1. Analiza algorytmów przypomnienie
|
|
- Julian Kołodziej
- 5 lat temu
- Przeglądów:
Transkrypt
1 1. Analiza algorytmów przypomnienie T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, rozdziały 1-4 Wydawnictwa naukowo-techniczne (2004) Jak mierzyć efektywność algorytmu? Przyjęcie modelu obliczeniowego (np. RAM). Ustalenie rozmiaru wejścia. Ustalenie liczby operacji (instrukcji) podstawowych; zdefiniowanie operacji podstawowych. Ustalenie minimalnej potrzebnej liczby komórek pamięci; odniesienie do zastosowanych struktur danych.
2 Rozmiar wejścia W formalnym modelu (np. maszyna Turinga) rozmiar wejścia zdefiniowany jest jako długość napisu wejściowego nad skończonym alfabetem. Dla jednej zmiennej n N przyjmuje się liczbę bitów log 2 n +1. Dla ustalonej liczby k zmiennych n 1,...,n k przyjmuje się ich sumę długości, czyli k 1 (log 2n i +1); np. w algorytmie Euklidesa rozmiar wejścia to log 2 m + log 2 n +2. Dla wektora n-elementowego przyjmujemy liczbę elementów, czyli n. Dla tablicy wielowymiarowej przyjmujemy największy z jej wymiarów; np. dla tablicy TAB[ ][ ] rozmiarem wejścia jest 1000.
3 Szacowanie tempa wzrostu Symbol O( ): h: N R + ; klasa O(h) = {g: N R +, gdzie c>0 n0 N n n0 g(n) c h(n)}; g O(h) oznacza, że funkcja g rośnie nie szybciej niż funkcja h. g O(h) czytamy: g jest klasy O duże od h g O(h) czytamy: lub g jest rzędu O duże od h. Symbol Ω( ): Przykłady: f: N R + ; g(n) klasa= Ω(f) n = O(n {g: 2 ); N R +, gdzie c>0 n0 N n n0 g(n) c f(n)}; g(n) g Ω(f) = 1/noznacza, O(1); że funkcja f rośnie nie szybciej niż funkcja g. g(n) g Ω(f) = 100 n czytamy: g 100 n+100 jest klasy Omega O(n duże 2 ); od f g(n) g Ω(f) = (logn) czytamy: a O(n lub b ) g dlajest każdych rzędu a,b Omega > 0; np. duże(logn) od f O(n ). Symbole o( ),ω( ) oraz Θ( ).
4 Symbol Ω( ): f: N R + ; klasa Ω(f) = {g: N R +, gdzie c>0 n0 N n n0 g(n) c f(n)}; g Ω(f) oznacza, że funkcja f rośnie nie szybciej niż funkcja g. g Ω(f) czytamy: g jest klasy Omega duże od f g Ω(f) czytamy: lub g jest rzędu Omega duże od f. Przykłady: g(n) = n 2 Ω(n); g(n) = 1 10 Ω(1/n); g(n) = n n Ω(n 2 ); g(n) = n b Ω((logn) a ) dla każdych a,b > 0. Symbole o( ),ω( ) oraz Θ( ).
5 Czasowa złożoność obliczeniowa Operacje podstawowe: operacje arytmetyczne, logiczne oraz porównania; odczytanie, zapisanie do komórki pamięci; wywołanie funkcji, procedury. W modelu RAM koszty powyższych operacji podstawowych są jednostkowe. Dla ustalonych danych wejściowych I możemy (zazwyczaj) precyzyjnie wyznaczyć liczbę lop(i) operacji podstawowych wykonanych przez program. (Pesymistyczna) Czasowa złożoność obliczeniowa T(n) := max{lop(i) : I I(n)}, gdzie I(n) jest to zbiór wszystkich danych wejściowych o rozmiarze n. Ze względów praktycznych szuka się jak najlepszego oszacowania tempa wzrostu funkcjit, czyli możliwie najwolniej rosnącej funkcjig takiej, żet O(g).
6 Czasowa złożoność obliczeniowa Np. sortowanie bąbelkowe n liczb: Operacje rozmiar danych podstawowe: wejściowych: n; liczba operacji podstawowych const n operacje arytmetyczne, logiczne oraz porównania; 2 ; złożoność czasowa: T(n) O(n 2 ) (ale i też T(n) O(n 100 )). odczytanie, zapisanie do komórki pamięci; Twierdzenie. wywołanie Dowolny funkcji, algorytm procedury. sortujący n elementów za pomocą porównań wymaga w przypadku pesymistycznym czasu rzędu Ω(nlogn). /Cormen et al./ W modelu RAM koszty powyższych operacji podstawowych są jednostkowe. Dla ustalonych danych wejściowych I możemy (zazwyczaj) precyzyjnie wyznaczyć liczbę lop(i) operacji podstawowych wykonanych przez program. (Pesymistyczna) Czasowa złożoność obliczeniowa T(n) := max{lop(i) : I I(n)}, gdzie I(n) jest to zbiór wszystkich danych wejściowych o rozmiarze n. Ze względów praktycznych szuka się jak najlepszego oszacowania tempa wzrostu funkcjit, czyli możliwie najwolniej rosnącej funkcjig takiej, żet O(g).
7 Pamięciowa złożoność obliczeniowa W każdym momencie wykonywania programu jesteśmy w stanie sprawdzić, ile aktualnie wykorzystywanych jest komórek (jednostek) pamięci. Dla ustalonych danych wejściowych I możemy wyznaczyć liczbę lkp(i) komórek pamięci wykorzystywanych podczas działania programu. (Pesymistyczna) Pamięciowa złożoność obliczeniowa M(n) := max{lkp(i) : I I(n)}. Nie zliczamy łącznej liczby użytych komórek pamięci, a pytamy się, jaki powinien być najmniejszy rozmiar pamięci gwarantującej wykonanie się programu. W przypadku programów ze zmiennymi dynamicznymi należy ustalić maksymalny rozmiar stosu zmiennych dynamicznych. Szukamy jak najlepszego oszacowania tempa wzrostu funkcji M, czyli możliwie najwolniej rosnącej funkcji f takiej, że M O(f).
8 Pamięciowa Np. sortowanie złożoność bąbelkowe obliczeniowa n liczb: rozmiar danych wejściowych: n; W każdym momencie wykonywania programu jesteśmy w stanie sprawdzić, ile aktualnie liczba operacji wykorzystywanych podstawowych jest komórek const n 2 (jednostek) ; pamięci. złożoność czasowa: T(n) O(n 2 ); Dla ustalonych danych wejściowych I możemy wyznaczyć liczbę lkp(i) komórek pamięci wykorzystywanych podczas działania złożoność pamięciowa: M(n) O(1). programu. (Pesymistyczna) Pamięciowa złożoność obliczeniowa M(n) := max{lkp(i) : I I(n)}. Nie zliczamy łącznej liczby użytych komórek pamięci, a pytamy się, jaki powinien być najmniejszy rozmiar pamięci gwarantującej wykonanie się programu. W przypadku programów ze zmiennymi dynamicznymi należy ustalić maksymalny rozmiar stosu zmiennych dynamicznych. Szukamy jak najlepszego oszacowania tempa wzrostu funkcji M, czyli możliwie najwolniej rosnącej funkcji f takiej, że M O(f).
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
Zaliczenie. Egzamin. lub. Wykład. Zaliczenie. Ćwiczenie. 3 zadania. Projekty. Ocena. Na ocenę
Zaliczenie Egzamin Ocena lub Zerówka Wykład z Zaliczenie Ocena Ćwiczenie Projekty 3 zadania Na ocenę Sylabus O http://wmii.uwm.edu.pl/~jakula/sylabus_23 17N1-ALISTD_PL.pdf JAK? CO? ILE? Polecane Cormen
Podstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Zasady analizy algorytmów
Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Wprowadzenie do złożoności obliczeniowej
problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów
Algorytmy i Struktury Danych
Algorytmy i Struktury Danych Podstawowe informacje Prowadzący: Jan Tuziemski Email: jan.tuziemski@pg.edu.pl Konsultacje: pokój 412 GB (do ustalenia 412 GB) Podstawowe informacje literatura K. Goczyła Struktury
Efektywność algorytmów
Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Algorytmy i struktury danych Matematyka III sem.
Algorytmy i struktury danych Matematyka III sem. 30 godz. wykł. / 15 godz. ćw. / 15 godz. projekt dr inŝ. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura T.H. Cormen i inni, Wprowadzenie
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Złożoność algorytmów. Wstęp do Informatyki
Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność
Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).
Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z
Sortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie
Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej
Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,
Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 3 2 Złożoność obliczeniowa algorytmów Notacja wielkie 0 Notacja Ω i Θ Algorytm Hornera Przykłady rzędów
Wykład 1 Wprowadzenie do algorytmów. Zawartość wykładu 1. Wstęp do algorytmów i struktur danych 2. Algorytmy z rozgałęzieniami.
Wykład 1 Wprowadzenie do algorytmów Zawartość wykładu 1. Wstęp do algorytmów i struktur danych 2. Algorytmy z rozgałęzieniami Wykaz literatury 1. N. Wirth - Algorytmy+Struktury Danych = Programy, WNT Warszawa
INFORMATYKA SORTOWANIE DANYCH.
INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania
Złożoność Obliczeniowa Algorytmów
Algorytmów Pożądane cechy dobrego algorytmu Dobry algorytm mający rozwiązywać jakiś problem powinien mieć 2 naturalne cechy: 1 (poprawność) zwracać prawidłowy wynik (dokładniej: zgodność z warunkiem końcowym
Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
Sortowanie przez scalanie
Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie
Algorytmy sortujące. Sortowanie bąbelkowe
Algorytmy sortujące Sortowanie bąbelkowe Sortowanie bąbelkowe - wstęp Algorytm sortowania bąbelkowego jest jednym z najstarszych algorytmów sortujących. Zasada działania opiera się na cyklicznym porównywaniu
wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.)
egzamin podstawowy 7 lutego 2017 r. wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.) Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek imię, nazwisko i nr indeksu:..............................................................
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Algorytmy sortujące. sortowanie kubełkowe, sortowanie grzebieniowe
Algorytmy sortujące sortowanie kubełkowe, sortowanie grzebieniowe Sortowanie kubełkowe (bucket sort) Jest to jeden z najbardziej popularnych algorytmów sortowania. Został wynaleziony w 1956 r. przez E.J.
Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer
Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
WYŻSZA SZKOŁA IFORMATYKI STOSOWAEJ I ZARZĄDZAIA Złożoność algorytmów Złożoność pamięciowa algorytmu wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie. Złożoność czasowa algorytmu
Podyplomowe Studium Programowania i Systemów Baz Danych
Podyplomowe Studium Programowania i Systemów Baz Danych Algorytmy, struktury danych i techniki programowania 15 godz. wykładu / 15 godz. laboratorium dr inż. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info
Sortowanie przez wstawianie
Sortowanie przez wstawianie Wykład 1 26 lutego 2019 (Wykład 1) Sortowanie przez wstawianie 26 lutego 2019 1 / 25 Outline 1 Literatura 2 Algorytm 3 Problem sortowania Pseudokod 4 Sortowanie przez wstawianie
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 3a: Złożoność obliczeniowa algorytmów http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Złożoność obliczeniowa i asymptotyczna
Algorytm i złożoność obliczeniowa algorytmu
Algorytm i złożoność obliczeniowa algorytmu Algorytm - przepis postępowania, którego wykonanie prowadzi do rozwiązania określonego problemu określa czynności, jakie należy wykonać wyszczególnia wszystkie
Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
Jeszcze o algorytmach
Jeszcze o algorytmach Przykłady różnych, podstawowych algorytmów 11.01.2018 M. Rad Plan Powtórka Znajdowanie najmniejszego elementu Segregowanie Poszukiwanie przez połowienie Wstawianie Inne algorytmy
Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP
Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Wstęp 2 Metody proste 3 Szybkie metody sortowania 4 Algorytmy hybrydowe Sortowanie hybrydowe Sortowanie introspektywne
Projektowanie i Analiza Algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Projektowanie i Analiza Algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa
Łukasz Przywarty 171018 Data utworzenia: 24.03.2010r. Mariusz Kacała 171058 Prowadzący: prof. dr hab. inż. Adam Janiak oraz dr inż. Tomiasz Krysiak Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa
Algorytmy i Struktury Danych. (c) Marcin Sydow. Introduction. QuickSort. Sortowanie 2. Limit. CountSort. RadixSort. Summary
Sortowanie 2 Zawartość wykładu: Własność stabilności algorytmów sortujących algorytm sortowania szybkiego () czy można sortować szybciej niż ze złożonością Θ(n log(n))? algorytm sortowania przez zliczanie
Grzegorz Mazur. Zak lad Metod Obliczeniowych Chemii UJ. 14 marca 2007
Zak lad Metod Obliczeniowych Chemii UJ 14 marca 2007 Rzad 1 Zamiast wst epu 2 Rzad Notacja dużego O Notacja Ω Notacja Θ 3 S lowniczek Rzad Algorytm W matematyce oraz informatyce to skończony, uporzadkowany
Podyplomowe Studium Informatyki
Podyplomowe Studium Informatyki Wstęp do informatyki 30 godz. wykładu dr inż. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura D. Harel, Rzecz o istocie informatyki. Algorytmika, WNT
Krzysztof Gniłka. Twierdzenie o rekurencji uniwersalnej
Krzysztof Gniłka Twierdzenie o rekurencji uniwersalnej Spis treści Wstęp 3 Rozdział 1 Definicje i pomocnicze lematy 4 1 Części całkowite liczb 4 2 Logarytmy 9 3 Notacja asymptotyczna 12 Rozdział 2 Metoda
Podstawy Programowania. Złożoność obliczeniowa
Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 13 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Złożoność algorytmów czy to istotne, skoro
Podstawy programowania. Podstawy C# Przykłady algorytmów
Podstawy programowania Podstawy C# Przykłady algorytmów Proces tworzenia programu Sformułowanie problemu funkcje programu zakres i postać danych postać i dokładność wyników Wybór / opracowanie metody rozwiązania
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 13 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Złożoność algorytmów czy to istotne, skoro
9. Schematy aproksymacyjne
9. Schematy aproksymacyjne T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, WNT (2004) O.H. Ibarra, C.E. Kim Fast approximation algorithms for the knapsack and sum of subset
Liczby pierwsze - wstęp
Artykuł pobrano ze strony eioba.pl Liczby pierwsze - wstęp W latach 60 ubiegłego wieku w Afryce znaleziono kości z wyrytymi na nich karbami liczące ponad 5000 lat. Na jednej z nich (kość z Ishango) karby
Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona
Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne
Wykład 1_2 Algorytmy sortowania tablic Sortowanie bąbelkowe
I. Struktury sterujące.bezpośrednie następstwo (A,B-czynności) Wykład _2 Algorytmy sortowania tablic Sortowanie bąbelkowe Elementy języka stosowanego do opisu algorytmu Elementy Poziom koncepcji Poziom
Laboratorium nr 7 Sortowanie
Laboratorium nr 7 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) Materiały Wyróżniamy następujące metody sortowania: 1. Przez prostą zamianę
koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator
Efektywna metoda sortowania sortowanie przez scalanie
Efektywna metoda sortowania sortowanie przez scalanie Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Metoda dziel i zwycięŝaj Dzielimy
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Informatyka (03-MO1N-12-Info) 1. Informacje ogólne koordynator modułu
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:
Informatyka 1. Złożoność obliczeniowa
Informatyka 1 Wykład XI Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności
Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
Definicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Podstawy programowania. Wykład: 8. Wskaźniki. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD
Podstawy programowania Wykład: 8 Wskaźniki 1 dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD Podstawy programowania w C++ Wskaźniki 2 Podstawy Pojęcie wskaźnika Wskaźnik na zmienną danego
Informatyka I. Wykład 4. Tablice. Dr inż. Andrzej Czerepicki. Politechnika Warszawska Wydział Transportu 2018
Informatyka I Wykład 4. Tablice. Dr inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2018 Tablice Tablica uporządkowany zbiór elementów określonego typu Każdy element tablicy posiada
Przykładowe sprawozdanie. Jan Pustelnik
Przykładowe sprawozdanie Jan Pustelnik 30 marca 2007 Rozdział 1 Sformułowanie problemu Tematem pracy jest porównanie wydajności trzech tradycyjnych metod sortowania: InsertionSort, SelectionSort i BubbleSort.
1. Napisz program wypisujący w kolejnych wierszach standardowego wyjścia pojedyncze słowa następującego napisu Bardzo dlugi napis. 2.
1. Napisz program wypisujący w kolejnych wierszach standardowego wyjścia pojedyncze słowa następującego napisu Bardzo dlugi napis. 2. Napisz program, który wczytuje ze standardowego wejścia liczbę całkowitą
Wstęp do programowania
Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu
Programowanie równoległe
Programowanie równoległe ELEMENTARNE ALGORYTMY (PODSTAWA: Z.CZECH. WPROWADZENIE DO OBLICZEŃ RÓWNOLEGŁYCH. PWN, 2010) Andrzej Baran baran@kft.umcs.lublin.pl Charakterystyka ilościowa algorytmów Przez algorytm
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Informatyka A (03-MO1S-12-InfoA) 1. Informacje ogólne koordynator modułu
ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:
ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy
Porównanie Heap Sort, Counting Sort, Shell Sort, Bubble Sort. Porównanie sortowao: HS, CS, Shs, BS
Czas sortowania w milisekundach Czas sortowania w milisekundach Sortowanie Porównanie, Counting Sort, Shell Sort, Bubble Sort 4 Porównanie sortowao: HS, CS, Shs, BS 35 3 25 2 15 5 Counting Sort Shell Sort
Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011
Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Załóżmy, że uprawiamy jogging i chcemy monitorować swoje postępy. W tym celu napiszemy program, który zlicza, ile czasu
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:
ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy
KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Wykład 6. Wyszukiwanie wzorca w tekście
Wykład 6 Wyszukiwanie wzorca w tekście 1 Wyszukiwanie wzorca (przegląd) Porównywanie łańcuchów Algorytm podstawowy siłowy (naive algorithm) Jak go zrealizować? Algorytm Rabina-Karpa Inteligentne wykorzystanie
Algorytmy sortujące 1
Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na
Struktury danych i złożoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 2 godz., Projekt 1 godz.. Strona kursu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html Struktury
Algorytmy i złożoność obliczeniowa. Wojciech Horzelski
Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury
Algorytm. a programowanie -
Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Struktury danych i algorytmy. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Struktury danych i algorytmy 2. KIERUNEK: Matematyka 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 6 6. LICZBA GODZIN: 30 wykład
Podstawy Programowania
Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności
Podstawy Programowania. Złożoność obliczeniowa
Podstawy Programowania Wykład X Złożoność obliczeniowa Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
dodatkowe operacje dla kopca binarnego: typu min oraz typu max:
ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu
Algorytmy i struktury danych
Algorytmy i struktury danych ĆWICZENIE 2 - WYBRANE ZŁOŻONE STRUKTURY DANYCH - (12.3.212) Prowadząca: dr hab. inż. Małgorzata Sterna Informatyka i3, poniedziałek godz. 11:45 Adam Matuszewski, nr 1655 Oliver
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
Sprawozdanie do zadania numer 2
Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach
Struktura danych. Sposób uporządkowania informacji w komputerze.
Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk
Algorytmy i struktury danych
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład
PROBLEMY NIEROZSTRZYGALNE
PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną
Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)
Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne metody informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2018/2019 (semestr zimowy) Spis
Algorytmy i struktury danych
Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Mariusz Różycki University of Cambridge Zajęcia będą mieć formę wykładową. Slajdy można znaleźć na stronie kursu: http://lw.mi.edu.pl/informatyka/algorytmy.
Wskaźniki. Programowanie Proceduralne 1
Wskaźniki Programowanie Proceduralne 1 Adresy zmiennych Sterta 1 #include 2 3 int a = 2 ; 4 5 int main ( ) 6 { 7 int b = 3 ; 8 9 printf ( " adres zmiennej a %p\n", &a ) ; 10 printf ( " adres