Zadania do rozdziału 5

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadania do rozdziału 5"

Transkrypt

1 Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi ciało o ciężarze P=mg podlega działaniu wypadowej dwóch sił: siły zsuwającej F t = P sin α i hamującej siły tarcia T = µ o Fn, F n = P cos α T = µ o P cos α Siła wypadowa F wywołująca ruch równa się ale P=mg F = Ft T F = P sin α µ o P cos α, zatem = mg( sin α µ cos α) F o Jeżeli przy danym ącie nachylenia równi ciało samorzutnie nie zaczyna się zsuwać, to znaczy że siła tarcia T jest więsza od siły zsuwającej F t. Stopniowo zwięszając nachylenie można osiągnąć tai ąt α, przy tórym ruch się rozpocznie. To świadczy o bardzo małej przewadze siły F t nad siłą T. W przybliżeniu można załadać, że przy ącie granicznym, zwanym ątem tarcia, zachodzi równość wspomnianych sił: F t = T Ostatnie równanie można też zapisać w postaci P sin α t = µ 0P cos α t gdzie µ 0 oznacza współczynni tarcia statycznego. Z dalszego przeształcenia wynia, że µ 0 = tg α t Współczynni tarcia statycznego równa się zatem tangesowi najmniejszego ąta α, przy tórym ciała zaczyna zsuwać się po równi pochyłej. 107

2 Zad.5.. Wyznaczyć pierwszą prędość osmiczną, czyli najmniejszą możliwą prędość υ I, jaą musi mieć punt materialny (satelita) swobodnie rążący po orbicie woół Ziemi. Promień Ziemi =6400 m. ozwiązanie: Wyobraźmy sobie pocis wystrzelony poziomo na wys. h nad Ziemią, tóremu nadano pewną prędość początową υ. Po przebyciu pewnej drogi pocis spadnie na Ziemię. Jeżeli będziemy zwięszać prędość początową pocisu, to jego droga będzie coraz dłuższa i przy pewnej prędości początowej pocis zacznie obiegać Ziemię doooła i nie spadnie na jej powierzchnię. Nastąpi to wtedy, gdy prędość początowa pocisu osiągnie pierwszą prędość osmiczną. Na poruszający się po orbicie pocis o masie m działają dwie siły F 1 i F o przeciwnych zwrotach: siła odśrodowa F = i r Mm siła grawitacji F 1 = g r Waruniem, aby orbita, po tórej porusza się pocis, była stabilna jest równowaga tych sił i stąd Promień r orbity satelity wynosi: g F 1 = F M m υ = m r r υ = g M r r = + Ponieważ h<< to pierwsza prędość osmiczna υ I wyraża się wzorem h 108

3 g M υ I = Ale wiemy, że na powierzchni Ziemi spełnione jest równanie: Ostatecznie m M mg = g g M = g g M υ I = = g Zad.5.3. υ I = m m s υ I = 794 m / s 7.9 m / s. Wyznaczyć drugą prędość osmiczną tzw. prędość ucieczi, czyli najmniejszą możliwą prędość υ II jaą musi mieć punt materialny (satelita) przy powierzchni Ziemi, aby mógł się oddalić od Ziemi w niesończoność. Promień Ziemi =6400 m. ozwiązanie: Obliczmy najpierw, z jaą prędością υ trzeba rzucić ciało pionowo do góry, aby wzniosło się ono na wysoość h. Zastosujemy w tym celu zasadę zachowania energii. Całowita energia mechaniczna 1 na powierzchni Ziemi wynosi: gdzie 1 = + p ( ) = to energia inetyczna Mm p = g to grawitacyjna energia potencjalna (patrz 5.19) M m 1 = g Całowita energia mechaniczna ciała na wysoości h ma postać: Mm = g bo na wysoości h; =0 + h Z prawa zachowania energii 1 = 109

4 g M m = g Mm + h Podstawiając υ = g M h h =, otrzymujemy prędość ucieczi g M υ II = Ale wiedząc, że na powierzchni Ziemi spełniona jest równość Ostatecznie M m mg = g gm = g g M υ II = = g m υ II = m s υ II = 1106 m / s 11. m / s Zad.5.4. Sani ześlizgują się z oblodzonej góry o wysoości h i zatrzymują się przebywając odległość CB. Odległość AB=S. Oreślić współczynnia tarcia µ sane o lodową powierzchnię. Obliczyć przyspieszenie a sane na odcisu CB. ozwiązanie: T1 µ = ; Fn T µ = ; P Fn = P cos α; P = mg 110

5 W puncie D sani mają energię potencjalną p = mgh W puncie C sani mają energię inetyczną c = = p WDC gdzie W DC to praca wyonana przeciw sile tarcia T 1 na odcinu DC. W puncie B sani mają υ = B 0, = 0 B = p WDC WCB = 0 gdzie W CB to praca wyonana przeciw sile tarcia T na odcinu CB. Z prawa zachowania energii p = WDC + WCB WDC = T1 DC WCB = T CB mgh = T1 DC + T CB T 1 = mg cos α µ T = mg µ CB = S AC ( S AC) mgh = mg cos α µ DC + mgµ ale AC = DC cos α mgh = mg µ S Zatem h µ = S Opóźnienie a na odcinu CB obliczamy z drugiej zasady dynamii Newtona m a = T T = mg µ i stąd m a = m g µ = gh a = S h mg S 111

6 Zad Wóze o masie m stacza się bez tarcia po szynach wygiętych ta ja na rysunu. Jaa jest najmniejsza wysoość h, aby wóze nie oderwał się od szyn w najwyższym puncie pętli ołowej o promieniu. ozwiązanie: W puncie A wóze ma energię mechaniczną A A A = + p A A gdzie A = = 0 bo w A υ = 0 A p = mgh W puncie B wóze ma energię mechaniczną B B B = + p B B B p B = = mg Z prawa zachowania energii A B = mgh = mg + B (*) υ B musi być ta duże aby siła odśrodowa B zrównoważyła ciężar wóza mg 11

7 Znając Zad.5.6. B = m g υ B = g υ B równanie (*) możemy zapisać mg mgh = mg + h = + = 5 h = 5 Ciało o ciężarze G ześlizguje się bez tarcia z nachylonej desi na nieruchomą platformę. Jaą prędość υ uzysa platforma, iedy ciężar na nią upadnie. Ciężar platformy wynosi G 1, wysoość początowa położenia ciała nad poziomem platformy wynosi h, a ąt nachylenia desi do poziomu α. Platforma porusza się bez tarcia. ozwiązanie: Ciało o ciężarze G ma masę G m = g Z prawa zachowania energii obliczamy prędość υ 1 upadu ciała na platformę mgh = 1 υ 1 = gh 113

8 W chwili upadu ciało ma pęd p 1 p 1 = 1 Wetor p 1 ma sładowe p1 x = 1x = 1 cos α p1 y = 1y = 1 sin α Ciało o ciężarze G po upadu na platformę o ciężarze G 1 pozostaje na tej platformie. Masa M platformy wraz z ciałem wynosi zatem G + G1 M = g Po upadu platforma uzysuje pęd p p = Mυ Wetor p ma sładowe p x = Mυ p y = 0 Z prawa zachowania pędu wynia, że p 1= p co pociąga p 1x = px Zatem możemy zapisać G1 + G g υ = G1 υ1x g υ1 x = υ1 cos α = G1 + G G1 υ = g g gh cos α gh cos α Zad.5.7. υ = G1 G1 + G gh cos α Trzy jednaowe uli wiszą styając się na trzech jednaowych niciach o jednaowych długościach. Jedną z ule odchylono w ierunu prostopadłym do prostej łączącej środi dwóch pozostałych ule i puszczono swobodnie. Do chwili zderzenia ula osiągnęła prędość υ. Jaie prędości będą posiadały uli po zderzeniu? 114

9 ozwiązanie: α = 30 o ; cos α = 3 Po zderzeniu pierwsza ula miała pęd I p 1 = m1υ i energię inetyczną zaś dwie pozostałe ule spoczywały a więc I m1υ 1 = I I I I p = p3 = 0 1 = = 0 Po zderzeniu ule uzysały odpowiednio prędości υ 1, υ i υ3, tórym odpowiadają pędy II II II p1 = m1υ1; p = ; p3 = m3υ3 oraz energie inetyczne II 1 m1υ1 II = ; II = ; 3 m3υ3 = Stosując prawo zachowania pędu możemy zapisać I II II II p1 = p1 + p + p3 co, gdy m1 = m = m3 = m, jest równoważne (1) = 1 + cos α + 3 cos α - dla osi y () 0 = 3 sin α + sin α - dla osi y Z () wynia, że υ = υ3 = υ/ 3 = 1 + /3 cos α; υ = υ1 + 3υ/3; υ + υ1 υ/3 = 3 Z zasady zachowania energii 1 m /3 = + 115

10 Po podstawieniu υ + υ1 υ/3 = otrzymujemy 3 υ = υ1 + ( υ + υυ1 + υ1 ) 3 3υ = 3υ1 + υ + 4υυ1 + υυ1 5υ 1 + 4υυ1 + υ = 0 = 16υ + 0υ = 36υ = ± 6υ 4υ + 6υ 1 υ1 = = + υ = + υ υ + υ υ υ = /3 = = υ

1. RACHUNEK WEKTOROWY

1. RACHUNEK WEKTOROWY 1 RACHUNEK WEKTOROWY 1 Rozstrzygnąć, czy możliwe jest y wartość sumy dwóch wetorów yła równa długości ażdego z nich 2 Dane są wetory: a i 3 j 2 ; 4 j = + = Oliczyć: a+, a, oraz a 3 Jai ąt tworzą dwa jednaowe

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4

= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4 Imię i nazwiso Daa Klasa Grupa A Sprawdzian 3 PracA, moc, energia mechaniczna 1. Ze sojącego działa o masie 1 wysrzelono pocis o masie 1 g. nergia ineyczna odrzuu działa w chwili, gdy pocis opuszcza lufę

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji) Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna

Bardziej szczegółowo

Zadanie na egzamin 2011

Zadanie na egzamin 2011 Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą

Bardziej szczegółowo

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji) Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1. Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź

Bardziej szczegółowo

Zasady oceniania karta pracy

Zasady oceniania karta pracy Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów Operon ZAKRES ROZSZERZONY 00% KOD WEWNĄTRZ KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Listopad 06 Vademecum Fizyka MATURA 07 VADEMECUM Fizyka Zacznij przygotowania

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Ćwiczenie: "Kinematyka"

Ćwiczenie: Kinematyka Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów Operon ZAKRES ROZSZERZONY 00% KOD WEWNĄTRZ GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* - Twój indywidualny klucz do wiedzy! *Kod na końcu klucza odpowiedzi KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Praca w języku potocznym

Praca w języku potocznym Praca w języku potocznym Kto wykonuje większą pracę? d d https://www.how-to-draw-funny-cartoons.com/cartoontable.html http://redwoodbark.org/016/09/1/text-heavy-hidden-weight-papertextbook-use/ https://www.freepik.com/free-photos-vectors/boy

Bardziej szczegółowo

Bryła sztywna Zadanie domowe

Bryła sztywna Zadanie domowe Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20

Bardziej szczegółowo

Ćwiczenie: "Dynamika"

Ćwiczenie: Dynamika Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

ZADANIA PRACA, MOC, ENREGIA

ZADANIA PRACA, MOC, ENREGIA ZADANIA PRACA, MOC, ENREGIA Aby energia układu wzrosła musi być wykonana nad ciałem praca przez siłę zewnętrzną (spoza układu ciał) Ciało, które posiada energię jest zdolne do wykonania pracy w sensie

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla. Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń

Bardziej szczegółowo

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t Zad. 1 Dwa okręty wyruszyły jednocześnie z tego samego miejsca w drogę w kierunkach do siebie prostopadłych, jeden z prędkością υ 1 = 30 km/h, drugi z prędkością υ 2 = 40 km/h. Obliczyć prędkość wzajemnego

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

FIZYKA Kolokwium nr 2 (e-test)

FIZYKA Kolokwium nr 2 (e-test) FIZYKA Kolokwium nr 2 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Cegłę o masie 2kg położono na chropowatej desce. Następnie jeden z końców

Bardziej szczegółowo

PRACA. MOC. ENERGIA. 1/20

PRACA. MOC. ENERGIA. 1/20 PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej

Bardziej szczegółowo

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"

Ćwiczenie: Symulacja zderzeń sprężystych i niesprężystych Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0 Zadania z dynamiki Maciej J. Mrowiński 11 marca 2010 Zadanie DYN1 Na ciało działa siła F (t) = f 0 cosωt (przy czym f 0 i ω to stałe). W chwili początkowej ciało miało prędkość v(0) = 0 i znajdowało się

Bardziej szczegółowo

Materiał powtórzeniowy dla klas pierwszych

Materiał powtórzeniowy dla klas pierwszych Materiał powtórzeniowy dla klas pierwszych 1. Paweł trzyma w ręku teczkę siłą 20N zwróconą do góry. Ciężar teczki ma wartośd: a) 0N b) 10N c) 20N d) 40N 2. Wypadkowa sił działających na teczkę trzymaną

Bardziej szczegółowo

Praca i energia. Zasada zachowania energii mechanicznej. Środek masy. Praca

Praca i energia. Zasada zachowania energii mechanicznej. Środek masy. Praca Praca i energia. Zasada zachowania energii mechanicznej. Środek masy. Praca Uwaga: Zadania w tej części rozwiązujemy przy pomocy twierdzenia o pracy i energii kinetycznej lub zasady zachowania energii

Bardziej szczegółowo

Dynamika: układy nieinercjalne

Dynamika: układy nieinercjalne Dynamika: układy nieinercjalne Spis treści 1 Układ inercjalny 2 Układy nieinercjalne 2.1 Opis ruchu 2.2 Prawa ruchu 2.3 Ruch poziomy 2.4 Równia 2.5 Spadek swobodny 3 Układy obracające się 3.1 Układ inercjalny

Bardziej szczegółowo

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa

Bardziej szczegółowo

DYNAMIKA ZADANIA. Zadanie DYN1

DYNAMIKA ZADANIA. Zadanie DYN1 DYNAMIKA ZADANIA Zadanie DYN1 Na ciało działa siła (przy czym i to stałe). W chwili początkowej ciało miało prędkość i znajdowało się w punkcie. Wyznacz położenie i prędkość ciała w funkcji czasu., Zadanie

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

Geometria analityczna przestrzeni

Geometria analityczna przestrzeni ALGEBRA LINIOWA 1 Wydział Mechaniczny / AIR, MTR Semestr zimowy 2009/2010 Prowadzący: dr Teresa Jurlewicz Wetory, długość wetora Geometria analityczna przestrzeni Zadanie 1 [5.1] Obliczyć długości podanych

Bardziej szczegółowo

Grawitacja. =2,38 km/s. Promień Księżyca jest równy R=1737km. Zadanie - Pierwsza prędkość kosmiczna fizyka.biz 1

Grawitacja. =2,38 km/s. Promień Księżyca jest równy R=1737km. Zadanie - Pierwsza prędkość kosmiczna fizyka.biz 1 Obliczyć wysokość na jaką wzniesie się ciało rzucone na Księżycu pionowo do góry z prędkością v=1 m/s? Druga prędkość kosmiczna dla Księżyca ma wartość v =,38 km/s. Promień Księżyca jest równy R=1737km.

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 01 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1

XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1 XXX OLMPADA FZYCZNA (1980/1981). Stopień, zadanie teoetyczne T4 1 Źódło: Komitet Główny Olimpiady Fizycznej; Waldema Gozowsi; Andzej Kotlici: Fizya w Szole, n 3, 1981.; Andzej Nadolny, Kystyna Pniewsa:

Bardziej szczegółowo

ZASADY DYNAMIKI NEWTONA

ZASADY DYNAMIKI NEWTONA ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań

Bardziej szczegółowo

Grawitacja - powtórka

Grawitacja - powtórka Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

FIZYKA Kolokwium nr 3 (e-test)

FIZYKA Kolokwium nr 3 (e-test) FIZYKA Kolokwium nr 3 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Z balkonu znajdującego się na wysokości 11m nad ziemią wypadła poduszka o

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Wykład 10. Ruch w układach nieinercjalnych

Wykład 10. Ruch w układach nieinercjalnych Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

Przykładowe zdania testowe I semestr,

Przykładowe zdania testowe I semestr, Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne ZADANIE D Nazwa zadania: Prędość chwilowa uli Zaproponuj metodę pomiaru prędości chwilowej stalowej uli poruszającej się po zadanym torze. Wyorzystaj

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO

09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO Włodzimierz Wolczyński 09-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY DYNAMIKA RUCHU PROSTOLINIOWEGO Obejmuje działy u mnie wyszczególnione w konspektach jako 01 WEKTORY,

Bardziej szczegółowo

3.3. Energia mechaniczna. Rodzaje energii mechanicznej

3.3. Energia mechaniczna. Rodzaje energii mechanicznej 1 3.3. Energia mecaniczna. Rodzaje energii mecanicznej Dwa lub więcej oddziałującyc wzajemnie ciał nazywamy układem ciał. Siły wzajemnego oddziaływania na siebie ciał tworzącyc układ są siłami wewnętrznymi

Bardziej szczegółowo

XXI OLIMPIADA FIZYCZNA ETAP I Zadanie teoretyczne

XXI OLIMPIADA FIZYCZNA ETAP I Zadanie teoretyczne XXI OLIMPIADA FIZYCZNA ETAP I Zadanie teoretyczne Nazwa zadania: ównia pochyła ZADANIE T Na wierzchołku równi o wysokości h znajduje się kulka Początkowe prędkości kulki (liniowa i kątowa) są równe zeru

Bardziej szczegółowo

Paweł Kogut. Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponad gimnazjalnych. Wirtualne Laboratorium Fizyki Ćwiczenie:

Paweł Kogut. Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponad gimnazjalnych. Wirtualne Laboratorium Fizyki Ćwiczenie: Paweł Kogut Projekt eizyka Multimedialne środowisko nauczania fizyki dla szkół ponad gimnazjalnych Wirtualne Laboratorium izyki Ćwiczenie: Równia Pochyła (Instrukcja obsługi) Projekt współfinansowany przez

Bardziej szczegółowo

Q strumień objętości, A przekrój całkowity, Przedstawiona zależność, zwana prawem filtracji, została podana przez Darcy ego w postaci równania:

Q strumień objętości, A przekrój całkowity, Przedstawiona zależność, zwana prawem filtracji, została podana przez Darcy ego w postaci równania: Filtracja to zjawiso przepływu płynu przez ośrode porowaty (np. wody przez grunt). W więszości przypadów przepływ odbywa się ruchem laminarnym, wyjątiem może być przepływ przez połady grubego żwiru lub

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i postaraj się

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE

POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE POWTÓRKA PRZED KONKURSEM CZĘŚĆ C DO ZDOBYCIA PUNKTÓW 55 Jest to powtórka przed etapem szkolnym z materiałem obejmującym dynamikę oraz drgania i fale. ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte (na 10) otwarte

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

v p dr dt = v dr= v dt

v p dr dt = v dr= v dt Rozpędzanie obiektów Praca sił przy rozpędzaniu obiektów b W = a b F dr = a m v dv dt dr = k v p dr dt =v dr=v dt m v dv = m v 2 k 2 2 m v p 2 Wyrażenie ( mv 2 / 2 )nazywamy energią kinetyczną rozpędzonego

Bardziej szczegółowo

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Włodzimierz Wolczyński 14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Obejmuje działy u mnie wyszczególnione w konspektach jako 10 RUCH JEDNOSTAJNY PO OKRĘGU 11 POWTÓRKA

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

A = (A X, A Y, A Z ) A X i + A Y j + A Z k A X e x + A Y e y + A Z e z wektory jednostkowe: i e x j e y k e z.

A = (A X, A Y, A Z ) A X i + A Y j + A Z k A X e x + A Y e y + A Z e z wektory jednostkowe: i e x j e y k e z. Ćwiczenia rachunkowe z fizyki dla I roku Transport Morski. Zestaw zadań nr 1. Zestaw 1. Wielkości i jednostki. Wektory. Zapisać w jednostkach układu SI: 2 doby; 14 minut;2,5 godz.; 3 000 lat; 3 MM (mile

Bardziej szczegółowo