Matematyczne Podstawy Informatyki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyczne Podstawy Informatyki"

Transkrypt

1 Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014

2 Algorytm 1. Termin algorytm jest używany w informatyce do opisania: 1.1 skończonego, 1.2 deterministycznego, 1.3 efektywnego sposobu rozwiązania określonego problemu. 2. Najczęściej algorytmem jest ściśle określona procedura obliczeniowa, która na podstawie danych wyjściowych są tworzone dane wyjściowe.

3 Algorytm Euklidesa 1 i n t gcd ( i n t p, i n t q ) 2 { 3 i f ( q == 0) return p ; 4 return gcd ( q, p % q ) ; 5 }

4 Analiza algorytmów 1. Analiza algorytmu polega na określeniu zasobów, jakie są niezbędne do jego wykonania. 2. Zasobem może być: 2.1 czas obliczeń, 2.2 wielkość pamięci, 2.3 przepustowość kanału komunikacyjnego lub sprzętu. 3. Analiza zapotrzebowania prowadzi do wyboru rozwiązania (algorytmu) najefektywniejszego. 4. W analizie dokonuje się wyboru modelu realizowania obliczeń - najczęściej maszyna o dostępie swobodnym do pamięci.

5 Rozmiar danych wejściowych i czas działania algorytmu 1. Na ogół czas działania algorytmu rośnie wraz z rozmiarem danych wejściowych - czas, można powiedzieć, jest funkcją rozmiaru danych wejściowych. 2. Rozmiar danych wejściowych - jest zależny od rozwiązywanego problemu: 2.1 W rozważanym dalej problemie sortowania rozmiarem jest liczba danych do posortowania. 2.2 W problemach kryptograficznych liczba bitów, na których wymagane jest wykonanie operacji. 3. Czas działania algorytmu dla konkretnych danych wejściowych jest wyrażony liczbą wykonanych elementarnych operacji. 3.1 Na ogół definiuje się go niezależnie od konkretnego komputera - przyjmuje się, że wykonanie jednego wiersza kodu wymaga stałego czasu.

6 Przypadek pesymistyczny i średni 1. Najczęściej wyznacza się pesymistyczny i średni przypadek dla określonego algorytmu. 2. Pesymistyczny czas działania jest górną granicą możliwego czasu działania algorytmu dla każdych danych wejściowych. Daje gwarancję, że algorytm nie będzie działał dłużej. 3. Przypadek średni (zwany również oczekiwanym) jest zbliżony do pesymistycznego - wyznacza się oczekiwany porządek elementów i na tej podstawie dokonuje analizy.

7 Rząd wielkości funkcji 1. W trakcie analizy algorytmów dokonuje się wielu uproszczeń - np. pomija się stałe współczynniki - prowadzi to uzyskania pewnej wielkości wyznaczającej efektywność algorytmu np O(n 2 ) czy O(n). 2. Dany algorytm jest efektywniejszy od innego, jeśli jego pesymistyczny czas działania jest funkcją niższego rzędu.

8 Funkcje

9 Funkcje

10 Złożoność obliczeniowa i asymptotyczna Złożoność asymptotyczna jest miarą wydajności używaną podczas odrzucania pewnych składowych funkcji nieistotnych lub takich, dla których możliwe jest wyznaczenie jedynie przybliżeń. Miara ta pozwala na szacowanie tempa wzrostu funkcji.

11 Notacja asymptotyczna O( ) I Najpowszechniej używana notacja opisująca złożoność asymptotyczną (P. Bachmann, 1894 r.) Niech f (n), g(n), n N będą funkcjami ze zbioru liczb naturalnych w zbiór liczb rzeczywistych. Powiemy, że funkcja f (n) jest rzędu najwyżej g(n), co oznaczamy O(g(n)), jeżeli istnieją stałe dodatnie c 1 R, n 0 N takie, że: na przykład: n n 0, f (n) c 1 g(n) f (n) = 3 n 3 + n 2 n f (n) = const f (n) = O(n 3 ) f (n) = O(1)

12 Notacja asymptotyczna O( ) II Podana definicja oznacza, że f ma złożoność rzędu g, jeśli istnieje taka liczba dodatnia c 1, że f jest niewiększa od c 1 g dla dostatecznie dużych n, czyli dla dla wszystkich n większych od pewnej ustalonej liczby n 0. Związek między f i g oznacza, że albo g jest kresem górnym dla f, albo że od pewnego miejsca f rośnie nie szybciej niż g. Przykład: f (n) = n n + log 10 n Dla małych wartości n ostatni wyraz jest największy. Kiedy n = 10, drugi i ostatni wyraz są tego samego rzędu, zaś pozostałe mają do wyniku niewielki wkład. Kiedy n osiąga wartość 100, pierwszy i drugi wyraz mają taki sam wkład w wynik; kiedy n przekracza 100, drugi wyraz też traci na znaczeniu. Wobec tego dla dużych wartości n, z uwagi na kwadratowy postęp pierwszego wyrazu (n 2 ), wartość funkcji f zależy głównie od niego, a pozostałe wyrazy na dłuższą metę tracą na znaczeniu.

13 Notacja asymptotyczna O( ) III

14 Sortowanie Problem, który polega na uporządkowaniu ciągu liczb w odpowiedniej kolejności jest nazywany sortowaniem. 1. Dane wejściowe: Ciąg n liczb (a 1, a 2,..., a n ), 2. Dane wyjściowe: Permutacja (zmiana kolejności) a 1, a 2,..., a n ciągu wejściowego, w której: a 1 <= a 2 <=... <= a n.

15 Sortowanie bąbelkowe

16 Sortowanie bąbelkowe 1 void zamien ( i n t& x, i n t& y ) 2 { 3 i n t tmp = x ; 4 x = y ; 5 y = tmp ; 6 } 7 8 void s o r t b a b e l ( v e c t o r <int>& tab, unsigned r o z m i a r ) 9 { 10 f o r ( unsigned i = 0 ; i < r o z m i a r ; ++i ) 11 f o r ( unsigned j = 0 ; j < r o z m i a r i 1 ; ++j ) 12 i f ( tab [ j ] > tab [ j + 1 ] ) 13 zamien ( tab [ j ], tab [ j + 1 ] ) ; 14 }

17 Sortowanie przez wstawianie

18 Sortowanie przez wstawianie 1 void s o r t w s t a w ( v e c t o r <int>& tab, unsigned r o z m i a r ) 2 { 3 f o r ( i n t i = r o z m i a r 2 ; i >= 0 ; i ) 4 { 5 i n t elem = tab [ i ] ; 6 unsigned j = i + 1 ; 7 f o r ( ; tab [ j ] < elem && j < r o z m i a r ; ++j ) 8 tab [ j 1 ] = tab [ j ] ; 9 tab [ j 1 ] = elem ; 10 } 11 }

19 Dziel i zwyciężaj 1. Podział problemu na podproblemy. 2. Rozwiązanie podproblemów rekurencyjnie, chyba że są one małego rozmiaru i już nie wymagają zastosowania rekursji - używa się wtedy bezpośrednich metod. 3. Scalanie rozwiązań podproblemów w celu uzyskania rozwiązania całego problemu.

20 Sortowanie przez scalanie I 1 void s o r t s c a l ( v e c t o r <int>& tab, unsigned r o z m i a r ) 2 { 3 scal pomoc ( 0, r o z m i a r 1, tab ) ; 4 }

21 Sortowanie przez scalanie II 1 void scal pomoc ( unsigned pocz, unsigned kon, v e c t o r <int>& tab ) 2 { 3 i f ( pocz < kon ) 4 { 5 cout << pocz << << kon << e n d l ; 6 scal pomoc ( pocz, ( kon + pocz ) /2, tab ) ; 7 scal pomoc ( ( kon + pocz ) /2 + 1, kon, tab ) ; 8 s c a l a j ( pocz, kon, tab ) ; 9 } 10 }

22 Sortowanie przez scalanie III 1 void s c a l a j ( unsigned pocz, unsigned kon, v e c t o r <int>& tab ) 2 { 3 v e c t o r <int > pom( kon pocz + 1) ; 4 5 unsigned i = pocz ; 6 unsigned s r o d e k = ( kon + pocz ) / 2 ; 7 unsigned j = s r o d e k + 1 ;

23 Sortowanie przez scalanie IV 1 unsigned k = 0 ; 2 f o r ( ; i <= s r o d e k && j <= kon ; ++k ) 3 { 4 i f ( tab [ i ] < tab [ j ] ) 5 pom [ k ] = tab [ i ++]; 6 e l s e 7 pom [ k ] = tab [ j ++]; 8 } 1 while ( i <= s r o d e k ) 2 pom [ k++] = tab [ i ++]; 3 4 while ( j <= kon ) 5 pom [ k++] = tab [ j ++];

24 Sortowanie przez scalanie V 1 f o r ( i = pocz ; i <= kon ; ++i ) 2 tab [ i ] = pom [ i pocz ] ; 3 }

25 Sortowanie kubełkowe 1 void s o r t k u b e l ( v e c t o r <int>& tab, unsigned r o z m i a r ) 2 { 3 i n t maxi = 100; 4 v e c t o r <int > pom( maxi, 0 ) ; 5 f o r ( i n t i = 0 ; i < r o z m i a r ; ++i ) 6 pom [ tab [ i ]]++; 7 8 f o r ( i n t i = 0, j =0; i < maxi + 1 ; ++i ) 9 i f (pom [ i ] > 0) 10 f o r ( i n t k = 0 ; k < pom [ i ] ; ++k ) 11 tab [ j ++] = i ; }

26 Sortowanie - złożoność I Sortowanie bąbelkowe - O(n 2 ), Sortowanie przez wstawianie - O(n 2 ), Sortowanie przez scalanie - O(nlog(n)), Sortowanie kubełkowe - O(n).

27 Sortowanie - złożoność II

28 Literatura 1. T.H. Cormen, Ch. E. Leiserson, R. Rivest, C. Stein Wprowadzenie do algorytmów, WNT R. Sedgewick, K. Wayne Algorithms, Addison-Wesley Professional E. Gawrońska Podstawy informatyki - wykład.

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w

Bardziej szczegółowo

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny

Bardziej szczegółowo

przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski semestr I

przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski semestr I Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/1013

Bardziej szczegółowo

Ogólne zasady projektowania algorytmów i programowania

Ogólne zasady projektowania algorytmów i programowania Ogólne zasady projektowania algorytmów i programowania Pracuj nad właściwie sformułowanym problemem dokładna analiza nawet małego zadania może prowadzić do ogromnych korzyści praktycznych: skrócenia długości

Bardziej szczegółowo

Algorytmy sortujące 1

Algorytmy sortujące 1 Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na

Bardziej szczegółowo

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania: ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy

Bardziej szczegółowo

Algorytmy i Struktury Danych laboratorium (INZ1505L)

Algorytmy i Struktury Danych laboratorium (INZ1505L) Wrocław 26.05.2006 Algorytmy i Struktury Danych laboratorium (INZ1505L) Autor: Wojciech Podgórski WIZ INF Prowadzący: mgr Marcin Parczewski Sprawozdanie dotyczące testowania algorytmu sortowania. Algorytm:

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE

Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE Różnice między podstawą programową z przedmiotu Technologia informacyjna", a standardami wymagań będącymi podstawą przeprowadzania egzaminu maturalnego z przedmiotu Informatyka" I.WIADOMOŚCI I ROZUMIENIE

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Formalne podstawy informatyki Rok akademicki: 2013/2014 Kod: EIB-1-220-s Punkty ECTS: 2 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna

Bardziej szczegółowo

Algorytmy i język C++

Algorytmy i język C++ Wykład 6 Wskaźniki Wskaźnik nie przechowuje wartości zmiennej ale, podobnie jak tablica, wskazuje miejsce w pamięci, w którym znajduje się zmienna danego typu. W poniższym przykładzie symbol * pomiędzy

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Kiwi pytania gimnazjalne

Kiwi pytania gimnazjalne Kiwi pytania gimnazjalne 1. Bajt Jedno słowo to 2 bajty. Ile słów mieści się w kilobajcie? 1000 1024 512 500 2. Bluetooth Bluetooth to: technologia bezprzewodowej komunikacji krótkiego zasięgu wykorzystująca

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

Algorytmy przeszukiwania

Algorytmy przeszukiwania Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy

Bardziej szczegółowo

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu.

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu. Wymagania edukacyjne z informatyki poziom rozszerzony w klasie 2 Społecznego Liceum Ogólnokształcącego Splot im. Jana Karskiego w Nowym Sączu 1. Algorytmika TREŚCI NAUCZANIA WPROWADZENIE DO ALGORYTMIKI

Bardziej szczegółowo

Programowanie równoległe

Programowanie równoległe Programowanie równoległe ELEMENTARNE ALGORYTMY (PODSTAWA: Z.CZECH. WPROWADZENIE DO OBLICZEŃ RÓWNOLEGŁYCH. PWN, 2010) Andrzej Baran baran@kft.umcs.lublin.pl Charakterystyka ilościowa algorytmów Przez algorytm

Bardziej szczegółowo

1. Wartość, jaką odczytuje się z obszaru przydzielonego obiektowi to: a) I - wartość b) definicja obiektu c) typ oboektu d) p - wartość

1. Wartość, jaką odczytuje się z obszaru przydzielonego obiektowi to: a) I - wartość b) definicja obiektu c) typ oboektu d) p - wartość 1. Wartość, jaką odczytuje się z obszaru przydzielonego obiektowi to: a) I - wartość b) definicja obiektu c) typ oboektu d) p - wartość 2. Poprawna definicja wskażnika b to: a) float *a, **b = &a; b) float

Bardziej szczegółowo

Przeglad podstawowych pojęć (3) Podstawy informatyki (3) dr inż. Sebastian Pluta. Instytut Informatyki Teoretycznej i Stosowanej

Przeglad podstawowych pojęć (3) Podstawy informatyki (3) dr inż. Sebastian Pluta. Instytut Informatyki Teoretycznej i Stosowanej Przeglad podstawowych pojęć (1) Podstawy informatyki (3) dr inż. Sebastian Pluta pluta@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Program komputerowy to sekwencja instrukcji wykonywanych

Bardziej szczegółowo

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Lista 2. int porownaj_liczby_normalnie(const int a, const int b) { if(a==b) return 0; if(a>b)return1; return-1; }

Lista 2. int porownaj_liczby_normalnie(const int a, const int b) { if(a==b) return 0; if(a>b)return1; return-1; } Lista 2 Poniższe zadania mają na celu jedynie pomoc w szlifowaniu umiejętności logicznego myślenia, analizowania i rozwiązywania pewnych zagadnienień algorytmicznych. Zadanie 1. W algorytmach opartych

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) GRUDZIEŃ 2013 Zadanie 1. Test (0 5) Wymagania ogólne I. [

Bardziej szczegółowo

Wykład nr 3. Temat: Wskaźniki i referencje. Edward Morgan Forster

Wykład nr 3. Temat: Wskaźniki i referencje. Edward Morgan Forster Wykład nr 3 Temat: Wskaźniki i referencje. Cytaty: Mylić się jest rzeczą ludzką, ale żeby coś naprawdę spaprać potrzeba komputera. Edward Morgan Forster Gdyby murarze budowali domy tak, jak programiści

Bardziej szczegółowo

Strona główna. Strona tytułowa. Programowanie. Spis treści. Sobera Jolanta 16.09.2006. Strona 1 z 26. Powrót. Full Screen. Zamknij.

Strona główna. Strona tytułowa. Programowanie. Spis treści. Sobera Jolanta 16.09.2006. Strona 1 z 26. Powrót. Full Screen. Zamknij. Programowanie Sobera Jolanta 16.09.2006 Strona 1 z 26 1 Wprowadzenie do programowania 4 2 Pierwsza aplikacja 5 3 Typy danych 6 4 Operatory 9 Strona 2 z 26 5 Instrukcje sterujące 12 6 Podprogramy 15 7 Tablice

Bardziej szczegółowo

Podstawy programowania w języku C++

Podstawy programowania w języku C++ Podstawy programowania w języku C++ Część dziesiąta Rekordy w C/C++ struktury Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.programowanie.siminskionline.pl Niniejsze opracowanie zawiera skrót

Bardziej szczegółowo

Szkoły ponadgimnazjalne, PODSTAWA PROGRAMOWA. Cele kształcenia wymagania ogólne

Szkoły ponadgimnazjalne, PODSTAWA PROGRAMOWA. Cele kształcenia wymagania ogólne Strona1 Podstawa programowa kształcenia ogólnego dla gimnazjów i szkół ponadgimnazjalnych, (str. 185 191 i 254) Załącznik nr 4 do: rozporządzenia Ministra Edukacji Narodowej z dnia 23 grudnia 2008 r. w

Bardziej szczegółowo

INFORMATYKA, TECHNOLOGIA INFORMACYJNA ORAZ INFORMATYKA W LOGISTYCE

INFORMATYKA, TECHNOLOGIA INFORMACYJNA ORAZ INFORMATYKA W LOGISTYCE Studia podyplomowe dla nauczycieli INFORMATYKA, TECHNOLOGIA INFORMACYJNA ORAZ INFORMATYKA W LOGISTYCE Przedmiot JĘZYKI PROGRAMOWANIA DEFINICJE I PODSTAWOWE POJĘCIA Autor mgr Sławomir Ciernicki 1/7 Aby

Bardziej szczegółowo

Wstęp do Informatyki i Programowania

Wstęp do Informatyki i Programowania Instytut Matematyki i Informatyki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wstęp do Informatyki i Programowania Jacek Cichoń Projekt współfinansowany ze środków Unii Europejskiej

Bardziej szczegółowo

Sprawiedliwość i efektywność tradycyjnych i skomputeryzowanych metod organizacji masowego naboru do szkół średnich

Sprawiedliwość i efektywność tradycyjnych i skomputeryzowanych metod organizacji masowego naboru do szkół średnich Sprawiedliwość i efektywność tradycyjnych i skomputeryzowanych metod organizacji masowego naboru do szkół średnich Andrzej P.Urbański Instytut Informatyki Politechnika Poznańska Rozwiązywane problemy podział

Bardziej szczegółowo

Wykład II. Programowanie II - semestr II Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład II. Programowanie II - semestr II Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład II - semestr II Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2015 c Copyright 2015 Janusz Słupik Operacje dyskowe - zapis do pliku #include #include

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 2 Temat: Schemat blokowy (algorytm) procesu selekcji wymiarowej

Bardziej szczegółowo

Nowa podstawa programowa IV etap edukacyjny szkoła ponadgimnazjalna

Nowa podstawa programowa IV etap edukacyjny szkoła ponadgimnazjalna Nowa podstawa programowa IV etap edukacyjny szkoła ponadgimnazjalna Fragmenty rozporządzenia MEN z dnia 23 grudnia 2008 r. w sprawie podstawy programowej (...) w poszczególnych typach szkół, opublikowanego

Bardziej szczegółowo

Podstawy elektroniki i miernictwa

Podstawy elektroniki i miernictwa Podstawy elektroniki i miernictwa Kod modułu: ELE Rodzaj przedmiotu: podstawowy; obowiązkowy Wydział: Informatyki Kierunek: Informatyka Poziom studiów: pierwszego stopnia Profil studiów: ogólnoakademicki

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Znajdowanie największego i najmniejszego elementu w zbiorze n liczb całkowitych

Znajdowanie największego i najmniejszego elementu w zbiorze n liczb całkowitych 1/12 Opracowała Kozłowska Ewa ekozbelferek@poczta.onet.pl nauczyciel przedmiotów informatycznych Zespół Szkół Technicznych Mielec, ul. Jagiellończyka 3 Znajdowanie największego i najmniejszego elementu

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów. Metody dokładne rozwiązywania układów równań liniowych.. Układy równań o macierzach trójkątnych.. Metoda eliminacji Gaussa.3. Metoda Gaussa-Jordana.4.

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach

Bardziej szczegółowo

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3 Analiza Algorytmów Informatyka, WPPT, Politechnika Wroclawska 1 Zadania teoretyczne (ćwiczenia) Zadanie 1 Niech k będzie dodatnią liczbą całkowitą. Rozważ następującą zmienną losową Pr[X = k] = (6/π 2

Bardziej szczegółowo

E S - uniwersum struktury stosu

E S - uniwersum struktury stosu Temat: Struktura stosu i kolejki Struktura danych to system relacyjny r I r i i I U,, gdzie U to uniwersum systemu, a i i - zbiór relacji (operacji na strukturze danych). Uniwersum systemu to zbiór typów

Bardziej szczegółowo

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańka jerzy.nawrocki@put.poznan.pl Obliczenia i metody numeryczne = a 2 + b 2 a + (b/a) 2 =b + (a/b) 2 Metody numeryczne begin a:= 3e-25;

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej. Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Podstawowe konstrukcje programistyczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. II Jesień 2013 1 / 34 Przypomnienie Programowanie imperatywne Program

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 INFORMATYKA

EGZAMIN MATURALNY 2011 INFORMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2011 INFORMATYKA POZIOM PODSTAWOWY MAJ 2011 2 Zadanie 1. a) (0 1) Egzamin maturalny z informatyki poziom podstawowy CZĘŚĆ I Obszar standardów

Bardziej szczegółowo

Praktyka Programowania

Praktyka Programowania Praktyka Programowania Dariusz Dereniowski Materiały udostępnione przez Adriana Kosowskiego Katedra Algorytmów i Modelowania Systemów Politechnika Gdańska deren@eti.pg.gda.pl Gdańsk, 2010 strona przedmiotu:

Bardziej szczegółowo

* WWW: * E-mail: * Adres: Instytut Informatyki ul. Będzińska 39 41-200 Sosnowiec Pokój 214 * Telefon: 32 3689765

* WWW: * E-mail: * Adres: Instytut Informatyki ul. Będzińska 39 41-200 Sosnowiec Pokój 214 * Telefon: 32 3689765 * Łagodny start * * WWW: * E-mail: * Adres: Instytut Informatyki ul. Będzińska 39 41-200 Sosnowiec Pokój 214 * Telefon: 32 3689765 Zaliczenie zajęć: 3-4 kolokwia + obecność ALBO Projekt zaliczeniowy +

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1-082 EGZAMIN MATURALNY Z INORMATYKI MAJ ROK 2008 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia)

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) 1. Ile układów kart w pokerze to Dwie pary? Dwie pary to układ 5 kart

Bardziej szczegółowo

Inż. Kamil Kujawski Inż. Krzysztof Krefta. Wykład w ramach zajęć Akademia ETI

Inż. Kamil Kujawski Inż. Krzysztof Krefta. Wykład w ramach zajęć Akademia ETI Inż. Kamil Kujawski Inż. Krzysztof Krefta Wykład w ramach zajęć Akademia ETI Metody programowania Assembler Język C BASCOM Assembler kod maszynowy Zalety: Najbardziej efektywny Intencje programisty są

Bardziej szczegółowo

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Program, to lista poleceń zapisana w jednym języku programowania zgodnie z obowiązującymi w nim zasadami. Celem programu jest przetwarzanie

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Nowy algorytm do szybkiego obliczania niezawodności sieci

Nowy algorytm do szybkiego obliczania niezawodności sieci Lech Madeyski 1, Zygmunt Mazur 2 Nowy algorytm do szybkiego obliczania niezawodności sieci 1. Wprowadzenie Analiza niezawodności różnego rodzaju sieci, których łącza ulegają losowym uszkodzeniom jest tematem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Wprowadzenie do UML, przykład użycia kolizja

Wprowadzenie do UML, przykład użycia kolizja Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kurs: Copyright c 2012 Bogdan Kreczmer Niniejszy dokument

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

Model protokołu TCP/IP. Algorytmy komputerowe. Rekurencja, złożoność obliczeniowa. Sortowanie. dr inż. Jarosław Forenc. Model ISO/OSI a model TCP/IP

Model protokołu TCP/IP. Algorytmy komputerowe. Rekurencja, złożoność obliczeniowa. Sortowanie. dr inż. Jarosław Forenc. Model ISO/OSI a model TCP/IP Rok akademicki 2012/2013, Wykład nr 9 2/79 Plan wykładu nr 9 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

Wykład I. Programowanie II - semestr II Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład I. Programowanie II - semestr II Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład I - semestr II Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2015 c Copyright 2015 Janusz Słupik Zaliczenie przedmiotu Do zaliczenia przedmiotu niezbędne jest

Bardziej szczegółowo

Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder

Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder Algorytmy Kompresji Danych Laboratorium Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder 1. Zapoznać się z opisem implementacji kodera entropijnego range coder i modelem danych opracowanym dla tego

Bardziej szczegółowo

Programowanie, algorytmy i struktury danych

Programowanie, algorytmy i struktury danych 1/44 Programowanie, algorytmy i struktury danych materiały do wykładu: http://cez.wipb.pl/moodle/ email: m.tabedzki@pb.edu.pl strona: http://aragorn.pb.bialystok.pl/~tabedzki/ Marek Tabędzki Wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Metody Metody, parametry, zwracanie wartości

Metody Metody, parametry, zwracanie wartości Materiał pomocniczy do kursu Podstawy programowania Autor: Grzegorz Góralski ggoralski.com Metody Metody, parametry, zwracanie wartości Metody - co to jest i po co? Metoda to wydzielona część klasy, mająca

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Paradygmaty programowania

Paradygmaty programowania Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami

1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami 1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami Celem tych zajęć jest zrozumienie i oswojenie z technikami programowania przy pomocy wskaźników w języku C++. Proszę przeczytać rozdział 8.

Bardziej szczegółowo

Klasy abstrakcyjne i interfejsy

Klasy abstrakcyjne i interfejsy Klasy abstrakcyjne i interfejsy Streszczenie Celem wykładu jest omówienie klas abstrakcyjnych i interfejsów w Javie. Czas wykładu 45 minut. Rozwiązanie w miarę standardowego zadania matematycznego (i nie

Bardziej szczegółowo

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Na ocenę dopuszczającą uczeń: zna pojęcie liczby naturalnej,

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Przy pomocy indukcji udowodnimy, że nastąpi koniec świata, a warto byłoby wiedzieć kiedy, czy przed czy po egzaminie.

Przy pomocy indukcji udowodnimy, że nastąpi koniec świata, a warto byłoby wiedzieć kiedy, czy przed czy po egzaminie. POPRAWNOŚĆ ALGORYTMÓW W momencie gdy mikrofon został Panu w ręce a nie powinien i tekst O ktoś to urwał. Jak ktoś wygra światowy konkurs, to mu nawet 3 postawie na koniec bez egzaminu Do Francji możecie

Bardziej szczegółowo

Informatyka, Ćwiczenie 1. 1. Uruchomienie Microsoft Visual C++ Politechnika Rzeszowska, Wojciech Szydełko. I. ZałoŜenie nowego projektu

Informatyka, Ćwiczenie 1. 1. Uruchomienie Microsoft Visual C++ Politechnika Rzeszowska, Wojciech Szydełko. I. ZałoŜenie nowego projektu Informatyka, Ćwiczenie 1 1. Uruchomienie Microsoft Visual C++ I. ZałoŜenie nowego projektu Wybieramy menu: File>New>Files jak na rys. poniŝej Zapisujemy projekt pod nazwą LAN, w katalogu d:\temp\lab typu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02 METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się

Bardziej szczegółowo

Ilość cyfr liczby naturalnej

Ilość cyfr liczby naturalnej Ilość cyfr liczby naturalnej Użytkownik wprowadza liczbę naturalną n. Podaj algorytm znajdowania ilości cyfr liczby n. (Np.: po wprowadzeniu liczby 2453, jako wynik powinna zostać podana liczba 4). Specyfikacja

Bardziej szczegółowo

Spis treści. Wstęp... 11. Część I Internet rozwiązania techniczne... 13

Spis treści. Wstęp... 11. Część I Internet rozwiązania techniczne... 13 Wstęp... 11 Część I Internet rozwiązania techniczne... 13 1. Modelowanie dynamiki natężenia przesyłów TCP/IP... 15 1.1. Wprowadzenie... 15 1.2. Model matematyczny aproksymacji fluid flow... 16 1.2.1. Model

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Rozdział 4 KLASY, OBIEKTY, METODY

Rozdział 4 KLASY, OBIEKTY, METODY Rozdział 4 KLASY, OBIEKTY, METODY Java jest językiem w pełni zorientowanym obiektowo. Wszystkie elementy opisujące dane, za wyjątkiem zmiennych prostych są obiektami. Sam program też jest obiektem pewnej

Bardziej szczegółowo

Aplikacje WWW - laboratorium

Aplikacje WWW - laboratorium Aplikacje WWW - laboratorium JavaServer Pages Celem ćwiczenia jest zbudowanie kilku prostych stron internetowych z użyciem technologii JSP. Podczas ćwiczenia wykorzystany zostanie algorytm sortowania bąbelkowego

Bardziej szczegółowo

Związek między problemem, algorytmem a programem komputerowym. Klasa 2 Lekcja 3

Związek między problemem, algorytmem a programem komputerowym. Klasa 2 Lekcja 3 Związek między problemem, algorytmem a programem komputerowym Klasa 2 Lekcja 3 Na początku jest problem Komputer umożliwia rozwiązanie zanie problemów, wykonując programy komputerowe. Komputer bez programu

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Popularyzacja matematyki (dyskretnej) poprzez informatykę (komputykę)

Popularyzacja matematyki (dyskretnej) poprzez informatykę (komputykę) Paweł Perekietka V Liceum Ogólnokształcące im. Klaudyny Potockiej w Poznaniu Popularyzacja matematyki (dyskretnej) poprzez informatykę (komputykę) Nauczyciel informatyki nauczycielem matematyki... Plan

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

Programowanie w języku C++

Programowanie w języku C++ INE 2022 JĘZYKI PROGRAMOWANIA 1 INE 0050 WSTĘP DO PROGRAMOWANIA Programowanie w języku C++ ( wykł. dr Marek Piasecki ) Literatura: do wykładu dowolny podręcznik do języka C++ na laboratoriach Borland C++

Bardziej szczegółowo

Błędy leksykalne są na ogół nietrudne do znalezienia.

Błędy leksykalne są na ogół nietrudne do znalezienia. Rodzaje błędów w programach Wykład9.UWAGIOGÓLNE,str.1 Błąd leksykalny pojedyncza jednostka leksykalna(operator, słowo kluczowe, liczba itp.), której nie przewiduje definicja języka. Mn:=1; Sygn. błędu

Bardziej szczegółowo

Podstawy Informatyki DMA - Układ bezpośredniego dostępu do pamięci

Podstawy Informatyki DMA - Układ bezpośredniego dostępu do pamięci Układ Podstawy Informatyki - Układ bezpośredniego dostępu do pamięci alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu Układ 1 Układ Wymiana informacji Idea Zasady pracy maszyny W Architektura

Bardziej szczegółowo

PODSTAWY INFORMATYKI wykład 6.

PODSTAWY INFORMATYKI wykład 6. PODSTAWY INFORMATYKI wykład 6. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,

Bardziej szczegółowo

SQL SERVER 2012 i nie tylko:

SQL SERVER 2012 i nie tylko: SQL SERVER 2012 i nie tylko: Wstęp do planów zapytań Cezary Ołtuszyk coltuszyk.wordpress.com Kilka słów o mnie Starszy Administrator Baz Danych w firmie BEST S.A. (Bazy danych > 1TB) Konsultant z zakresu

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo