Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego"

Transkrypt

1 Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii: znane siły, szuay jai będzie sute ruhu. Funje sił podstawiay do równania różnizowego i je rozwiązujey etodą zależną od sopliowania tego równania. Paiętay o warunah pozątowyh, stałyh ałowani, istnieniu rozwiązania ogólnego i szzególnego. Równania ruhu piszey bezpośrednio z prawa Newtona rozpisują je na osie przyjętego uładu współrzędnyh prostoątnego, biegunowego, naturalnego, wzory na przyspieszenia ja w ineatye. W równaniah ogą występować siły zależne od położenia np. grawitaji, sprężystośi. W równaniah ogą występować siły zależne od prędośi ruhu np. opór powietrza. W równaniah ogą występować siły w forie zadanej funji zasu w przeiwieństwie do dwóh powyższyh te siły piszey po prawej stronie równań ruhu. Jeśli punt aterialny jest nieswobodny a ogranizenia ruhu to do równań ruhu dodajey tzw. równania więzów. Ogranizenia wyniają zazwyzaj z geoetrii uładu np. punt leży na płaszzyźnie, punt jest zaoowany na nieroziągliwej nii. Pewne inforaje o ruhu puntu aterialnego ożna otrzyać bilansują energię uładu poiędzy dwiea hwilai ruhu. Należy przy ty uwzględnić jego energię inetyzną, potenjalną grawitaji, potenjalną zawartą w eleentah sprężystyh oraz energię straoną z powodu oporów ruhu. Energia straona to np. praa sił taria lub oporu powietrza. Siła taria suhego w zasie ruhu a wartość stałą, wię łatwiej polizyć ih praę. Opory powietrza zależą od prędośi, stąd należało by lizyć prae za pooą ałi, o oże być trudne. Jeśli w równaniah ruhu pojawią się zynnii nieliniowe przeieszzenia lub prędośi w potęgah drugih i wyższyh to nie ożey rozwiązać analityznie tyh równań, a jedynie wysnuć pewne wniosi na teat stanu ustalonego ruhu podstawiają zerowe przyspieszenie. Dynaia uładu puntów aterialnyh Dla ażdego puntu aterialnego w uładzie piszey równania ruhu w przyjęty uładzie współrzędnyh oże być inny dla ażdego z puntów. W równaniah ruhu należy paiętać o wszystih siłah zewnętrznyh i reajah działająyh w uładzie. Do równań ruhu dopisujey równania więzów ruh po zadanej powierzhni, nieroziągliwe nii itp.. Jeśli występuje tarie suhe, to ierune siły taria należy założyć znają spodziewany ierune ruhu uładu.

2 Przyłady ZADANIE 1. Wyznazanie prędośi asyalnej saohodu i zasu rozpędzania do zadanej prędośi, gdy saohód potratujey jao punt aterialny pod działanie stałej siły napędowej i oporów powietrza proporjonalnyh do prędośi ja zadanie ze sozie z zajęć. ZADANIE 2. Kulę o objętośi V i gęstośi ateriału wrzuay do wody o gęstośi w z zerową prędośią pozątową. Opory ruhu w wodzie potratujey jao proporjonalne do prędośi ze współzynniie. Jai będzie zas opadania uli na dno zbiornia o głęboośi H? Równanie ruhu: x =F Fop F wyp, asa uli = V siła iężośi F = g siła oporu wody Fop = x siła wyporu wody F wyp=w V g gdzie: Po podstawieniu i uproszzeniu równanie ruhu: x + x =g 1 w t Rozwiązanie ogólne równania jednorodnego: x t= A + A e og 1 2 Rozwiązanie szzególne równania pełnego: x sz t=b t bo zero jest pierw. równ. harat. g 1 w Z postawienia B= t g 1 w t podstawiay zerowe waruni pozątowe i otrzyujey: w t 2 g x t = 2 1 e 1+ t Teraz do rozwiązania pełnego x t = A1 + A2 e + Czas spadu otrzyay przyrównują powyższą funję do zadanej głęboośi H i wyznazają zas równanie rozwiązywalne tylo w sposób przybliżony. ZADANIE 3. Zadanie ja na zajęiah, ale proszę poćwizyć przeiwny ierune ruhu i nahylenie równi w drugą stronę.

3 ZADANIE 4.

4

5 Przyłady dodatowe np. do naui na egzain prawo ruhu środa asy, zasady ziennośi i zahowania pędu i rętu, iąg dalszy nastąpi... Sebastian Korza,

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla

Bardziej szczegółowo

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3

LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3 LVII OLIMPIADA FIZYCZNA (2007/2008). Stopień I, zadanie doświadczalne D3 Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Andrzej Wysołek plik; Koitet Główny Olipiady Fizycznej. Andrzej Wysołek Koitet

Bardziej szczegółowo

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne,

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne, sg M 6-1 - Teat: Prawo Hooe a. Oscylacje haroniczne. Zagadnienia: prawa dynaii Newtona, siła sprężysta, prawo Hooe a, oscylacje haroniczne, ores oscylacji. Koncepcja: Sprężyna obciążana różnyi asai wydłuża

Bardziej szczegółowo

Relaksacja. Chem. Fiz. TCH II/19 1

Relaksacja. Chem. Fiz. TCH II/19 1 Relasaja Relasaja oznaza powrót uładu do stanu równowagi po zaburzeniu równowagi pierwotnej jaimś bodźem (wielośią zewnętrzną zmieniająą swoją wartość soowo, np. stężenie jednego z reagentów, iśnienie

Bardziej szczegółowo

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY

Bardziej szczegółowo

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać: RUCH DRGAJĄCY Ruch haroniczny Ruch, tóry owtarza się w regularnych odstęach czasu, nazyway ruche oresowy (eriodyczny). Szczególny rzyadie ruchu oresowego jest ruch haroniczny: zależność rzeieszczenia od

Bardziej szczegółowo

MGR 2. 2. Ruch drgający.

MGR 2. 2. Ruch drgający. MGR. Ruch drgający. Ruch uładów drgających (sprężyny, guy, brzeszczou, ip.). Badanie ruchu ciała zawieszonego na sprężynie. Wahadło aeayczne. Wahadło fizyczne. Rezonans echaniczny. Ćw. 1. Wyznaczanie oresu

Bardziej szczegółowo

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU. KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ Problemy Kolejnictwa Zeszyt 5 97 Prof. dr hab. inż. Władysław Koc Politechnia Gdańsa METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ SPIS TREŚCI. Wprowadzenie. Ogólna ocena sytuacji geometrycznej

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

Komputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d

Komputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d Komputerowa reprezentacja oraz prezentacja i graficzna edycja rzywoliniowych obietów 3d Jan Prusaowsi 1), Ryszard Winiarczy 1,2), Krzysztof Sabe 2) 1) Politechnia Śląsa w Gliwicach, 2) Instytut Informatyi

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naleję MFA-P1_1P-08 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 10 inut MAJ ROK 008 Instrucja

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II ...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 1 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych zadań polega

Bardziej szczegółowo

Ł Ł ć ć ż ż ż ź ź Ć ń ł ź ż ś ł ź ń ś ż ś ś ś ś ż ź ż ż ź ł ż ż ż ś ś ś ś ż ś ś ź Ś ś ż ś ś ł ż ś ś ł ź ź Ź ś ź ł ż ż ń ł ść ł ś ść ś ż ć ś ż ś ś ź ń ć ź ść ź ż ż ść ć ść ść Ź Ź ł ś ń ł ś ś ł ł ś ś ś ś

Bardziej szczegółowo

Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l

Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l Nazwisko Data Nr na liśie Imię Wydział Ćwizenie 36 Dzień tyg Godzina Wyznazanie ogniskowej sozewek metodą Bessela i pomiar promieni krzywizny za pomoą serometr I Wyznazanie ogniskowej sozewki skpiająej

Bardziej szczegółowo

NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7

NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7 Geotehnizne zagadnienia realizaji budowli drogowyh projekt, dr inż. Ireneusz Dyka Kierunek studiów: Budownitwo, studia I stopnia Rok IV, sem.vii 19 NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7 Według

Bardziej szczegółowo

2... Pˆ - teoretyczna wielkość produkcji (wynikająca z modelu). X X,..., b b,...,

2... Pˆ - teoretyczna wielkość produkcji (wynikająca z modelu). X X,..., b b,..., Główne zynniki produkji w teorii ekonoii: praa żywa (oznazenia: L, ), praa uprzediotowiona (kapitał) (oznazenia: K, ), zieia (zwłaszza w rolnitwie). Funkja produkji Cobba-Douglasa: b b b P ˆ b... k 0 k

Bardziej szczegółowo

4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI

4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI 4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI Na wielkość depresji zwieriadła wody w pompowanej studni wpływ mają zjawiska hydraulizne wywołane przepływem laminarnym, występująym w ujętej warstwie wodonośnej

Bardziej szczegółowo

Wykres linii ciśnień i linii energii (wykres Ancony)

Wykres linii ciśnień i linii energii (wykres Ancony) Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery Reprezentacje grup puntowych związi pomiędzy h i n a jednoznacznie wyznaczają wymiary wszystich reprezentacji grup puntowych, a związi ortogonalności jednoznacznie wyznaczają ich charatery oznaczenia:

Bardziej szczegółowo

Zajęcia wyrównawcze z fizyki -Zestaw 3 dr M.Gzik-Szumiata

Zajęcia wyrównawcze z fizyki -Zestaw 3 dr M.Gzik-Szumiata Prjekt Inżynier mehanik zawód z przyszłśią współfinanswany ze śrdków Unii Eurpejskiej w ramah Eurpejskieg Funduszu Spłezneg Zajęia wyrównawze z fizyki -Zestaw 3 dr M.Gzik-Szumiata Kinematyka,z.. Ruhy dwuwymiarwe:

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba

Bardziej szczegółowo

Podstawy Obliczeń Chemicznych

Podstawy Obliczeń Chemicznych odstawy Oblizeń Cheiznyh Autor rozdziału: aiej Walewski Z korektą z dnia 050009 009 korekta odowiedzi do zadania 56 000 korekta treśi zadania 577 Rozdział 5: Stężenia roztworów Stehioetria reakji w roztworah

Bardziej szczegółowo

PAiTM - zima 2014/2015

PAiTM - zima 2014/2015 PAiTM - zima 204/205 Wyznaczanie przyspieszeń mechanizmu płaskiego metodą planu przyspieszeń (metoda wykreślna) Dane: geometria mechanizmu (wymiary elementów, ich położenie i orientacja) oraz stała prędkość

Bardziej szczegółowo

OPRACOWANIE PROGRAMU DO SYMULOWANIA LOTU RAKIET BALISTYCZNYCH DALEKIEGO ZASIĘGU

OPRACOWANIE PROGRAMU DO SYMULOWANIA LOTU RAKIET BALISTYCZNYCH DALEKIEGO ZASIĘGU Dr inż. Marin WACHULSKI Dr inż. Jaek WACHULSKI Wojskowa Akademia Tehnizna DOI: 10.17814/mehanik.015.7.315 OPACOWANI POGAMU DO SYMULOWANIA LOTU AKIT BALISTYCZNYCH DALKIGO ZASIĘGU Streszzenie: W referaie

Bardziej szczegółowo

Rekonstrukcja zderzenia dwóch samochodów osobowych podstawowe zasady i praktyka ich stosowania

Rekonstrukcja zderzenia dwóch samochodów osobowych podstawowe zasady i praktyka ich stosowania Reonstrucja zderzenia dwóch saochodów osobowch podstawowe zasad i prata ich stosowania dr inŝ. Mirosław Gidlewsi Politechnia Radosa, WŜsza zoła Biznesu, RN RTiRD gr inŝ. Lesze Jeioł Politechnia Radosa

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

Macierze hamiltonianu kp

Macierze hamiltonianu kp Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej

Bardziej szczegółowo

SYSTEMY STEROWANIA. Serwomechanizm edukacyjny. Ćwiczenia laboratoryjne 1-7 WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI

SYSTEMY STEROWANIA. Serwomechanizm edukacyjny. Ćwiczenia laboratoryjne 1-7 WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI SYSTEMY STEROWANIA Ćwizenia laboratoryjne - 7 Serwomehanizm eduayjny Oraował: Dr inż. Andrzej Ruzewi BIAŁYSTOK, . Wtę Eduayjny

Bardziej szczegółowo

Mechanika relatywistyczna

Mechanika relatywistyczna Mehanika relatywistyzna Konepja eteru Eter kosmizny miał być speyfiznym ośrodkiem, wypełniająym ałą przestrzeń, który miał być nośnikiem fal świetlnyh (później w ogóle pola elektromagnetyznego). W XIX

Bardziej szczegółowo

INSTRUKCJA. do ćwiczenia laboratoryjnego Temat: Prasowanie izostatyczne proszków w formach z tworzyw sztucznych

INSTRUKCJA. do ćwiczenia laboratoryjnego Temat: Prasowanie izostatyczne proszków w formach z tworzyw sztucznych INSTRUKCJA do ćwizenia laboratoryjnego Temat: Prasowanie izostatyzne proszków w ormah z tworzyw sztuznyh 1. CEL ĆWICZENIA Celem ćwizenia jest zapoznanie studentów z izostatyzna tehniką ormowania proszków,

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Nazwa Przedmiotu: Mechanika klasyczna i relatywistyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: rok studiów,

Bardziej szczegółowo

Rys 3-1.Szkic usytuowania sondy i obiektu przy prezentacji A. Rys 3-2.Typowy dla prezentacji A sygnał.

Rys 3-1.Szkic usytuowania sondy i obiektu przy prezentacji A. Rys 3-2.Typowy dla prezentacji A sygnał. 3. Rodzaje prezentaji w badaniah USG. W zależnośi od rodzaju badania stosuje się różne rodzaje prezentaji danyh ultradźwiękowyh. Najprostszym sposobem prezentaji, i historyznie najpierwszym, jest prezentaja

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Poziom podstawowy

FUNKCJA KWADRATOWA. Poziom podstawowy FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym . Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego

Bardziej szczegółowo

14. Teoria względności

14. Teoria względności . Teoria wzglęnośi.. Prękość w ukłaah inerjalnyh. Y Z Z Y V V V X X Wzglęe ukłau O unkt aterialny a szybkość x t' Natoiast wzglęe ukłau O a szybkość x t. Skoro x γ (x t ) to x γ (x t ) Natoiast x' x' t

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

WYKŁAD DLA KIERUNKU MECHANIKA I BUDOWA MASZYN

WYKŁAD DLA KIERUNKU MECHANIKA I BUDOWA MASZYN WYKŁAD DLA KIERUNKU MECHANIKA I BUDOWA MASZYN . Analiza struturalna. Więzy bierne i ich eliminaca 3. Analiza inematyczna 4. Analiza inematyczna c.d. metody wetorowe 5. Metody analityczne inematyi 6. Charaterystya

Bardziej szczegółowo

Załącznik nr 1 do Uchwały Nr 519/2015 Zarządu PKP Polskie Linie Kolejowe S.A. z dnia 16 czerwca 2015 r.

Załącznik nr 1 do Uchwały Nr 519/2015 Zarządu PKP Polskie Linie Kolejowe S.A. z dnia 16 czerwca 2015 r. Załąznik nr 1 do Uhwały Nr 519/2015 Zarządu PKP Polskie Linie Kolejowe S.A. z dnia 16 zerwa 2015 r. Zasady organizaji systemu zarządzania kryzysowego w zasie wystąpienia zagrożeń oraz sytuaji kryzysowyh

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną

Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną Zbigniew Szulc 1. Wstęp Wentylatory dużej mocy (powyżej 500 kw stosowane

Bardziej szczegółowo

USTAWA 16 kwietnia 2004 r. o czasie pracy kierowców 1)

USTAWA 16 kwietnia 2004 r. o czasie pracy kierowców 1) Typ/organ wydająy Ustawa/Sejm RP Tytuł o zasie pray kierowów Skróony opis zas pray kierowów Data wydania 16 kwietnia 2004 r. Data ogłoszenia 30 kwietnia 2004 r./dz. U. Nr 92, poz. 879 Data obowiązywania/wejśia

Bardziej szczegółowo

Analiza rozkładu sił reakcji podłoża podczas dynamicznie stabilnego chodu robota dwunożnego

Analiza rozkładu sił reakcji podłoża podczas dynamicznie stabilnego chodu robota dwunożnego Pomiary Automatya obotya 7-8/2009 Analiza rozładu sił reacji podłoża podczas dynamicznie stabilnego chodu robota dwunożnego Teresa Zielińsa Maciej T. Trojnaci Praca stanowi ontynuację badań opisanych w

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Procesowej Zakład Termodynamiki i Pomiarów Maszyn Cieplnych

POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Procesowej Zakład Termodynamiki i Pomiarów Maszyn Cieplnych POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Proesowej Zakład Termodynamiki i Pomiarów Maszyn Cieplnyh LABORATORIUM TERMODYNAMIKI I POMIARÓW MASZYN CIEPLNYCH Podstawy teoretyzne do ćwizeń laboratoryjnyh

Bardziej szczegółowo

D.4 VHM. ATIGarryson. High-performance tools. Ready for action. Pilniki obrotowe z węglika spiekanego firmy Garryson. Allegheny Technologies

D.4 VHM. ATIGarryson. High-performance tools. Ready for action. Pilniki obrotowe z węglika spiekanego firmy Garryson. Allegheny Technologies High-performane tool. Reay for ation. D.4 VHM Pilnii obrotowe z węglia pieanego firmy Garryon TIGarryon llegheny Tehnologie iepowleane p i l n i i o b r o t o w e z w ę g l i a p i e a n e g o niepowleane

Bardziej szczegółowo

Teoretyczne podstawy udarów wspinaczkowych

Teoretyczne podstawy udarów wspinaczkowych Teoretyzne postawy uarów wspinazkowyh Marek Kujawiński Współzesny sprzęt wspinazkowy jest tak mony, że na pewno wytrzyma - to oraz zęśiej wypowiaana i promowana przez wielu wspinazy opinia, a przeież nie

Bardziej szczegółowo

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE Zasady wyznazana depozytów zabezpezaąyh po wprowadzenu do obrotu op w rela lent-buro malerse ZAADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERKIE

Bardziej szczegółowo

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S Zadanie 1. Napisz równanie prostej przechodzącej przez punkt odcinka o koocach M N. Rozwiązanie - 1 sposób 1.Znajdujemy współrzędne punktu S będącego środkiem odcinka MN: oraz środek 2.Piszemy równanie

Bardziej szczegółowo

7. Drgania i fale. Drgania

7. Drgania i fale. Drgania 7 Drgania i fale Drgania Ruche drgający okresowy nazyway taki ruch w który układ po upływie pewnego czasu nazywanego okrese drgania wraca do stanu wyjściowego Drganie haroniczne proste W ujęciu geoetryczny

Bardziej szczegółowo

Konstrukcje typowe. Rusztowania ramowe typ PIONART model BAL

Konstrukcje typowe. Rusztowania ramowe typ PIONART model BAL Konstrukje typowe Rusztowania ramowe typ Konstrukje typowe Rusztowania ramowe typ Opraowanie to stanowi wyiąg z DTR PIONART jest złonkiem Polskiej Izy Gospodarzej Rusztowań Copyright y PIONART, Zarze

Bardziej szczegółowo

PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO

PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO Mgr Beata Malec, dr Mare Biesiada, dr Anicenta Buba Instytut Medycyny Pracy i Zdrowia Środowisowego, Sosnowiec Wstęp Zagrożenia zdrowotne stwarzane

Bardziej szczegółowo

OBLICZENIA W POMIARACH POŚREDNICH

OBLICZENIA W POMIARACH POŚREDNICH ROZDZAŁ 6 OBLCZENA W POMARACH POŚREDNCH Stefan ubisa Zachodniopoorsi niwersytet Technologiczny. Wstęp Poiar pośredni to tai w tóry wartość wielości ierzonej wielości wyjściowej ezurandu y oblicza się z

Bardziej szczegółowo

Konstrukcje typowe. Rusztowania ramowe typ PIONART model PUM

Konstrukcje typowe. Rusztowania ramowe typ PIONART model PUM Konstrukje typowe Rusztowania ramowe Konstrukje typowe Rusztowania ramowe Opraowanie to stanowi wyiąg z DTR PIONART jest złonkiem Polskiej Izy Gospodarzej Rusztowań Copyright y PIONART, Zarze 2013. Wszelkie

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału. Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się

Bardziej szczegółowo

Moduł stolika liniowego

Moduł stolika liniowego Podstawy Konstrucji Urządzeń Precyzyjnych Materiały pomocnicze do ćwiczeń projetowych część 1 Moduł stolia liniowego Presrypt opracował: dr inż. Wiesław Mościci Warszawa 2014 Materiały zawierają informacje

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Geometria, Księga II, strony 315 323

Geometria, Księga II, strony 315 323 Argument Vol. 4 (2/2014) pp. 439 446 TRANSLATIONS INTO POLISH / PRZEKŁADY Geometria, Księga II, strony 315 323 Kartezjusz KEYWORDS Desartes; The Geometry; geometrial urve; ontinuous quantity; point ACKNOWLEDGEMENT

Bardziej szczegółowo

1 Oscylator tłumiony *

1 Oscylator tłumiony * Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskieo Funduszu Społeczneo w raach Prorau Operacyjneo Kapitał Ludzki. Kurs Plus - Fizyka ateriały

Bardziej szczegółowo

XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadzalne ZADANIE D1 Nazwa zadania: Wyznazanie iepła pierwiastków (azot, ołów) Wyznaz iepło rowania iekłego azotu oraz iepło właśiwe ołowiu (wartość średnią

Bardziej szczegółowo

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Wpływ zamiany typów eletrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Grzegorz Barzy Paweł Szwed Instytut Eletrotechnii Politechnia Szczecińsa 1. Wstęp Ostatnie ila lat,

Bardziej szczegółowo

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt) Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

2. Podstawowe pojęcia

2. Podstawowe pojęcia mgr Marian MENDEL Wojsowy Instytut Techniczny Uzbrojenia PRZELICZANIE I TRANSFORMACJA WSPÓŁRZĘDNYCH POMIĘ- DZY UKŁADAMI ODNIESIENIA Streszczenie. W artyue przedstawiono zagadnienia związane przeiczaniem

Bardziej szczegółowo

2013-10-17. Bramki logiczne o specjalnych cechach. τ ~ R*C. Bramka z otwartym kolektorem.

2013-10-17. Bramki logiczne o specjalnych cechach. τ ~ R*C. Bramka z otwartym kolektorem. 23--7 Brami logiczne o specjalnych cechach U WY Brama chmitta (7432): niestandardowa brama cyrowa charaterystya zawiera pętlę histerezy H Zastosowania: L.9 V.7 V U wprowadzanie do eletronii cyrowej sygnałów

Bardziej szczegółowo

TWIERDZENIA O WZAJEMNOŚCIACH

TWIERDZENIA O WZAJEMNOŚCIACH 1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI Instrukcja dla zdającego

Bardziej szczegółowo

Ochrona odgromowa obiektów budowlanych. Nowe wymagania wprowadzane przez normy

Ochrona odgromowa obiektów budowlanych. Nowe wymagania wprowadzane przez normy Ochrona odgromowa obietów budowlanych. Nowe wymagania wprowadzane przez normy serii PN-EN 62305 Andrzej Sowa Politechnia Białostoca Podstawowym zadaniem urządzenia piorunochronnego jest przejęcie i odprowadzenie

Bardziej szczegółowo

Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy

Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy Ćwiczenie: Doświadczenia 2-grupowe EXCEL Do weryikacji różnic iędzy dwiea grupai jednostek doświadczalnych w Excelu wykorzystujey unkcję o nazwie TEST.T. Zastosowana unkcja (test statystyczny) pozwala

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Skojarzone wytwarzanie energii elektrycznej i ciepła na bazie elektrowni jądrowej w Polsce

Skojarzone wytwarzanie energii elektrycznej i ciepła na bazie elektrowni jądrowej w Polsce onfeencja nauowo-techniczna 13 15 lutego 2013. NAUA I TECHNIA WOBEC WYZWANIA BUDOWY ELETROWNI JĄDROWEJ MĄDRALIN 2013 Wazawa, Intytut Technii Cieplnej Politechnii Wazawiej D hab. inż. azimiez Duziniewicz

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE

ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE 1. Ruch planet dookoła Słońca Najjaśniejszą gwiazdą na niebie jest Słońce. W przeszłości debatowano na temat związku Ziemi i Słońca, a także innych

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

OPTYMALNA STRUKTURA PODATKOWA

OPTYMALNA STRUKTURA PODATKOWA PRZEGLĄ D ZACHODNIOPOMORSKI TOM XXVIII (LVII) ROK 23 ZESZYT 3 VOL. 2 ROZPRAWY I STUDIA JANUSZ KUDŁA, AGATA KOCIA, KATARZYNA KOPCZEWSKA ROBERT KRUSZEWSKI, KONRAD WALCZYK * Warszawa OPTYMALNA STRUKTURA PODATKOWA

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

Politechnika Warszawska Wydział Fizyki. Proponowane rozwiązania Matura 2013 FIZYKA Poziom podstawowy

Politechnika Warszawska Wydział Fizyki. Proponowane rozwiązania Matura 2013 FIZYKA Poziom podstawowy Politechnika Warszawska Wydział Fizyki Proponowane rozwiązania Matura 013 FIZYKA Pozio podstawowy Autorzy: prof. dr hab. Jerzy Jasiński Andżelika Sason Przeysław Dzięgielewski Robert Chudek Warszawa, aj

Bardziej szczegółowo