OCENIANIE ARKUSZA POZIOM ROZSZERZONY

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "OCENIANIE ARKUSZA POZIOM ROZSZERZONY"

Transkrypt

1 OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) =. x x I sposób rozwiązania podpunktu b). Zapisanie wzoru funkcji w postaci sumy f( x) = p+ Liczba punktów p. x p. Zapisanie nierówności p > 0. Rozwiązanie powyższej nierówności:.4 p,,.. ( ) ( ) II sposób rozwiązania podpunktu b) Obliczenie pochodnej funkcji f (x) : p f ( x) =, x p ( x p) p i zapisanie nierówności < 0 pozwalającej ( x p ) wyznaczyć szukany zbiór wartości parametru p. Uwagi dla sprawdzającego pkt za wykonanie dzielenia ( px ):( x p) = p( x p) + p lub wykorzystanie innej metody, która doprowadzi do zapisania wyrażenia w postaci sumy, np. px ( p) + p f( x) =. x p pkt za zapisanie funkcji w postaci homograficznej: p f( x) = p+. x p pkt przyznajemy za obliczenie pochodnej, pkt za zapisanie nierówności.

2 Próbny egzamin maturalny z matematyki..4. Stwierdzenie, że ( x p) 0 p 0 <. > i zapisanie nierówności Rozwiązanie nierówności p < 0: ( ) ( ) p,,. III sposób rozwiązania podpunktu b) z zastosowaniem definicji funkcji malejącej. la dowolnych x, x ( p, ) takich, że x < x funkcja f jest malejąca gdy f( x) f( x) < 0. Obliczenie różnicy f ( x) f( x) : pkt zapisanie założeń. pkt doprowadzenie różnicy f ( x) f( x) do postaci iloczynowej p ( x x) ( x x) ( x x)( p ) f( x) f( x) = =. ( x p)( x p) ( x p)( x p) Analiza znaku ułamka: ( x p) > 0, ( x p) > 0 i ( x x) < 0 dla każdego x, x p,. Zapisanie nierówności p > 0. ( ) Rozwiązanie nierówności ( ) ( ) p,,. p > 0: IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja f, f p+ > p. była malejąca w przedziale ( p + ): ( ) Zapisanie warunku f ( p+ ) > p w postaci: p( p+ ) > p. ( p+ ) p Rozwiązanie nierówności ( ) ( ) p,,. p > 0: Zauważenie, że wyrażenie f ( x) f( x) przyjmuje wartość ujemną gdy p > 0.

3 ..... Wyznaczenie pierwiastków trójmianu y = x 8x + : x =, x = 6. Rozważenie możliwych przypadków ciągów geometrycznych, które mogą być rosnące:,,6,,6,6, k ( k ), ( k ), ( ) Wyznaczenie wszystkich wartości k, dla których ciąg jest rosnący: k = lub k = lub k = 8.. Zapisanie wzoru funkcji f : f ( x) x.. Rozwiązanie równania ( f ( x) ) 6 = 0: f ( x ) = 4 lub f ( x ) = 4 z niewiadomą ( ) Podanie rozwiązań równania ( f ( x) ) 6 = 0 z niewiadomą x: x = lub x = 6. 6 = log. f x. pkt za rozwiązanie każdego z przypadków. Jeśli zdający nie odrzucił rozwiązania k =, nie przyznajemy punktu. pkt za wykorzystanie definicji logarytmu i zapisanie równania log p 4 =. pkt za wyznaczenie podstawy logarytmu. Za bezpośrednie podanie wzoru funkcji przyznajemy pkt. Zdający może od razu zapisać alternatywę równań : log x= 4 lub log x= 4.

4 4 Próbny egzamin maturalny z matematyki Sporządzenie poprawnego rysunku, na którym, np.: oznacza punkt styczności okręgu z przeciwprostokątną, E,F są punktami styczności przyprostokątnych AC i BC trójkąta z okręgiem. (odcinek C nie zawiera średnicy okręgu wpisanego w dany trójkąt). C Zdający otrzymuje punkt jeśli narysuje trójkąt z zaznaczonymi dobrymi kątami i wpisanym okręgiem F E O B A 4. Wykorzystanie własności : środek okręgu wpisanego w trójkąt leży w punkcie przecięcia dwusiecznych jego kątów. Δ FBO jest prostokątny i FBO = 0. OF = stąd OB =. 4. Obliczenie długość odcinka FB z Δ FBO : FB =. 4.4 Obliczenie długość odcinka CB: CB = CF + FB = Obliczenie długość odcinka B: B = BF =. Z własności trójkąta opisanego na okręgu.

5 5 4.6 Zastosowanie wzoru cosinusów w odcinka C: C = CB + B CB B cos 60 ( ) ( ) Δ CB do obliczenie długości C = = +,, Jeżeli błąd jest spowodowany tym, że punkty C, O, są współliniowe i zdający korzysta z twierdzenia Pitagorasa w trójkącie CB, wtedy nie przyznajemy punktów. C = +. II sposób rozwiązania. Sporządzenie rysunku. C E 4. F O 4. B A Skorzystanie z tego, że CE = CF = r (czworokąt CFOE jest 4. kwadratem) oraz ze wzoru na długość promienia okręgu wpisanego AC + BC AB w trójkąt CE = CF =. Przyjęcie oznaczeń, np. a = BC i zapisanie tej równości w postaci: ( ) a+ a a a = =.

6 6 Próbny egzamin maturalny z matematyki 4. Obliczenie BC = a = = +. Obliczenie AC = +, np. z wykorzystaniem funkcji 4.4 trygonometrycznych w trójkącie ABC. 4.5 Obliczenie AE = A = Zastosowanie wzoru cosinusów w trójkącie CA i obliczenie długości C : C = AC + A AC A cos 0 ( ) ( ) ( )( ) C = = + C = +. III sposób rozwiązania ( z wykorzystaniem Sporządzenie rysunku. C, CO ) F E O B A

7 Obliczenie miary FO : (wykorzystanie miary kątów czworokąta FOB) FO = 60, FO = 0. Zauważenie, że FOC = 45 i obliczenie CO = = 65. Obliczenie długości odcinka OC. (OC przekątna kwadratu o boku długości ). OC = = Wykorzystanie wzoru redukcyjnego: cos65 = cos5. Zastosowanie wzoru cosinusów w Δ CO : 4.6 C = OC + O OC O cos65 Obliczenie długości odcinka C: ( ) ( ) C = cos5 C = cos5.,. Zdający może pozostawić wynik w takiej postaci: cos5, lub odczytać wartość cosinusa z tablic i podać wynik liczbowy.

8 8 Próbny egzamin maturalny z matematyki IV sposób rozwiązania. Sporządzenie rysunku. C 4. F O B Oznaczmy AB = a. Z własności trójkąta ABC wynika, że a a BC =, AC =. Wyznaczenie pola trójkąta ABC (z zastosowaniem wzoru: S = pr, gdzie p = ( a+ b+ c) i r jest promieniem okręgu wpisanego w a a AC BC a ten trójkąt): a + + = =. 8 Wyznaczenie AB = a z powyższej równości: A a + = a, AB = a = 6+. Wyznaczenie długości odcinka B: a B = BF = CF = + =.

9 9 4.6 Zastosowanie wzoru cosinusów w trójkącie CB do wyznaczenia długości odcinka C: V sposób rozwiązania. Sporządzenie rysunku. C C = CB + B CB B cos 60. P 4. R O B Wykorzystanie własności : środek okręgu wpisanego w trójkąt leży w punkcie przecięcia dwusiecznych jego kątów. Wyznaczenie O A z trójkąta AO: = = tg5 stąd A = A A tg5. Wyznaczenie B z trójkąta BO: B =. O = = tg0 stąd B B P = A = tg5 (z trójkąta prostokątnego PA, w którym PA = 60 ). A

10 0 Próbny egzamin maturalny z matematyki B R = = (z trójkąta prostokątnego BR, w którym BR = 60 ). Wyznaczenie długości odcinka C z trójkąta prostokątnego CR: 7 C = R + RC = +. 4tg 5 4 VI sposób rozwiązania. Sporządzenie rysunku. C 4. F E Obliczenie miary kąta ON: ON = B M N O N Wyznaczenia N z trójkąta prostokątnego ON: sin 0 O =, N = i ON = O =. CM = CF + FM = + ON = +. A

11 M = N + MN = + OF =. Wyznaczenie C z twierdzenia Pitagorasa w trójkącie CM: C = CM + M = + + = +, C = +. VII sposób rozwiązania. Sporządzenie rysunku. C Zdający otrzymuje punkt jeśli narysuje trójkąt z zaznaczonymi dobrymi kątami i wpisanym okręgiem. E 4. F O 4. B G A Wykorzystanie własności : środek okręgu wpisanego w trójkąt leży w punkcie przecięcia dwusiecznych jego kątów. Δ FBO (lub Δ BO ) jest prostokątny i FBO = 0. OF = stąd OB =. Obliczenie długości odcinków FB z FB = i B =. Δ FBO i B z Δ BO : 4.4 Obliczenie długość odcinka CB: CB = CF + FB = +.

12 Próbny egzamin maturalny z matematyki Obliczenie długości odcinków BG i CG i G: + = BG = BC, + = CG = BC, G = B BG =. Zastosowanie twierdzenia Pitagorasa ΔBGC do obliczenie długości odcinka C: C = CG + G + C = + = +, C = +. Sporządzenie wykresu funkcji (skorzystanie z definicji wartości bezwzględnej i sporządzenie wykresu albo naszkicowanie wykresu funkcji gx ( ) = x x, a następnie naszkicowanie wykresu funkcji f ( x) = g( x) ). Wskazanie każdego punktu, w którym istnieje ekstremum lokalne funkcji f i określenie rodzaju ekstremum: minimum lokalne dla x = 0, maksimum lokalne dla x = oraz x =. = 06,. 6. Wyznaczenie współrzędnych punktu : ( ) 6. Wyznaczenie współrzędnych punktów A i B: A = 0,, B = 60, ( ) ( ) 6. Wyznaczenie długości odcinka C: C =. 6.4 Obliczenie pola trapezu: P ABC 9+ = 6 = 6. Zdający może rozpatrzyć dwa przypadki i za każdy poprawnie rozwiązany otrzymuje pkt. Jeśli jest prawidłowy rysunek to zdający otrzymuje pkt. Przyznajemy punkt jeśli, np. - rysunek jest prawidłowy tylko po jednej stronie osi Oy, - gdy zdający nie wybrał tej części wykresu, która jest prawidłowa (pozostawił niepotrzebne części wykresu).

13 Wyznaczenie cos x z danego równania: cos x = 0 lub cos x =. Wybranie i zapisanie rozwiązań należących do przedziału 0, π : 7. π π 5 x =, x =, x = π, x 4 = π II sposób rozwiązania. π π Rozwiązanie równania gdy cos x = 0 : x = lub x =. Rozwiązanie równania gdy cos x 0 : pkt - za doprowadzenie równania do najprostszej postaci cos x =. π 5π pkt za rozwiązanie: x = lub x =., poprawnego znaku pochodnej: (+). 8. Zaznaczenie w przedziale ( ) 8. Zapisanie, że mimo poprawienia błędu w tej tabeli umieszczone w niej dane nie pozwalają stwierdzić dokładnie ile miejsc zerowych ma funkcja f: mogą być, albo 4 miejsca zerowe (zdający sporządza rysunki lub przedstawia słowne uzasadnienie). Jeśli zdający podzieli równanie obustronnie przez cos x, bez komentarza dostaje 0 pkt. Jeśli zdający w 7. podzielił równanie przez cos x ale poprawnie rozwiązał otrzymane w ten sposób równanie otrzymuje pkt. Zdający może podać odpowiedź w stopniach. pkt jeśli zdający poda odpowiedź nie pozwala, pkt jeśli poda odpowiedź nie pozwala, bo może mieć lub lub 4 miejsca zerowe (poprawnie wskazuje dwie różne liczby miejsc zerowych, ale nie pokazuje, jak wygląda wykres funkcji). pkt jeśli poda odpowiedź i narysuje dwa wykresy lub pokazuje, że np. w przedziale (, + ) funkcja może mieć 0 miejsc zerowych lub miejsce zerowe.

14 4 Próbny egzamin maturalny z matematyki Obliczenie prawdopodobieństwa P( A B) : PA ( B) = PA ( ) PA ( \ B) = 0,. ( pkt za pokazanie metody, pkt za obliczenia) Obliczenie iloczynu prawdopodobieństw P( A) P( B) i zapisanie, że dane zdarzenia są niezależne: P ( A) P( B) = 0,5 0,4 = 0,. Obliczenie różnicy dwóch kolejnych wyrazów w postaci ogólnej: an+ an = p i stwierdzenie, że ciąg ( a n ) jest arytmetyczny. Obliczenie żądanej sumy dwudziestu jeden wyrazów danego ciągu: a0 + a40 S 40 S9 = = 4 lub = 4. b był stały: p + p = Zapisanie warunku na to aby ciąg ( ) n Wyznaczenie wszystkich wartości p, dla których ciąg ( b n ) jest stały: 0.4 p = lub p =.. Wyznaczenie pierwiastków trójmianu kwadratowego: n, n... Wyznaczenie zbioru rozwiązań nierówności x nx + n < 0 : n, n. ( ) Wyznaczenie największej liczby całkowitej spełniającej nierówność i zapisanie wzoru funkcji f : n, f (n) = n, dla n>. pkt za przedstawienie metody, pkt za wykonanie obliczeń.

15 5 C.. A. B. Zauważenie, że trójkąt ABC jest prostokątny i kąt ABC ma miarę 60. Zapisanie pola zacieniowanej figury jako odpowiedniej różnicy pól:. np. deltoidu ABC i wypukłego wycinka kołowego BC.. Obliczenie pola deltoidu ABC: P ABC = 64. π.4 Obliczenie pola zacieniowanej figury: P f = 64. Za prawidłowe rozwiązanie każdego z zadań inną metodą od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja

Bardziej szczegółowo

POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i .

POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i . POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i. To książka dla wszystkich maturzystów, zdających nową maturę z matematyki na poziomie podstawowym i rozszerzonym. Jasne

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 04/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R CZERWIEC 0 Klucz punktowania zadań zamkniętych Nr zad. 3

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z matematyki poziom podstawowy rozumowanie i argumentacja karty pracy ZESTAW II Zadanie. Wiadomo, że,7 jest przybliżeniem liczby 0,5 z zaokrągleniem do miejsc po przecinku. Wyznacz przybliżenie

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA.

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 2011 w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA oraz WYBRANYCH WZORÓW MATEMATYCZNYCH 2 Próbny egzamin maturalny

Bardziej szczegółowo

Zestaw II sposób rozwiązania (rozkład trójmianu kwadratowego na czynniki)

Zestaw II sposób rozwiązania (rozkład trójmianu kwadratowego na czynniki) CZERWIEC 00 Prawidłowe odpowiedzi do zadań zamkniętych Nr Zadania 3 4 8 9 0 3 4 8 9 0 3 4 Odpowiedź C D C D C D C C C C C D Zadanie. ( pkt) Rozwiąż nierówność x Schemat oceniania zadań otwartych x30 0.

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/05 FORMUŁA DO 0 ( STARA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 05 Klucz punktowania zadań zamkniętych Nr zad. 3

Bardziej szczegółowo

Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym

Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Elżbieta Świda, Marcin Kurczab Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Zadanie (matura maj 009) Ciąg ( 3, + 3, 6 +, ) jest nieskończonym ciągiem geometrycznym o wyrazach dodatnich.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych Odpowiedzi do zadań zamkniętych Nr zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 Odpowiedź A C C B C A B C A D B C D B D C A B A A A C B A A Schemat oceniania zadań otwartych Zadanie 6. ( pkt) Rozwiąż

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 MATEMATYKA

EGZAMIN MATURALNY 2011 MATEMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 0 MATEMATYKA POZIOM PODSTAWOWY MAJ 0 Egzamin maturalny z matematyki poziom podstawowy Zadanie (0 ) Obszar standardów i tworzenie informacji

Bardziej szczegółowo

MATURA PRÓBNA - odpowiedzi

MATURA PRÓBNA - odpowiedzi MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZYKŁADOWY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRACA KONTROLNA nr 1

PRACA KONTROLNA nr 1 XXXV KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 005r. 1. Niech f(x) = x + bx + 5. Wyznaczyć wszystkie wartości parametru b, dla których: a) wykres funkcji f jest symetryczny względem

Bardziej szczegółowo

Plik pobrany ze strony www.zadania.pl

Plik pobrany ze strony www.zadania.pl Plik pobrany ze strony www.zadania.pl Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Propozycje rozwiązań zadań z matematyki - matura rozszerzona

Propozycje rozwiązań zadań z matematyki - matura rozszerzona Jacek Kredenc Propozycje rozwiązań zadań z matematyki - matura rozszerzona Zadanie 1 Zastosujmy trójkąt Paskala 1 1 1 1 2 1 1 3 3 1 Przy iloczynie będzie stał współczynnik 3. Zatem Odpowiedź : C Zadanie

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie

Bardziej szczegółowo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM PODSTAWOWY Katalog poziom podstawowy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1 Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 008 Czas pracy 0 minut Instrukcja dla

Bardziej szczegółowo

EGZAMIN MATURALNY 2010 MATEMATYKA

EGZAMIN MATURALNY 2010 MATEMATYKA entralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 010 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 010 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od 1. do 5. podane

Bardziej szczegółowo

Arkusz I Próbny Egzamin Maturalny z Matematyki

Arkusz I Próbny Egzamin Maturalny z Matematyki Arkusz I Próbny Egzamin Maturalny z Matematyki Poziom Podstawowy 2 kwietnia 2010 r. Czas trwania 170min. Arkusz przygotowany przez serwis www.akademiamatematyki.pl Zadanie 1. ( 1 pkt. ) Liczba jest o większa

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 78353 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 4 jest

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 6 Regulamin konkursu... 7 Zadania Liczby i działania... 9 Procenty... 14 Figury geometryczne... 19 Kąty w kole... 24 Wyrażenia algebraiczne... 29 Równania i nierówności...

Bardziej szczegółowo

Przykładowe zadania dla poziomu podstawowego Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5.

Przykładowe zadania dla poziomu podstawowego Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Przykładowe zadania dla poziomu podstawowego Zadanie. ( pkt) W układzie współrzędnych zaznaczono 5 początkowych wyrazów nieskończonego ciągu a. arytmetycznego ( ) n y - a) Podaj trzeci wyraz tego ciągu.

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy rok Czas rozwiązywania zadań 150 minut Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy 0..005 rok Czas rozwiązywania zadań 50 minut Zadanie ( pkt) a b a Wiedząc, że dla b 0. Oblicz b a b Zadanie

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZYKŁADOWY

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 04 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 6 stron.. W zadaniach od. do

Bardziej szczegółowo

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

MATEMATYKA - PLAN WYNIKOWY (zakres podstawowy) Rok szkolny 2014/2015- klasa 1 a, b

MATEMATYKA - PLAN WYNIKOWY (zakres podstawowy) Rok szkolny 2014/2015- klasa 1 a, b MATEMATYKA - PLAN WYNIKOWY (zakres podstawowy) Rok szkolny 04/05- klasa a, b Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2.

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Wielomiany Wielomian jednej zmiennej rzeczywistej Dodawanie, odejmowanie i mnożenie wielomianów Równość wielomianów Podzielność wielomianów Dzielenie wielomianów. Dzielenie wielomianów z resztą Dzielenie

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 03 WPISUJE ZJĄY KO PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY MJ

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 0 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

Strategia przygotowań

Strategia przygotowań Strategia przygotowań do egzaminu maturalnego z matematyki w 2009 roku 1 Co warto wiedzieć o maturze z matematyki? 2 Co warto wiedzieć o maturze z matematyki? Za rozwiązanie wszystkich zadań arkusza poziomu

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut M A T E M A T Y K A 09 MARCA 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 5508 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek,

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ WPISUJE ZDAJĄCY KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ matematyka-poziom PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

MATEMATYKA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Zakres rozszerzony Wymagania stawiane przed uczniem podzieliliśmy na trzy grupy: Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo