suę (szereg) ruchów haronicznych. Ułade, tóry wyonuje ruch haroniczny jest oscylator haroniczny. Przyłady oscylatora haronicznego: Mechaniczne: asa na srężynie, wahadło. Eletryczny: obwód LC (tutaj wychylenie jest n. naięcie, rąd lub ładune eletryczny). Jaie cechy usi ieć uład echaniczny (n. asa na srężynie), aby był oscylatore haroniczny? Są one nastęujące: a) Drgające ciało osiada unt równowagi trwałej, b) Siła działająca na ciało wynosi: F= - x (x jest wychylenie z ołożenia równowagi, jest stałą srężystości srężyny), c) Zasada liniowości: wychylenie ciała wsute działania wielu sił równe jest suie wychyleń jaie wywołują oszczególne siły, d) Częstość ruchu nie zależy od alitudy drgań. x x=0 Naiszy równanie ruchu oscylatora haronicznego, tóry jest asa na srężynie. Z II zasady dynaii: F = a d x x = A zate równanie różniczowe ruchu oscylatora a ostać: d x = x ()

2 Rozwiązanie Równ. () jest: x(t) = x0 cos( ωt + ϕ) () gdzie x 0 jest alitudą drgań, ω jest tzw. częstością ołową, zaś ϕ jest fazą oczątową (alitudę x 0 ja i ąt ϕ dobieray z warunu oczątowego, ówiącego jaie było wychylenie x w chwili t=0). Podstawiając rozwiązanie () do Równ. (), łatwo srawdzić, że istotnie jest to dobre rozwiązanie. Co więcej, doonując tego srawdzenia, znajdujey nastęujący związe iędzy stałyi: (3) ω = Ja już wsoniano, ω jest częstością ołową drgań (rzy czy ω=πν gdzie ν jest częstotliwością drgań). Definiuje się taże ores drgań, T; jest to czas wyonania jednego ełnego drgania. Oczywiście: π T = = ν ω Wyorzystując Równ. (3), ores drgań oscylatora haronicznego wynosi: (4) T = π Na oniec zauważy, że uwzględniając relację (3), równanie ruchu oscylatora (Równ. ()) ożna rzedstawić w charaterystycznej forie: d x (5) = ω x Związe ruchu haronicznego z ruche o oregu Znaczenie częstości ołowej stanie się dla nas jaśniejsze, gdy uświadoiy sobie związe ruchu haronicznego z jednostajny ruche obrotowy ciała o oręgu. y r α(t) x W czasie t ciało zatoczyło ąt α: α(t)=ωt + ϕ. Rzuty wetora wodzącego (wsazującego atualne ołożenie ciała) na oś x i y wynoszą:

3 x = r cosα = r cos( ωt + ϕ) y = rsin α = rsin( ωt + ϕ) Widziy zate, że rzut ciała rążącego o oręgu na dowolną oś leżącą w jego łaszczyźnie, jest ruche haroniczny. W równaniu owyższy ω oznacza rędość ątową ruch ciała o oręgu, odczas gdy w Równ. (3) lub (5) ten sa sybol oznaczał częstość ołową. Ta więc częstość ołowa w ruchu haroniczny oże być utożsaiona z rędością ątową odowiadającego u ruchu o oręgu. Przyonijy raz jeszcze odstawową cechę ruchu haronicznego: ores drgań (lub jego częstotliwość) nie zależą od alitudy ruchu. Wahadło Wahadło fizyczne Rozatrzy od razu ogólny rzyade wahadła czyli tzw. wahadło fizyczne. Wahadło fizyczne to dowolne ciało ogące się obracać woół jaiejś ustalonej osi, nie rzechodzącej jedna rzez środe asy. 0 l 0' g Na owyższy rysunu wahadło wyonuje drgania woół osi 0; jest ona odległa o l od środa asy (0 ). Załóży, że w danej chwili wahadło wychylone jest z ołożenia równowagi o ąt θ. Na wahadło działa oent siły, ochodzący od siły ciężości o wartości g, zaczeionej w środu asy 0. Zgodnie z definicją oentu siły, oent ten wynosi: θ Wartość oentu siły wynosi: M = l g M = glsin θ Zna inus w owyższy równaniu ochodzi stąd, że oent siły i ąt θ ają zawsze rzeciwny zna (onao, zauważy, że funcja sinus jest funcją niearzystą, więc rzy zianie znau ąta θ zienia się taże zna oentu siły). Pisanie równania ruchu rozoczynay zawsze od II zasady dynaii (w ty wyadu oczywiście dla ruchu obrotowego): d θ M = I 3

4 Po odstawieniu wyrażenia na oent siły i o odzieleniu obustronnie rzez I: d θ gl (6) = sin θ I Równanie owyższe jest równanie ruchu wahadła fizycznego dla dowolnie dużych wychyleń (tzn. dla dowolnych ątów θ). Rozwiązanie tego równania jest ruch oresowy. Nie jest on jedna ruche haroniczny, gdyż równanie owyższe nie jest równanie ruchu oscylatora haronicznego (atrz Równ. 5). Równanie 6 ulega znaczneu uroszczeniu, jeśli założyy, że wahadło wyonuje drgania o ałych wychyleniach; inaczej ówiąc rozważay ałe ąty θ (n. nie więsze niż 0 o ). Wtedy sin θ ożey zastąić say ąte θ (wyrażony oczywiście w ierze łuowej). Ta uroszczone równanie: d θ gl (7) = θ I a identyczną ostać ateatyczną ja Równ. 5, będące równanie ruchu oscylatora haronicznego. Z orównania z Równ. 5 znajdujey od razu częstość ołową drgań wahadła fizycznego: gl (8) ω = I Ores drgań T = π wahadła fizycznego wynosi: ω T = π I gl Przez orównanie z rozwiązanie równania ruchu oscylatora haronicznego (Równ. ) znajdujey od razu rozwiązanie dla wahadła fizycznego: θ ( t) = θ0 cos( ωt + ϕ) (0) Ruch wahadła, będący ruche oresowy, osłużył jao liczni stałych orcji czasu w zegarach i zegarach echanicznych. Szczególnie w tych ierwszych, najczęściej rzeszlonych (obecnych jeszcze w doach nietórych z Państwa) zauważyć ożna łatwo ruch wahadła, odierzającego olejne seundy... Wahadło ateatyczne Szczególny rzyadie wahadła fizycznego jest tzw. wahadło ateatyczne. Jego dobry rzybliżenie jest ała ula stalowa zawieszona na leiej i długiej nitce. (Chodzi o rostu o to, aby wahadło to ożna było rzedstawić jao asę untową na nieważiej nici). (9) 4

5 0 l θ g W tai szczególny rzyadu od razu ożey wyliczyć oent bezwładności I: I=l ; odstawiając to wyrażenie do Równ. 9, otrzyujey ores wahań wahadła ateatycznego: l () T = π g Przyonijy raz jeszcze, że uzysane rozwiązania równania ruchu ja i wyrażenia na częstość ołową i ores wahań są słuszne rzy założeniu ałych wychyleń ątowych (najwyżej 0-0 stoni wtedy wynii są orawne w granicach błędu nie rzeraczającego - %). Przy więszych wychyleniach, trzeba rozwiązywać ogólniejsze równanie ruchu (Równ. 6); wtedy nie ay już jedna do czynienia z oscylatore haroniczny, lecz z ciałe wyonujący ruch oresowy. Odowiednie rozwiązania są już jedna bardziej soliowane. Energia w ruchu haroniczny Zastanówy się, jaą energię osiada drgający oscylator haroniczny. Dla uroszczenia, rozważy znów oscylator w ostaci asy na srężynie. 0' -x 0 x 0 x x=0 Energia otencjalna rozciągniętej srężyny (E ) jest racą, jaą ona wyona wracając do ołożenia równowagi. Z zasady zachowania energii wynia, że energię otencjalną srężyny ożey taże wyliczyć jao racę W jej rozciągnięcia o długość x. Obliczenie to zrobiliśy już orzednio, a zate: E = W = x Jeśli srężyna naciągnięta jest do wychylenia asyalnego x 0, to rędość ja i energia inetyczna drgającej asy są zerowe; w tai oencie cała energia echaniczna oscylatora jest jego energią otencjalną (tóra jest wtedy asyalna): 5

6 E = (ax) Z drugiej strony, gdy oscylator rzechodzi rzez unt równowagi (x=0), jego rędość jest asyalna (v ax ) i cała jego energia echaniczna a ostać energii inetycznej (E = ½ v ), tóra jest wtedy asyalna: E = (ax) W ażdy inny, dowolny oencie, energia echaniczna oscylatora rozłada się na energię otencjalna i inetyczną, rzy czy z zasady zachowania energii wynia, że energia całowita E: E = E x v 0 ax + E = v + x Energię całowita ożey też wyrazić jao: E = E = E () (ax) (ax) Oczywiście roorcja energii inetycznej do otencjalnej jest inna w ażdej chwili czasu. Ponieważ: E = E + E oraz energia całowita, E, a wartość stałą, usi być sełniony nastęująca zaleznosc dla wartości średnich: E =< E > + < E > ( a) Sybol <...> oznacza średniowanie o czasie. Wyliczy teraz średnią (względe czasu) energię inetyczną i otencjalną. Energia otencjalna: (3) < E >= < x >= x0 < (cosωt) > W równaniu ty odstawiliśy (Równ.) wyrażenie na wychylenie oscylatora (rzyjując ϕ=0): x(t)=x 0 cosωt. Podobnie wyliczyy średnią energię inetyczną: (3 a) < E >= < v >= x0 < (sin ωt) > Podstawiliśy tutaj wyrażenie na rędość oscylatora v(t)= - x 0 ωsinωt, tórą uzysujey ze zróżniczowania relacji na wychylenie x(t). Średnie o czasie, tóre wystęują w Równ. 3 i 3a: <(sinωt) > oraz <(cosωt) > są sobie oczywiście równe, gdyż funcje sinus i osinus ają tai sa ształt, tylo są rzesunięte w fazie o A zate: Ponao, na odstawie Równ. a ay: < E >=< E > (4) 6

7 < E >=< E >= E A zate średnie energie inetyczna i otencjalna są sobie równe i ażda z nich równa jest ołowie energii całowitej. (4 a) Ruch drgający tyu oscylatora haronicznego nie jest wyłącznie cechą uładu asa + srężyna. Również atoy w rysztale zachowują się w dobry rzybliżeniu ja oscylatory haroniczne. Porównajy wyres energii otencjalnej od wychylenia atou oddziaływującego z inny atoe (o rawej) z zależnością jaą iałby on będąc lasyczny oscylatore haroniczny (o lewej). Widziy, że w odległości r 0 ato jest w stanie równowagi, tóry odowiada iniu energii otencjalnej. W zaresie ałych wychyleń rzebieg energii otencjalnej (otencjału) dla atou jest odobny ja dla asy na srężynie. Używając odowiedniej zależności na rzebieg otencjału atou (znanej w fizyce atoowej) uzysuje się częstotliwość drgań atoów: ν 0 4 Hz. Atoy drgające z tą częstotliwością wytwarzają roieniowanie odczerwone (fragent wida eletroagnetycznego). Dodajy jeszcze, że jeśli wytworzyy w jaiś uncie ośroda aterialnego drgania jego cząste, to na ogół drgania te rzenoszą się w innych ierunach; w ten sosób owstaje fala. Zagadnienia ruchu falowego oówione będą w jedny z nastęnych rozdziałów. Ruch haroniczny tłuiony Do tej ory nie wzięliśy od uwagę siły tarcia, tóra rawie zawsze towarzyszy wszeli rucho (wyjątową sytuacją, w tórej nie a siły tarcia jest zjawiso nadciełości, wystęujące w cieły helu w obliżu teeratury 0 K). Siła tarcia: F t v, zaś dx v =, zate: 7

8 dx (5) F t = b (zna inus uzysławia, że zwrot siły tarcia jest rzeciwny do zwrotu rędości). Na odstawie drugiej zasady dynaii (F = a): dx d x = - x - b (6) Po uorządowaniu otrzyujey: d x dx + b + x = 0 (7) Jest to równanie różniczowe ruchu haronicznego tłuionego. Jeśli b jest ałe (b/ < ω), to rozwiązanie a ostać: lub: gdzie: x = Ae bt / cos( ω t + δ) (8) βt x = Ae cos( ω t + δ) (9) ω = πν = b - ( ) = ω -β oraz : ω jest częstotliwością w ruchu tłuiony, zaś β jest wsółczynniie tłuienia. Zauważy, że drgania tłuione są drganiai o częstotliwości ω (niejszej niż ω dla ruchu nietłuionego) oraz, że ich alituda szybo aleje. O szybości zniejszania się alitudy drgań decyduje wsółczynni tłuienia β. β = b (0) Na rysunu owyższy rzedstawiono wychylenie x(t) dla ruchu haronicznego tłuionego (dla δ=0) ; oazano też wyres esonencjalnej funcji, tóra tłui alitudę ruchu 8

9 haronicznego. Podane rozwiązanie na ruch haroniczny tłuiony jest orawne, jeśli tarcie nie jest zbyt wielie. Zauważy bowie, że z Równ. 0 ( ω ' = ω β ω =0 i rozwiązanie równania ruchu (Równ. 9) rzyjuje ostać: ) wynia iż jeśli β=ω, to wtedy: x = A'e Jest to rzyade tzw. tłuienia rytycznego; nie ay wtedy żadnych oscylacji, jedynie esonencjalne zaninięcie wychylenia oczątowego. βt () Widziy zate, że aby rozwiązanie iało charater oisany Rów. 9, wsółczynni tłuienia usi sełniać warune: β<ω. Drgania wyuszone i rezonans Dotychczas oawialiśy jedynie naturalne drgania ciała, tzn. drgania, tóre ojawiają się wtedy, gdy oscylator zostaje wychylony z ołożenia równowagi i uszczony swobodnie. Przyonijy, że dla drgań bez tarcia: ω = πν = Jeśli zaś wystęuje tarcie (i siły tarcia są niewielie), to: ω = πν = b - ( Załóży teraz, że wystęuje jeszcze wyuszenie zewnętrzne w ostaci siły oresowej: F = F cosω t. Jej wartość ulsuje z częstotliwością ν (lub z częstością ołową: ω =πν ). Równanie ruchu a ostać analogiczną ja w rzyadu owyższy (Równ. 6), jedynie dodajey jeszcze siłę wyuszającą: x dx d = - x - b + Fcosω t () lub: ) 9

10 x dx d + b + x = Fcosω t (3) Można wyazać, że rozwiązanie tego równania jest: F x = sin( ω t - δ) (4) G bω'' gdzie: G = ( ω ω' ' ) + b ω' ' oraz δ = arccos. G Widziy zate, że w obecności siły wyuszającej, częstotliwość drgań jaa ustala się w uładzie, równa jest częstotliwości siły wyuszającej. Bardzo interesujący wniose wynia z analizy alitudy drgań uładu (F /G). Osiąga ona asiu, gdy G osiąga iniu. Wartość G zależy od wzajenej relacji ω i ω. Szczególny rzyade a iejsce wtedy, gdy częstotliwość siły wyuszającej równa jest częstotliwości własnej uładu. Sytuacja taa to: REZONANS: ω = ω Jeśli w sytuacji rezonansu nie wystęowałoby tarcie (b=0), to G=0 i ja łatwo zauważyć alituda drgań dążyłaby do niesończoności!!!. W rzeczywistości zawsze wystęuje tarcie, a więc odczas rezonansu (ω = ω) alituda drgań osiąga sończone asiu. Sytuacje taie znay z własnych obserwacji: jeśli chcey rozhuśtać huśtawę czy ładę nad struienie, to odświadoie wytwarzay iulsy siły o częstotliwości własnej uładu (tórą szybo wyczuway). Nieożądany efete rezonansu oże być ęnięcie części aszyny, zerwanie ostu lub innej onstrucji; wywołać go ogą wibracje silnia lub nawet orywy wiatru. Rezonans jest zjawisie ogólny, nie dotyczy tylo zjawis echanicznych. Z rezonanse ay do czynienia n. w obwodach eletrycznych czy też w reacjach jądrowych. Rysune oniższy oazuje ja zależy alituda drgań uładu (A=F /G) od stosunu częstotliwości siły wyuszającej do częstotliwości własnej. 0

11

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

FIZYKA R.Resnick & D. Halliday

FIZYKA R.Resnick & D. Halliday FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela

Bardziej szczegółowo

FIZYKA I ASTRONOMIA - POZIOM ROZSZERZONY Materiał diagnostyczny. SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ 60 punktów

FIZYKA I ASTRONOMIA - POZIOM ROZSZERZONY Materiał diagnostyczny. SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ 60 punktów FIZYKA I ASRONOMIA - POZIOM ROZSZERZONY Materiał diagnostyczny SZKIC ODPOWIEDZI I SCHEMA OCENIANIA ROZWIĄZAŃ ZADAŃ unktów UWAGA: Jeżeli zdający rozwiąże zadanie inną, erytorycznie orawną etodą, to za rozwiązanie

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

MGR 2. 2. Ruch drgający.

MGR 2. 2. Ruch drgający. MGR. Ruch drgający. Ruch uładów drgających (sprężyny, guy, brzeszczou, ip.). Badanie ruchu ciała zawieszonego na sprężynie. Wahadło aeayczne. Wahadło fizyczne. Rezonans echaniczny. Ćw. 1. Wyznaczanie oresu

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

gdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności.

gdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności. RUCH DRGJĄCY Ruche drgający (drganiai) nazywa się każdy ruch, który charakteryzuje powtarzalność w czasie wielkości fizycznych (np wychylenia) określających ten ruch Występujące w przyrodzie drgania ożna

Bardziej szczegółowo

gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( )

gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( ) RUCH HARMONICZNY I. Ce ćwiczenia: wyznaczenie wartości przyspieszenia zieskiego poiar współczynnika sprężystości sprężyny k, zaznajoienie się z podstawowyi wiekościai w ruchu haroniczny. II. Przyrządy:

Bardziej szczegółowo

Wykład 6 Drgania. Siła harmoniczna

Wykład 6 Drgania. Siła harmoniczna Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo

Bardziej szczegółowo

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne,

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne, sg M 6-1 - Teat: Prawo Hooe a. Oscylacje haroniczne. Zagadnienia: prawa dynaii Newtona, siła sprężysta, prawo Hooe a, oscylacje haroniczne, ores oscylacji. Koncepcja: Sprężyna obciążana różnyi asai wydłuża

Bardziej szczegółowo

Wykład 13 Druga zasada termodynamiki

Wykład 13 Druga zasada termodynamiki Wyład 3 Druga zasada termodynamii Entroia W rzyadu silnia Carnota z gazem dosonałym otrzymaliśmy Q =. (3.) Q Z tego wzoru wynia, że wielość Q Q = (3.) dla silnia Carnota jest wielością inwariantną (niezmienniczą).

Bardziej szczegółowo

7. Drgania i fale. Drgania

7. Drgania i fale. Drgania 7 Drgania i fale Drgania Ruche drgający okresowy nazyway taki ruch w który układ po upływie pewnego czasu nazywanego okrese drgania wraca do stanu wyjściowego Drganie haroniczne proste W ujęciu geoetryczny

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna?

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna? Chemia Fizyczna Technologia Chemiczna II ro Wyład 1 Kierowni rzedmiotu: Dr hab. inż. Wojciech Chrzanowsi Kontat,informacja i onsultacje Chemia A ; oój 307 Telefon: 347-2769 E-mail: wojte@chem.g.gda.l tablica

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Ćwiczenie nr 1: Wahadło fizyczne

Ćwiczenie nr 1: Wahadło fizyczne Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel

Bardziej szczegółowo

Zadania do rozdziału 5

Zadania do rozdziału 5 Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi

Bardziej szczegółowo

Tematy: oscylator harmoniczny, oscylator tłumiony, oscylator wymuszony, zjawisko rezonansu, przykłady układ RLC, jądrowy rezonans magnetyczny

Tematy: oscylator harmoniczny, oscylator tłumiony, oscylator wymuszony, zjawisko rezonansu, przykłady układ RLC, jądrowy rezonans magnetyczny Wykład 8 Drgania haroniczne Teaty: oscylator haroniczny, oscylator tłuiony, oscylator wyuszony, zjawisko rezonansu, przykłady układ RLC, jądrowy rezonans agnetyczny 1. Oscylator haroniczny 1.1 Równanie

Bardziej szczegółowo

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii:

Bardziej szczegółowo

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnia Gdańsa Wydział Eletrotechnii i Autoatyi Katedra Inżynierii Systeów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI Systey ciągłe budowa odeli enoenologicznych z praw zachowania Materiały poocnicze

Bardziej szczegółowo

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004 Kody uffmana oraz entroia rzestrzeni rodutowej Zuzanna Kalicińsa maja 4 Otymalny od bezrefisowy Definicja. Kod nad alfabetem { 0, }, w tórym rerezentacja żadnego znau nie jest refisem rerezentacji innego

Bardziej szczegółowo

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż. Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: OF_I_ Źródło: XX OLIMPIADA FIZYCZNA (97/97). Stopień I, zadanie teoretyczne Nazwa zadania: Działy: Słowa kluczowe: Koitet Główny Olipiady Fizycznej; Waldear Gorzkowski: Olipiady fizyczne XIX i XX. WSiP,

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami 8 Liczba 9 jest równa A. B. C. D. 9 5 C Przykładowe zadania z matematyki na oziomie odstawowym wraz z rozwiązaniami Zadanie. (0-) Liczba log jest równa A. log + log 0 B. log 6 + log C. log 6 log D. log

Bardziej szczegółowo

Nara -Japonia. Yokohama, Japan, September 2014

Nara -Japonia. Yokohama, Japan, September 2014 Nara -Japonia Yokohaa, Japan, Septeber 4 -7 (Jaroszewicz slajdów Zasady zachowania, zderzenia ciał Praca, oc i energia echaniczna Zasada zachowania energii Zasada zachowania pędu Zasada zachowania oentu

Bardziej szczegółowo

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała, Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g zares rozszerzony 1. Wielomiany bardzo zna pojęcie jednomianu jednej zmiennej; potrafi wsazać jednomiany podobne; potrafi

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów izya 1- Mechania Wyład 6 1.XI.16 Zygun Szeflińi Środowiowe Laboraoriu Ciężich Jonów zef@fuw.edu.l h://www.fuw.edu.l/~zef/ Praca i energia Najrozy rzyade: Sała iła działa na ciało P owodując jego rzeunięcie

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

Obwody prądu zmiennego. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Obwody prądu zmiennego. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Obwody prądu ziennego rojekt współfinansowany przez nię Europeją w raach Europejiego Funduszu Społecznego rąd elektryczny: oc lość ciepła wydzielanego na eleencie oporowy określa prawo Joule a: Q t Moc

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Mechanika ogólna II Kinematyka i dynamika

Mechanika ogólna II Kinematyka i dynamika Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,

Bardziej szczegółowo

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY

Bardziej szczegółowo

Koła rowerowe malują fraktale

Koła rowerowe malują fraktale Koła rowerowe malują fratale Mare Berezowsi Politechnia Śląsa Rozważmy urządzenie sładającego się z n ół o różnych rozmiarach, obracających się z różnymi prędościami. Na obręczy danego oła, obracającego

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów manipulatorów

TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów manipulatorów aboratoriu Teorii Mechanizów TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów anipulatorów Cele ćwiczenia jest doświadczalne wyznaczanie współrzędnych tensorów bezwładności członów anipulatora

Bardziej szczegółowo

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości

Bardziej szczegółowo

Prawa Zachowania. Zasady zachowania odgrywaj w fizyce szczególn rol.

Prawa Zachowania. Zasady zachowania odgrywaj w fizyce szczególn rol. izya 1: Wyad II Prawa Zachowania 1 Zasady zachowania odgrywaj w fizyce szczególn rol. Orócz zasad zachowania oznanych w szole: zasady zachowania du zasady zachowania momentu du zasady zachowania energii

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naleję MFA-P1_1P-08 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 10 inut MAJ ROK 008 Instrucja

Bardziej szczegółowo

XIV. DRGANIA. T = 1 ν Ruch harmoniczny

XIV. DRGANIA. T = 1 ν Ruch harmoniczny XIV. DRGANIA 14.1. Ruch haroniczny Świat jest pełen ciał, które wykonują drgania, czyli poruszają się na przeian w jedną stronę i z powrote. Drgania te ierzy się za poocą częstotliwości. Częstotliwość

Bardziej szczegółowo

1.3 Przestrzenie ilorazowe

1.3 Przestrzenie ilorazowe 1.3 Przestrzenie ilorazowe Niech X 0 będzie odrzestrzenią liniową X 0, +, rzestrzeni liniowej X, +,. Oreślmyzbiór x + X 0 := {x + y : y X 0 }. Zbiór ten nazywamy warstwą elementu x X względem odrzestrzeni

Bardziej szczegółowo

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje

Bardziej szczegółowo

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Układy oscylacyjne w przyrodzie

Układy oscylacyjne w przyrodzie 20 FOTON 90, Jesień 2005 Ułady oscylacyjne w przyrodzie Mare Tyluti Studia Matematyczno-Przyrodnicze, II ro Uniwersytet Jagiellońsi. Ułady dynamiczne wstęp Ułady spotyane w przyrodzie, pomimo wieliej liczby

Bardziej szczegółowo

Piezoelektryki. Piezoelektryczność. Trochę historii. Zjawisko piroelektryczne. Zjawiska: Ferroelektryczne Piroelektryczne Piezoelektryczne + - + - + -

Piezoelektryki. Piezoelektryczność. Trochę historii. Zjawisko piroelektryczne. Zjawiska: Ferroelektryczne Piroelektryczne Piezoelektryczne + - + - + - Ą Ś Trochę historii Coulob ierwszy zasugerował wystęowanie iezoeletryczności Bracia Curie (Jacques i Pierre) w 1880r. zaroonowali nazwę iezoeletryczność dla zjawisa, tóre zaobserwowali (generowanie ładunu

Bardziej szczegółowo

O ciężarkach na bloczku z uwzględnieniem masy nici

O ciężarkach na bloczku z uwzględnieniem masy nici 46 FOTON 3, ato O ciężarkach na bloczku z uwzględnienie asy nici Mariusz Tarnopolski Student fizyki IF UJ Rozważy klasyczne zadanie szkolne z dwoa ciężarkai zawieszonyi na nici przerzuconej przez bloczek,

Bardziej szczegółowo

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali świetlnej, promienia rzywizny soczewi płaso-wypułej

Bardziej szczegółowo

PROSTA I ELIPSA W OPISIE RUCHU DWU CIAŁ

PROSTA I ELIPSA W OPISIE RUCHU DWU CIAŁ D I D A C T I C S O F M A T H E M A T I C S No. 4 (8) 007 (Wrocław) PROSTA I ELIPSA W OPISIE RUCHU DWU CIAŁ Abstract. In this aer is shown a concet of exlanation of the oveent and collision of two objects

Bardziej szczegółowo

Energia wiązania słaba rzędu 10-2 ev J. Energia cieplna 3/2 k B. T J. Energia ruchu cieplnego powoduje rozerwanie wiązań cząsteczkowych.

Energia wiązania słaba rzędu 10-2 ev J. Energia cieplna 3/2 k B. T J. Energia ruchu cieplnego powoduje rozerwanie wiązań cząsteczkowych. Ciała stałe - o struturze rystalicznej wyazują daleo zasięgowe uporządowanie atoowe, są to onoryształy i poliryształy. - o struturze bezpostaciowej (aorficznej), wyazują bra uporządowania atoowego daleiego

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Wyznaczanie rozmiaro w przeszko d i szczelin za pomocą s wiatła laserowego

Wyznaczanie rozmiaro w przeszko d i szczelin za pomocą s wiatła laserowego Ćwiczenie v.x3.1.16 Wyznaczanie rozmiaro w przeszo d i szczelin za pomocą s wiatła laserowego 1 Wstęp teoretyczny Wyznaczanie rozmiarów szczelin i przeszód za pomocą światła oparte jest o zjawisa dyfracji

Bardziej szczegółowo

A4: Filtry aktywne rzędu II i IV

A4: Filtry aktywne rzędu II i IV A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową

Bardziej szczegółowo

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,

Bardziej szczegółowo

p t F F Siła. Zasady dynamiki Siły powodują ruch ciał materialnych i zmiany stanu ruchu.

p t F F Siła. Zasady dynamiki Siły powodują ruch ciał materialnych i zmiany stanu ruchu. Siła. Zasady dynaiki kg s Siła jest wielkością wektorową. Posiada określoną wartość, kierunek i zwrot. Jednostką siły jest niuton (N). 1N 1 A Siła przyłożona jest do ciała w punkcie A, jej kierunek oraz

Bardziej szczegółowo

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19) 256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UN EUROPEJSKEJ w raach EUROPEJSKEGO FUNDUSZU SPOŁECZNEGO Nuer Projektu: POKL.04.00-00-59/08 NSTYTUT FZYK WYDZAŁNśYNER PROCESOWEJ,

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20)

1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Badanie drgań modelu cząsteczki czteroatomowej(m20) 37 1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Celem ćwiczenia jest wyznaczenie widma drgań układu czterech wahadeł sprzężonych oraz wyznaczenie

Bardziej szczegółowo

M.A. Karpierz, Fizyka

M.A. Karpierz, Fizyka 5. Ruch falowy Fale Poruszać mogą się nie tylo obiety materialne, ale taże rozłady wartości różnych wielości fizycznych. Przemieszczające się zaburzenie (odstępstwa od wartości średniej) nazywane jest

Bardziej szczegółowo

Politechnika Warszawska Wydział Fizyki. Proponowane rozwiązania Matura 2013 FIZYKA Poziom podstawowy

Politechnika Warszawska Wydział Fizyki. Proponowane rozwiązania Matura 2013 FIZYKA Poziom podstawowy Politechnika Warszawska Wydział Fizyki Proponowane rozwiązania Matura 013 FIZYKA Pozio podstawowy Autorzy: prof. dr hab. Jerzy Jasiński Andżelika Sason Przeysław Dzięgielewski Robert Chudek Warszawa, aj

Bardziej szczegółowo

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie

Bardziej szczegółowo

1. RACHUNEK WEKTOROWY

1. RACHUNEK WEKTOROWY 1 RACHUNEK WEKTOROWY 1 Rozstrzygnąć, czy możliwe jest y wartość sumy dwóch wetorów yła równa długości ażdego z nich 2 Dane są wetory: a i 3 j 2 ; 4 j = + = Oliczyć: a+, a, oraz a 3 Jai ąt tworzą dwa jednaowe

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 5: Dynaika dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Przyczyny ruchu - zasady dynaiki dla punktu aterialnego Jeśli ciało znajduje się we właściwy iejscu,

Bardziej szczegółowo

P k k (n k) = k {O O O} = ; {O O R} =

P k k (n k) = k {O O O} = ; {O O R} = Definicja.5 (Kombinacje bez powtórzeń). Każdy -elementowy podzbiór zbioru A wybrany (w dowolnej olejności) bez zwracania nazywamy ombinacją bez powtórzeń. Twierdzenie.5 (Kombinacje bez powtórzeń). Liczba

Bardziej szczegółowo

Badanie układów RL i RC w obwodzie prądu przemiennego

Badanie układów RL i RC w obwodzie prądu przemiennego E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM Badanie kładów i C w obwodzie rąd rzeiennego Cel ćwiczenia: Przyrządy: Zagadnienia:

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnia dańsa Wydział Eletrotechnii i Automatyi Katedra Inżynierii Systemów Sterowania Podstawy Automatyi Transmitancyjne schematy bloowe i zasady ich rzeształcania Materiały omocnicze do ćwiczeń termin

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Zakres materiału do testu przyrostu kompetencji z fizyki w kl. II

Zakres materiału do testu przyrostu kompetencji z fizyki w kl. II Zakres materiału do testu przyrostu kompetencji z fizyki w kl. II Wiadomości wstępne 1.1Podstawowe pojęcia fizyki 1.2Jednostki 1.3Wykresy definiuje pojęcia zjawiska fizycznego i wielkości fizycznej wyjaśnia

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Koła rowerowe kreślą fraktale

Koła rowerowe kreślą fraktale 26 FOTON 114, Jesień 2011 Koła rowerowe reślą fratale Mare Berezowsi Politechnia Śląsa Od Redacji: Fratalom poświęcamy ostatnio dużo uwagi. W Fotonach 111 i 112 uazały się na ten temat artyuły Marcina

Bardziej szczegółowo

Algorytm wyznaczania krotności diagnostycznej struktury opiniowania diagnostycznego typu PMC 1

Algorytm wyznaczania krotności diagnostycznej struktury opiniowania diagnostycznego typu PMC 1 BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 18, 2003 Algoryt wyznaczania rotności diagnostycznej strutury opiniowania diagnostycznego typu PMC 1 Artur ARCIUCH Załad Systeów Koputerowych, Instytut Teleinforatyi

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnia Łódza FTIMS Kierune: Informatya ro aademici: 2008/2009 sem. 2. Termin: 16 III 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spetrometru siatowego Nr.

Bardziej szczegółowo

FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA

FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA Fizyka - cząsteczkowa Dział fizyki badający budowę i własności aterii przy założeniu, że każde ciało składa się z dużej liczby bardzo ałych cząsteczek. Cząsteczki te

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

OBLICZENIA W POMIARACH POŚREDNICH

OBLICZENIA W POMIARACH POŚREDNICH ROZDZAŁ 6 OBLCZENA W POMARACH POŚREDNCH Stefan ubisa Zachodniopoorsi niwersytet Technologiczny. Wstęp Poiar pośredni to tai w tóry wartość wielości ierzonej wielości wyjściowej ezurandu y oblicza się z

Bardziej szczegółowo

OCENA PORÓWNAWCZA OPORÓW RUCHU TOCZNEGO KULI W BIEŻNIACH O WYBRANYCH KSZTAŁTACH

OCENA PORÓWNAWCZA OPORÓW RUCHU TOCZNEGO KULI W BIEŻNIACH O WYBRANYCH KSZTAŁTACH Szybobieżne Pojazdy Gąsienicowe (19) nr 1, 2004 lesander KOWL OCEN PORÓWNWCZ OPORÓW RUCHU TOCZNEGO KULI W BIEŻNICH O WYBRNYCH KSZTŁTCH Streszczenie: Przedstawiono model sił reacji podłoża przy ruchu uli

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór

Bardziej szczegółowo