Rozsądny i nierozsądny czas działania
|
|
- Dawid Muszyński
- 8 lat temu
- Przeglądów:
Transkrypt
1 ZŁOŻONOŚĆ OBLICZENIOWA Wyzaczaie złożoości obliczeiowej dokładej i asymptotyczej Złożoość obliczeiowa algorytmów Chcemy podać miarodają oceę efektywości algorytmu, abstrahując od komputera, techiki (języka) programowaia, szczegółów techiczych implemetacji. W tym celu dążymy do podaia zależości fukcyjej wiążącej złożoość (pracochłoość) algorytmu z rozmiarem problemu. Dlatego defiiujemy astępujące pojęcia: Operacja podstawowa pozwala oceić złożoość czasową algorytmu, abstrahując od komputera i języka programowaia (czas wykoaia ie jest miarodajy). Na ogół jest to operacja wykoywaa ajczęściej (ajbardziej zagieżdżoa w strukturze algorytmu). Złożoość obliczeiową algorytmu wiążemy ze złożoością jego ajbardziej czasochłoego fragmetu. Rozmiar daych wejściowych Krotość wykoaia operacji podstawowej Z = f( Rozsądy i ierozsądy czas działaia W aalizie złożoości algorytmów mamy do czyieia z dwoma kategoriami fukcji wiążących rozmiar daych wejściowych z czasem wykoaia algorytmu. fukcje rozsąde (wielomiaowe) problemy algorytmicze łatwo rozwiązywale: lo,, lo,, 3, k fukcje ierozsąde (iewielomiaowe, wykładicze i poadwykładicze) problemy algorytmicze trudo rozwiązywale: lo,, 3, k,!, Mówimy tak mimo oczywistej względości tych problemów. Np. rozsądy algorytm k, k=0 ma gorszą złożoość obliczeiową iż ierozsądy algorytm k, k=1,05 dla rozmiaru problemu <334. Jedakże zawsze zajdziemy taką wartość graiczą rozmiaru problemu obliczeiowego, dla której algorytm trudo rozwiązywaly będzie rozwiązyway dłużej iż algorytm łatwo rozwiązywaly. Problem ułożeia 4 puzzli (x): (14)(4)(34)(44) = 4!4 4 = 6144 wariaty W ajgorszym przypadku dla puzzli jest do sprawdzeia!4 przypadków ( ilość puzzli) Problem ułożeia 9 puzzli (3x3): (14)(4)(34)... (84) (94) = 9!4 9 = 95 miliardów wariatów Gdyby puzzli było 5 (tylko 5x5) to do sprawdzeia będzie już: (14)(4)(34)... (44)(54) = 5!4 5 = liczba 41-cyfrowa
2 Rys. 1. Porówaie wartości osiągaych przez fukcje wielomiaowe i wykładicze Rys.. Porówaie wartości osiągaych przez fukcje wielomiaowe i wykładicze
3 Rzędy wielkości fukcji, rzędy złożoości obliczeiowej, symbole oszacowań asymptotyczych (otacja Ladaua) Poiższe otacje opisują asymptotycze zachowaie fukcji. a) Notacja duże O Określa ograiczeie fukcji od góry. Fukcja f( jest rzędu, gdy istieje dodatia wartość stałej c dla której począwszy od pewej wartości 0 wartości fukcji f( c. Zapisujemy to jako f(=o() (moża także używać zapisu f(o()) p: Rys. 3. Ograiczeie góre fukcji - otacja O( lo = O( lo) = O( 3 ) Zależość pomiędzy fukcjami f i g moża wyzaczyć obliczając graicę ich ilorazu: f( = O() gdy lim c 0 Notacja małe o Określa ograiczeie fukcji od góry. Fukcja f( jest rzędu, gdy istieje dodatia wartość stałej c dla której począwszy od pewej wartości 0 wartości fukcji f( < c. Zapisujemy to jako f(=o() p: = o( 1/ = o(1) Zależość pomiędzy fukcjami f i g moża wyzaczyć obliczając graicę ich ilorazu: f( = o() gdy lim 0 b) Notacja Określa ograiczeie fukcji od dołu. Fukcja f( jest rzędu, gdy istieje dodatia wartość stałej c dla której począwszy od pewej wartości 0 wartości fukcji f( c. Zapisujemy to jako f(=()
4 p: 3 = ( ) +1 = ( ) Rys. 4. Ograiczeie dole fukcji - otacja Zależość pomiędzy fukcjami f i g moża wyzaczyć obliczając graicę ich ilorazu: Notacja mała f( = () gdy lim g ( ) Określa ograiczeie fukcji od dołu. lub lim c 0 Fukcja f( jest rzędu, gdy istieje dodatia wartość stałej c dla której począwszy od pewej wartości 0 wartości fukcji f( > c. Zapisujemy to jako f(=() p: 3 = ( ) = ( l() Zależość pomiędzy fukcjami f i g moża wyzaczyć obliczając graicę ich ilorazu: c) Notacja f( = () gdy lim g ( ) Określa ograiczeie fukcji zarówo od dołu jak i od góry. Fukcja f( jest rzędu, gdy istieją takie dodatie wartości stałych c 1 i c dla których począwszy od pewej wartości 0 wartości fukcji f( c 1 i zarazem f( c. Zapisujemy to jako f(= () p: = ( 3 ) (1+1/ = (1) Rys. 5. Ograiczeie góre i dole fukcji - otacja
5 Zależość pomiędzy fukcjami f i g moża wyzaczyć obliczając graicę ich ilorazu: f( = () gdy lim c 0 Rząd złożoości obliczeiowej jest ajważiejszym czyikiem określającym przydatość algorytmu. Podsumowując: dla f( = O() lim g ( ) dla f( = o() lim 0 dla f( = () lim 0 dla f( = () lim g ( ) dla f( = () 0 lim Wzajeme zależości otacji oszacowań asymptotyczych Tab. 1. Klasy fukcji opisujących złożoość obliczeiową algorytmów Klasa fukcji Typ fukcji Przykładowe fukcje subliiowa wielomiaowa f(=( c ) c>0 iewielomiaowa stała f(=o(1) polilogarytmicza f(=(1) i f(=(log c, c>0 liiowa f(=( quasi-liiowa f(=( i f(=o( log kwadratowa f(= ( ) superwielomiaowa f(=( c ) i f(=o(d ), c>0, d>1 wykładicza f(=(e ) i f(=o(f ) e>1, f>1 superwykładicza f(=(c ) c>1 si(, 1/ lolo), log (, 3(1+1/ lo, lolo), (-1)+3 lo, e, 3,!,
6 Fukcje polilogarytmicze spotyka się przy aalizie algorytmów rówoległych. Fukcje quasi-liiowe i kwadratowe określają złożoość obliczeiową algorytmów sortujących. Fukcje iewielomiaowe spotyka się przy rozwiązywaiu trudych problemów kombiatoryczych. Algorytmy iewielomiaowe są użytecze tylko dla bardzo małych wartości Właściwości relacji asymptotyczych Jeżeli f(=o() i = (h() to f(=o(h() Jeżeli f(= (p() i = (q() to f( = (p( q() Jeżeli f(=o() to f(+= () Jeżeli f(=o() i = (h() to f(+= (h() Kategorie złożoości Kategorie złożoości opisuje się otacją. Dowola fukcja ależąca do pewej kategorii fukcji może ją (kategorię) reprezetować. Na ogół kategorię fukcji reprezetuje ajprostsza fukcja ależąca do iej. Dlatego kategorię fukcji liiowych reprezetuje fukcja (. Właściwości rzędów wielkości fukcji f( = O() = (f() f( = () = (f() dowola fukcja ależąca do pewej kategorii fukcji może ją reprezetować Jeżeli a>1 i b>1 log a ( = (log b ( i kategorię tę możemy reprezetować przez fukcję (lo) wszystkie fukcje logarytmicze ależą do tej samej kategorii złożoości Jeżeli a>1 i b>1 a = o(b ) ie wszystkie fukcje wykładicze ależą do tej samej kategorii złożoości Dla każdego a>0 a = o(!) fukcja! jest gorsza obliczeiowo od dowolej fukcji wykładiczej Jeżeli c0 i d>0 oraz f( = O() i h( = () cf( + dh( = () Dla podstawowych kategorii złożoości: (lo), (, (lo), ( ), ( a ), ( b ), (c ), (d ), (!), ( ) b>a> i d>c>1 fukcja leżąca a prawo jest ograiczeiem górym kategorii sąsiediej z lewej stroy f l ( = o(g p ()
7 Wykorzystaie graic do określeia rzędu fukcji c to lim 0 to to reguła L Hospitala ( ), o( ) ( ) dla c 0 Jeżeli fukcje f( i są różiczkowale i ich pochode wyoszą f ( i g ( oraz jeżeli to Przykład: lim lim f '( lim lim g'( Czy f(= 3 l(=o( )? 3 l( l( 1 / lim lim lim lim lim 1 /( H 0 TAK Przykłady Przyspieszaie algorytmu badającego plaarość grafu Poiższa tabela prezetuje efekty polepszaia złożoości algorytmu, a co za tym idzie zmiay klasy fukcji opisującej jego złożoość. Tab.. Przykład postępu jaki dokoał się w dziedziie projektowaia algorytmów badaia plaarości grafu Rok opracowaia algorytmu Złożoość algorytmu Czas obliczeń dla grafu o =100 wierzchołkach 1930 O( 6 ) 35 lat O( 3 ) godz. 48 mi O( ) 100 s O( lo) 7 s O( 1 s 6000 Rozmiar aalizowaego grafu możliwy do weryfikacji w czasie 1 miuty
8 Zwiększaie mocy komputerów a złożoość obliczeiowa Tab. 3. Wpływ poprawy szybkości komputerów a zwiększeie rozmiarów problemów algorytmiczych możliwych do rozwiązaia w zadaym czasie Moc obliczeiowa komputera 1Gflops (10 9 ), Tflops (10 1 ), Pflops (10 15 ), sekuda 1godzia 1 rok złożoość obliczeiowa!!! s =3,110 4 s =9 s =1 g =1,810 6 g =41 g =15 r =1,710 8 r =54 r =18 3 s 1,33 s 1,17 s 3 g 1,4 g 1,13 g 3 r 1,18 r 1,11 r 1000 s 1,67 s 1,4 s 1000 g 1,48 g 1,33 g 1000 r 1,36 r 1,8 r wg listy TOP 500 (500 ajszybszych superkomputerów) MilkyWay ajszybszy superkomputer a świecie w czerwcu 014. Składa się z koprocesorów Itel Xeo Phi oraz procesorów Itel Xeo i działa ze szczytową wydajośc3ią 54,9 petaflopsów (54,9 biliarda operacji zmieoprzecikowych a sekudę) Suway ajszybszy superkomputer a świecie w czerwcu 016. Działa ze szczytową wydajością 15,4 petaflopsów (15,4 biliarda operacji zmieoprzecikowych a sekudę) Moc obliczeiowa komputera a typ fukcji złożoości algorytmu Tab. 4. Porówaie czasów obliczeń algorytmów: wielomiaowego i liiowego dla tego samego problemu wykoywaych a superkomputerze i komputerze domowym rozmiar problemu algorytm 1 wielomiaowy: 3 3 s (3 s dla problemu o rozmiarze =1) superkomputer złożoość obliczeiowa algorytmu czas obliczeń 10 3 s 0,1 s ms 1 s s 10 s algorytm liiowy: 10 7 s (10 ms dla problemu o rozmiarze =1) mi. 1 mi. 40 s komputer PC lat godz. 47 mi.
9 Złożoość czasowa algorytmów operacja podstawowa pozwala oceić złożoość czasową algorytmu, abstrahując od komputera i języka programowaia (czas wykoaia ie jest miarodajy). Na ogół jest to operacja wykoywaa ajczęściej. rozmiar daych wejściowych pesymistycza złożoość obliczeiowa złożoość obliczeiowa dla ajgorszego przypadku wystąpieia daych wejściowych W( = max(t() ID (I jest elemetem zbioru daych o rozmiarze t( jest liczbą operacji wykoywaych przez algorytm a daych I optymistycza złożoość obliczeiowa złożoość obliczeiowa dla ajlepszego przypadku wystąpieia daych wejściowych w( = mi(t() oczekiwaa złożoość obliczeiowa bierzemy pod uwagę prawdopodobieństwo występowaia różych przypadków daych wejściowych. Często ajgorszy przypadek pojawia się bardzo rzadko. Dlatego istotiejsze jest rozważaie przypadku średiego. A( = p ( t( ID p( jest prawdopodobieństwem występowaia daych I Gdy W(=A( to algorytm jest iewrażliwy czasowo, a jego złożoość czasowa zależy tylko od rozmiaru daych. Przykład: Wyszukiwaie elemetu w tablicy operacja podstawowa: porówaie elemetu z koleją wartością w tablicy rozmiar daych wejściowych: pesymistycza złożoość obliczeiowa: W( = max( i) = = ( (ostati elemet) i1.. optymistycza złożoość obliczeiowa: w( = mi( ) = 1 = (1) (pierwszy elemet) i i 1.. oczekiwaa złożoość obliczeiowa: ( 1) A( = p( t( = i = i = i1 i1 i 1 (średio połowa listy będzie przejrzaa) = 1 = (
10 Wrażliwość algorytmów Określa a ile fukcje W( i A( są reprezetatywe dla wszystkich daych wejściowych. wrażliwość pesymistycza (ajgorszego przypadku): ( = max(t(i 1 )-t(i )) I 1,I D wrażliwość oczekiwaa (średiego przypadku): ( = ( t( A( w p( ID ( jest odchyleiem stadardowym zmieej losowej w( jest wariacją zmieej losowej A( = p( t( jest oczekiwaą złożoością obliczeiową i1 Im większe wartości ( i (, tym day algorytm jest bardziej wrażliwy a dae wejściowe. Przykład c.d.: Wyszukiwaie elemetu w tablicy c.d. wrażliwość pesymistycza: ( = max(t(i 1 )-t(i )) = t(-t(1) = -1 (w ajgorszym przypadku elemet jest a ostatiej pozycji a liście, w ajlepszym przypadku jest a pierwszej pozycji a liście) wrażliwość oczekiwaa: ( = ( A( I D t p( 1 1 = i i1 1 = 0,9 1 1 algorytm jest wrażliwy a dae wejściowe Złożoość pamięciowa algorytmów Przez złożoość pamięciową defiiujemy liczbę komórek pamięci iezbędą do realizacji algorytmu. Dla większości problemów algorytmiczych złożoość pamięciowa ma miejsze zaczeie iż złożoość czasowa. Pamięć wykorzystywaą przez algorytm dzielimy a pamięć zawierającą dae wejściowe i pamięć dodatkową (pomociczą) wykorzystywaą przez algorytm do orgaizacji obliczeń. Jeżeli pamięć dodatkowa ie zależy od rozmiaru daych wejściowych to algorytm taki azywamy działającym w miejscu (i place).
11 Dla złożoości pamięciowej także moża mówić o: pesymistyczej złożoości pamięciowej złożoości pamięciowej ajgorszego przypadku oczekiwaej złożoości pamięciowej złożoości pamięciowej średiego przypadku Często dla różych wersji daego algorytmu złożoości czasowa i pamięciowa są do siebie odwrotie proporcjoale. Dla wielu problemów algorytmiczych istieje rówowaga pomiędzy złożoością czasową i pamięciową, tz. że moża zmiejszyć złożoość czasową kosztem zwiększeia zapotrzebowaia a pamięć i vice-versa.
Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 1 Algorytmy sortowania (27.02.
Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 1 Algorytmy sortowaia (27.2.12)
Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223
Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych
Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. L. Baachowski, K. Diks, W. Rytter Algorytmy i struktury daych.
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Elementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( )
Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 3 Algorytmy grafowe (26.03.12)
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Prawdopodobieństwo i statystyka
Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI
Podstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
EGZAMIN MATURALNY Z INFORMATYKI
Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
Systemy operacyjne
Systemy operacyje 26.11.2010 Zasady poprawości harmoogramu w każdej chwili procesor może wykoywać tylko jedo zadaie w każdej chwili zadaie może być obsługiwae przez co ajwyżej jede procesor Zadaie Z j
Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
Algorytmy i struktury danych
Algorytmy i struktury daych Wykład 5 Algorytmy i ich aaliza (ciąg dalszy) Jausz Szwabiński Pla wykładu: Studium przypadku aaliza aagramów Model matematyczy Klasyfikacja algorytmów Studium przypadku aaliza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
Technologie Informacyjne
POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 3: Wprowadzenie do algorytmów i ich
1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767
Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego
Wykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1
30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech
Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
Prawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych.
Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. A. V. Aho, J.E. Hopcroft, J. D. Ullma - Projektowaie i aaliza
Analiza matematyczna. Robert Rałowski
Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
STATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
TESTY LOSOWOŚCI. Badanie losowości próby - test serii.
TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Egzamin maturalny z informatyki Poziom rozszerzony część I
Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok
Parametryzacja rozwiązań układu równań
Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie
Projektowanie i Analiza Algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Projektowanie i Analiza Algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Zasady analizy algorytmów
Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania
8. Optymalizacja decyzji inwestycyjnych
8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.
a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, )
PROGRAMOWANIE W JĘZYU OGII WPROWADZENIE OGIA PIERWSZEGO RZĘDU Symbole języka pierwszego rzędu dzielą się a: a symbole logicze (wspóle dla wszystkich języków zmiee przedmiotowe: x y z stałe logicze: symbole
Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1
1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych
Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego
doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut
Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)
Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji
http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe
Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja
Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
2.1. Studium przypadku 1
Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
1. Analiza algorytmów przypomnienie
1. Analiza algorytmów przypomnienie T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, rozdziały 1-4 Wydawnictwa naukowo-techniczne (2004) Jak mierzyć efektywność algorytmu?
Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony).
Katalog wymagań programowych z matematyki od absolweta II klasy (poziom rozszerzoy). LICZBY RZECZYWISTE Na poziomie wymagań koieczych lub podstawowych a oceę dopuszczającą () lub dostateczą (3) uczeń wykorzystać
Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N
OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie
Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,
Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa
Wstęp do programowania
Wstęp do programowaia Wykład 13 Algorytmy i ich aaliza Jausz Szwabiński Pla wykładu: Co to jest algorytm? Aaliza algorytmów Notacja dużego O Przykład: aagramy Struktury daych w Pythoie i ich wydajość Literatura
Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).
Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z
Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
3 Arytmetyka. 3.1 Zbiory liczbowe.
3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
3. Funkcje elementarne
3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń
Prawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
Efektywność algorytmów
Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów
Ekonomia matematyczna 2-2
Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest