Wzory funkcji cyklometrycznych (kołowych)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wzory funkcji cyklometrycznych (kołowych)"

Transkrypt

1 Wzory funkcji cyklometrycznych (kołowych) Mateusz Kowalski Streszczenie Wzory funkcji cyklometrycznych wraz z wyprowadzeniami. 1 A co to za funkcje? Funkcje cyklometryczne lub inaczej kołowe są to funkcje odwrotne do trygonometrycznych. W literaturze trudno znaleźć te wzory jeśli już są to nie zawsze z właściwymi założeniami. Wzory.1 Funkcje cyklometryczne przeciwnego argumentu. arcsin( x) = arcsin x (1) arccos( x) = arccos x + π () arc tg( x) = arc tg x (3). Tożsamości funkcji cyklometrycznych. arc tg x + arc ctg x = π arcsin x + arccos x = π (4) (5).3 Funkcja trygonometryczna z funkcji cyklometrycznej. sin(arcsin x) = x, bo x [ 1, 1] (6) cos(arccos x) = x, bo x [ 1, 1] (7) tan(arc tg x) = x, bez ograniczeń na x (8) Czyli nic podejrzanego, bo definicja arcsin czy arccos narzuca ograniczenie na x 1

2 .4 Funkcja cyklometryczna z funkcji trygonometrycznej. x arcsin(sin x) = ( 1) γ (x γπ) γ = π + 1 (9) Rysunek 1: wykres funkcji f(x) = arcsin(sin x) δ x arccos(cos x) = ( 1) δ (x π) δ = π (10) Rysunek : wykres funkcji f(x) = arccos(cos x) x arc tg(tg x) = x γ π γ = π + 1 (11) Rysunek 3: wykres funkcji f(x) = arc tg(tg x) Gdzie: x To odpowiednio podłoga, czyli zaokrąglanie do liczby całkowitej w dół. x To odpowiednio sufit, czyli zaokrąglanie do liczby całkowitej w górę.

3 .5 Wzory na zmianę funkcji. { arcsin 1 x arccos x =, dla x 0 π arcsin 1 x, dla x 0 { arccos 1 x arcsin x =, dla x 0 arccos 1 x, dla x 0 arcsin x 1+x, dla x 0 arc tg x = π arcsin x 1+x, dla x 0 (1) (13) (14).6 Wzory sumę funkcji cyklometrycznych. arcsin x + arcsin y = π arcsin(x 1 y + y 1 x ), dla y < 1 x x, y < 0 = arcsin(x 1 y + y 1 x ), dla pozostałych π arcsin(x 1 y + y 1 x ), dla y > (15) 1 x x, y > 0 arccos x + arccos y = { arccos(xy (1 x )(1 y )), dla x + y > 0 π arccos(xy (1 x )(1 y )), dla x + y < 0 (16) π + arc tg x+y 1 xy, dla xy > 1 x, y < 0 arc tg x+y 1 xy, dla xy < 1 arc tg x + arc tg y = π + arc tg x+y 1 xy, dla xy > 1 x, y > 0 π, dla xy = 1 (17) 3

4 3 Wyprowadzenia 3.1 Wzór 1 Wyjdźmy od: α = arcsin( x) Wiadomo przy tym α [ π, π ] z własności funkcji arcsin. Obkładając powyższe równanie funkcja sinus na mocy wzoru 6 Teraz obkładając funkcją arcsin Dostajemy wzór sin α = x sin( α) = x α = arcsin x arcsin( x) = arcsin(x) Albo wprost z tego, że funkcja jest nieparzysta 3. Wzór Wyjdźmy od α = arccos( x) Wiadomo przy tym α [0, π] z własności funkcji arccos działając funkcją cos na równanie dostaniemy cos α = x cos α = x korzystając ze wzoru redukcyjnego z trygonometrii Działając funkcją arccos A stąd wynika już nasz wzór cos(π α) = x π α = arccos x arccos( x) = arccos x + π Albo inne podejście funkcja arccos po obniżeniu o π będzie nieparzysta, zatem (arccos x π ) = (arccos( x) π ) skąd natychmiast dostajemy nasz wzór. 4

5 3.3 Wzór 3 Wprost z tego że jest to funkcja nieparzysta 3.4 Wzór 4 Wprost z definicji funkcji. Funkcja arc ctg po obniżeniu π przeciwna do funkcji arc tg x. jest nieparzysta i arc tg x π = arc ctg x skąd wynika wprost tożsamość. 3.5 Wzór 5 Oznaczmy przez arcsin x + arccos x =? α = arcsin x β = arccos x Stąd możemy napisać na mocy wzorów 6 7, że: x = sin α x = cos β Korzystając z jedynki trygonometrycznej. cos α = 1 x cos α = 1 x sin β = 1 x sin β = 1 x Wychodząc z wzoru trygonometrycznego sin(α + β) = sin α cos β + cos α sin β Podstawiając sin(α + β) = x + ( 1 x ) α + β = arcsin 1 α + β = π arcsin x + arccos x = π co należało pokazać. Albo z definicji funkcji arcsin i arccos obniżając funkcję arccos o π będzie odwrotnością funkcji arcsin tzn. arccos x π = arcsin x 5

6 3.6 Wzór 6 Wprost z własności funkcji sin oraz arcsin, które są odwrotne względem siebie dla kąta z zakresu [ π, π ] 3.7 Wzór 7 Wprost z własności funkcji cos oraz arccos, które są odwrotne względem siebie dla kąta z zakresu [0, π] 3.8 Wzór 8 Wprost z własności funkcji tg oraz arc tg, które są odwrotne względem siebie dla kąta z zakresu ( π, π ) 3.9 Wzór 9... (x 3π), dla x [ 5π, 7π ) γ = 3 x π, dla x [ 3π, 5π ) γ = (x π), dla x [ π, 3π ) γ = 1 arcsin(sin x) = x, dla x [ π, π ) γ = 0 (x + π), dla x [ 3π, π ) γ = 1 x + π, dla x [ 5π, 3π ) γ = (x + 3π), dla x [ 7π, 5π ) γ = 3... Znak minus jest na zmianę więc wykorzystamy czynnik ( 1) p. Dopasowując by p dla odpowiednich przedziałów było parzyste, a dla innych nieparzyste (uwzględniając przypadek 0 jako parzyste). Należy znaleźć odpowiednie przyporządkowanie przedziału do liczby całkowitej. Można to zrobić poprzez wykorzystanie podłogi lub sufitu z ewentualnym przesunięciem. Długość przedziału wynosi π więc podzielenie x π unormuje do długości 1. A właśnie co 1 następuje zmiana w funkcji dokonując przesunięcia w odpowiednią stronę o 1 mamy: x γ = π + 1 czynnik ( 1) γ, pasuje znakiem do przedziałów czyli p = γ. możemy napisać wzór: x arcsin(sin x) = ( 1) γ (x γπ) γ = π

7 3.10 Wzór 10 rozwińmy... (x + π), dla x ( 3π, π) δ = 3 δ = 1 x + π, dla x ( π, π) δ = δ = 1 x, dla x ( π, 0) δ = 1 δ = 0 arccos(cos x) = x, dla x (0, π) δ = 0 δ = 0 (x π), dla x (π, π) δ = 1 δ = 1 x π, dla x (π, 3π) δ = δ = 1... Tutaj mamy trochę trudniej. Gdyż mamy podwójne zmiany o π. Można to wyrazić takim wzorem δ x arccos(cos x) = ( 1) δ (x π) δ = π 3.11 Wzór x π, dla x ( 5π, 3π ) γ = x π, dla x ( 3π, π ) γ = 1 arc tg(tg x) = x, dla x ( π, π ) γ = 0 x + π, dla x ( π, 3π ) γ = 1 x + π, dla x ( 3π, 5π ) γ =... Postępujemy analogicznie co w wyprowadzeniu we wzorze 9 dochodząc do x γ = π + 1 a wzór się sam nasuwa x arc tg(tg x) = x γ π γ = π Wzór 1 Zaczynamy od arccos x = α 7

8 Stąd wiadomym jest α [0, π] działając obustronnie na równanie funkcją cos x = cos α Z jedynki trygonometrycznej sin α = 1 cos α sin α = 1 x Ze względu na, że sin α 0 dla α [0, π] zatem Stąd sin α = 1 x α = arcsin 1 x, dla α [ π, π ] α = π arcsin 1 x, dla α [ π, 3π ] Z uwzględnieniem założenia α [0, π] oraz wnioskowania α [0, π ] x 0 Dostajemy wzór 3.13 Wzór 13 Zacznijmy od arccos y = przy czym mamy, że α [ π, π ] α [ π, π] x 0 { arcsin 1 x, dla x 0 π arcsin 1 x, dla x 0 arcsin x = α x = sin α cos α = 1 sin α cos α = 1 sin α Skoroα [ π, π ], to dla takiej α cos α 0 cos α = 1 x 8

9 α = arccos 1 x, dla α [0, π] α = arccos 1 x, dla α [ π, 0] Z uwzględnieniem założenia α [ π, π ] mamy Uzyskujemy więc wzór 3.14 Wzór 14 arcsin x = α [ π, 0] x 0 α [0, π ] x 0 { arccos 1 x, dla x 0 arccos 1 x, dla x 0 arc tg x = α, dla α ( π, π ) Teraz działając na równanie funkcją tg mamy: Z jedynki trygonometrycznej cos α = x = tg α x = sin α cos α 1 sin α ze względu na zakres α możemy opuścić wartość bezwzględną. cos α = 1 sin α Podstawiając za cos uzyskamy x = sin α 1 sin α Pytanie jednak brzmi α =?. Podnosimy zatem równanie do kwadratu. x = sin α 1 sin α sin α(1 + x ) = x x sin α = 1 + x 9

10 Teraz mamy dwie sytuację 1 α [0, π ) x 0 x sin α = 1 + x x α = arcsin 1 + x formalnie jeszcze tak α = π arcsin( x 1+x ), ale to odpada, bo po zakresem. α ( π, 0) x < 0, które odpada, ale mamy jeszcze x sin α = 1 + x x α = arcsin 1 + x x π arcsin 1 + x Możemy teraz sformułować wzór: arcsin x 1+x, dla x 0 arc tg x = π arcsin x 1+x, dla x < Wzór 15 Szukamy wzoru: Oznaczmy przez arcsin x + arcsin y =? α = arcsin x β = arcsin y Stąd możemy napisać na mocy wzoru 6, że: Z jedynki trygonometrycznej x = sin α y = sin β sin α + cos α =

11 mamy, że cos α = 1 x Z definicji funkcji arcsin wynika, że α, β [ π, π ]. Zatem cos α 0 więc opuszczamy wartość bezwzględna cos α = 1 x i analogicznie uzyskujemy cos β = 1 y. Wychodząc ze wzoru trygonometrycznego podstawiając uzyskujemy sin(α + β) = sin α cos β + cos α sin β sin(α + β) = x 1 y + 1 x y Teraz Uwaga α + β [ π, π] co jest szerszym przedziałem, niż przedział wartości funkcji arcsin [ π, π ] zatem π arcsin(x 1 y + y 1 x ), dla α + β [ 3π, π ] α + β = arcsin(x 1 y + y 1 x ), dla α + β [ π, π ] π arcsin(x 1 y + y 1 x ), dla α + β [ π, 3π ] Co sprowadza się do, bo jeszcze raz α + β [ π, π] π arcsin(x 1 y + y 1 x ), dla α + β [ π, π ] α + β = arcsin(x 1 y + y 1 x ), dla α + β [ π, π ] π arcsin(x 1 y + y 1 x ), dla α + β [ π, π] Jednak wygląda to dosyć osobliwie. Należy zatem warunki wyrazić od x Rysunek 4: Odwzorowanie pary(α, β) w parę (x, y) i y. α + β > π wynika stąd dodatkowo α, β > 0, bo żadna z nich nie jest większa od π a to zaś oznacza x, y > 0, gdyż funkcja arcsin jest rosnąca i nieparzysta. β > α + π arcsin y > arcsin x + π 11

12 Sprowadzając problem do znalezienia granicy. arcsin y = arcsin x + π na mocy wzoru 6 mamy y = sin( arcsin x + π ) y = sin(arcsin x π ) y = ( cos(arcsin x)) teraz obkładając wzór numer 13 funkcją cos uzyskujemy y = 1 x. Wracając do nierówności. spełniona jest ona, gdy y > 1 x, Wynika to chociażby z tego, że funkcja arcsin jest rosnąca i nieparzysta. Pamiętając ponadto o tym iż x, y > 0. Analogicznie postępując z nierównością β < α π dojdziemy do y < 1 x oraz x, y < 0 A teraz możemy zapisać nasz wzór już z warunkami na x i y. (a) f(x, y) = arcsin x + arcsin y (b) f(x, y) = arcsin(x 1 y + y 1 x ) Rysunek 5: Porównanie wygenerowanych wykresów funkcji π arcsin(x 1 y + y 1 x ), dla y < 1 x x, y < 0 arcsin x+arcsin y = arcsin(x 1 y + y 1 x ), dla pozostałych π arcsin(x 1 y + y 1 x ), dla y > 1 x x, y > 0 1

13 3.16 Wzór 16 Szukamy wzoru: Oznaczmy przez arccos x + arccos y =? α = arccos x β = arccos y Stąd możemy napisać na mocy wzoru 7, że: Z jedynki trygonometrycznej x = cos α y = cos β sin α + cos α = 1 mamy, że sin α = 1 x. Z definicji funkcji arccos wynika, że α, β [0, π]. Zatem sin α 0, więc opuszczamy wartość bezwzględna sin α = 1 x i analogicznie uzyskujemy sin β = 1 y Wychodząc ze wzoru trygonometrycznego cos(α + β) = cos α cos β sin α sin β podstawiając uzyskujemy cos(α + β) = xy (1 x )(1 y ) Teraz Uwaga α + β [0, π] co jest szerszym przedziałem, niż przedział wartości funkcji arccos [0, π] zatem { arccos(xy (1 y )(1 x ), dla α + β [0, π] α + β = π arccos(xy (1 y )(1 x ), dla α + β [π, π] Jednak wygląda to dosyć osobliwie. Należy zatem warunki wyrazić od x i y. Weźmy na początek warunek α + β > π β > α + π arccos y > arccos x + π Sprowadzając problem do znalezienia granicy. na mocy wzoru 7 mamy arccos y = arccos x + π y = cos( arccos x + π) y = cos( arccos x) y = cos(arccos x)) 13

14 Rysunek 6: Odwzorowanie pary(α, β) w parę (x, y) teraz na mocy wzoru 7 uzyskujemy y = x. Wracając do nierówności. spełniona jest ona, gdy y < x, Wynika to chociażby z tego, że funkcja arccos jest malejąca. Analogicznie postępując z nierównością odwrotną β < α + π dojdziemy do y > x. Teraz możemy zapisać nasz wzór już z warunkami na x i y. arccos x + arccos y = { arccos(xy (1 x )(1 y )), dla x + y > 0 π arccos(xy (1 x )(1 y )), dla x + y <

15 (a) f(x, y) = arccos x + arccos y (b) f = arccos(xy (1 y )(1 x )) Rysunek 7: Porównanie wygenerowanych wykresów funkcji 3.17 Wzór 17 Szukamy wzoru: Oznaczmy przez arc tg x + arc tg y =? α = arc tg x β = arc tg y Stąd możemy napisać na mocy wzoru 8, że: x = tg α y = tg β Wychodząc ze wzoru trygonometrycznego podstawiając uzyskujemy tg(α + β) = tg α+tg β 1 tg α tg β tg(α + β) = x + y 1 xy 15

16 Teraz Uwaga postępujemy jak z klsaycznym równaniem trygonometrycznym γ = arc tg x + y 1 xy α + β = γ + k π, gdzie k Z Skoro α, β ( π, π ) zatem α + β ( π, π) zatem mamy takie możliwości π + arc tg x+y 1 xy, dla α + β ( 3π, π ) α + β = arc tg x+y 1 xy, dla α + β ( π, π ) π + arc tg x+y 1 xy, dla α + β ( π, 3π ) a teraz uściślając i uwzględniając sytuację gdy xy = 1 π + arc tg x+y 1 xy, dla α + β ( π, π ) arc tg x+y 1 xy α + β =, dla α + β ( π, π ) π + arc tg x+y 1 xy, dla α + β ( π, π) π, dla α + β = π Teraz, aby wyglądało to bardziej elegancko wystarczy warunki wyrazić od Rysunek 8: Odwzorowanie pary(α, β) w parę (x, y) x i y Weźmy na początek przypadek.. Ponadto zauważmy, że α + β > π α, β > 0 x, y > 0, bo α, β ( π, π ) 16

17 Rozpatrując najpierw równanie. β > α + π β = α + π Wracając do nierówności mamy, że: arc tg y = arc tg x + π y = tg( arc tg x + π ) y = ctg( arc tg x) 1 y = tg(arc tg x) y = 1 x y > 1 x x, y > 0 czyli Analogicznie z nierównością xy > 1 x, y > 0 Dojdziemy do α + β < π y < 1 x x, y < 0 mnożąc przez ujemny x, znak się zmieni i mamy: xy > 1 x, y < 0 W trzecim przypadku zaś mamy warunek α + β < π co sprowadza się do dwóch nierówności. Odwrotnych niż analizowane wcześniej. α + β < π α β > π a to zaś do xy < 1 x, y R Teraz możemy ostateczni napisać wzór π + arc tg x+y 1 xy, dla xy > 1 x, y < 0 arc tg x+y 1 xy, dla xy < 1 arc tg x + arc tg y = π + arc tg x+y 1 xy, dla xy > 1 x, y > 0 π, dla xy =

18 (a) f(x, y) = arc tg x + arc tg y (b) f(x, y) = arc tg x+y 1 xy Rysunek 9: Porównanie wygenerowanych wykresów funkcji 18

Tożsamości cyklometryczne. Zadania z zastosowaniem funkcji cyklometrycznych. Autorzy: Anna Barbaszewska-Wiśniowska

Tożsamości cyklometryczne. Zadania z zastosowaniem funkcji cyklometrycznych. Autorzy: Anna Barbaszewska-Wiśniowska Tożsamości cyklometryczne. Zadania z zastosowaniem funkcji cyklometrycznych Autorzy: Anna Barbaszewska-Wiśniowska 09 Tożsamości cyklometryczne. Zadania z zastosowaniem funkcji cyklometrycznych Autor: Anna

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje

Bardziej szczegółowo

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych TRYGONOMETRIA. Definicje i własności funkcji trygonometrycznych Funkcje trygonometryczne kąta ostrego można zdefiniować przy użyciu trójkąta prostokątnego: c a α b DEFINICJA. Sinusem kąta ostrego α w trójkącie

Bardziej szczegółowo

Repetytorium. Zajęcia w semestrze zimowym 2012/2013. Ewa Cygan

Repetytorium. Zajęcia w semestrze zimowym 2012/2013. Ewa Cygan Repetytorium Zajęcia w semestrze zimowym 01/013 Ewa Cygan Wersja z 15 stycznia 013 Zestawy zadań na kolejne ćwiczenia Na najbliższe zajęcia (11.10.) proszę o rozwiązanie (bądź powtórzenie sobie rozwiązań

Bardziej szczegółowo

Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z

Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z 1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =

Bardziej szczegółowo

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2 Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 2 Definicja funkcji przypomnienie Definicja Dla danych dwóch niepustych zbiorów X, Y przypisanie każdemu elementowi zbioru X dokładnie jednego elementu

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Równania i nierówności trygonometryczne

Równania i nierówności trygonometryczne Równania i nierówności trygonometryczne Piotr Rzonsowski Zadanie 1. Obliczyć równania: Zadania obowiązkowe a) cos x = 1, b) tg x =, c) cos( x + π ) =, d) sin x = 1. Wskazówka: (a) Oblicz cos y = 1 a następnie

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane

Bardziej szczegółowo

Funkcje Andrzej Musielak 1. Funkcje

Funkcje Andrzej Musielak 1. Funkcje Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

NIERÓWNOŚCI CYKLOMETRYCZNE

NIERÓWNOŚCI CYKLOMETRYCZNE NIERÓWNOŚCI CYKLOMETRYCZNE Wśród wielu typów nierówności rozwiązywanych przez uczniów liceów ogólnokształcących, na uwagę zasługują również nierówności cyklometryczne. W okresie poprzedzającym wprowadzenie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Matematyka kompendium 2

Matematyka kompendium 2 Matematyka kompendium 2 Spis treści Trygonometria Funkcje trygonometryczne Kąt skierowany Kąt skierowany umieszczony w układzie współrzędnych Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 15.1.010r. Zarządzanie Licencjackie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f x) = arc cos x x + x 5 ) ) log x + 5. Rozwiązanie. Wymagane

Bardziej szczegółowo

Funkcje trygonometryczne

Funkcje trygonometryczne Funkcje trygonometryczne Sinus kąta ostrego α stosunek długości przyprostokątnej leżącej naprzeciw kąta α do długości przeciwprostokątnej: sin α = a : c = a/c Cosinus kąta ostrego α stosunek długości przyprostokątnej

Bardziej szczegółowo

Funkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14

Funkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 Miara kąta Miara kąta kąt mierzymy od ramienia początkowego do końcowego w kierunku przeciwnym do ruchu wskazówek zegara (α > 0) kąt zgodny

Bardziej szczegółowo

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w

Bardziej szczegółowo

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie

Bardziej szczegółowo

Równania i nierówności wykładnicze i logarytmiczne

Równania i nierówności wykładnicze i logarytmiczne Równania i nierówności wykładnicze i logarytmiczne Paweł Foralewski Teoria Ponieważ funkcje wykładnicza i logarytmiczna zostały wprowadzone wcześniej, tutaj przypomnimy tylko definicję logarytmu i jego

Bardziej szczegółowo

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM

Bardziej szczegółowo

1. Wyznacz długości boków trójkąta prostokątnego ABC oraz wartości funkcji trygonometrycznych kąta CABmającdane sin (CAB) = 4 5i BC = 2.

1. Wyznacz długości boków trójkąta prostokątnego ABC oraz wartości funkcji trygonometrycznych kąta CABmającdane sin (CAB) = 4 5i BC = 2. Funkcje trygonometryczne. Wyznacz długości boków trójkąta prostokątnego ABC oraz wartości funkcji trygonometrycznych kąta CABmającdane sin (CAB) = 4 5i BC =..Rozwiążtrójkątprostokatnymającdaneprzyprostokątne

Bardziej szczegółowo

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie Zaoczne, Sieradz WDAM

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie Zaoczne, Sieradz WDAM Rozwiązania zadań z kolokwium w dniu 1.1.010r. Zarządzanie Licencjackie Zaoczne, Sieradz WDAM Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = arc cos ( x + 1 x ) + Rozwiązanie. Wymagane są następujące

Bardziej szczegółowo

Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako:

Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako: 1. Trygonometria 1.1Wprowadzenie Jednym z podstawowych działów matematyki który wykorzystywany jest w rozwiązywaniu problemów technicznych jest trygonometria. W szkole średniej wprowadzone zostały podstawowe

Bardziej szczegółowo

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie

Bardziej szczegółowo

FUNKCJA WYMIERNA. Poziom podstawowy

FUNKCJA WYMIERNA. Poziom podstawowy FUNKCJA WYMIERNA Poziom podstawowy Zadanie Wykonaj działania i podaj niezbędne założenia: a+ a) + ; ( pkt.) a+ a a b) + + ; ( pkt.) + m m m c) :. ( pkt.) m m+ Zadanie ( pkt.) Oblicz wartość liczbową wyrażenia

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska Ciągłość funkcji jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 2018 Spis treści Definicja ciągłości funkcji. Przykłady Funkcja nieciągła. Typy nieciągłości funkcji Własności funkcji

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

7. Funkcje elementarne i ich własności.

7. Funkcje elementarne i ich własności. Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne

Bardziej szczegółowo

OCENIANIE ARKUSZA POZIOM ROZSZERZONY

OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) x = x. I sposób rozwiązania podpunktu b). Zapisanie wzoru funkcji w postaci sumy OCENIANIE

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

OCENIANIE ARKUSZA POZIOM ROZSZERZONY

OCENIANIE ARKUSZA POZIOM ROZSZERZONY OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) =. x x I sposób rozwiązania podpunktu b). Zapisanie

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

Definicje funkcji trygonometrycznych kąta ostrego

Definicje funkcji trygonometrycznych kąta ostrego 1 Definicje funkcji trygonometrycznych kąta ostrego Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej leżącej naprzeciw tego kąta do długości przeciwprostokątnej.

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28

Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28 Wykład 5 Informatyka Stosowana 7 listopada 2016 Informatyka Stosowana Wykład 5 7 listopada 2016 1 / 28 Definicja (Złożenie funkcji) Niech X, Y, Z, W - podzbiory R. Niech f : X Y, g : Z W, Y Z. Złożeniem

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Trigonometria. Funkcje trygonometryczne

Trigonometria. Funkcje trygonometryczne 1 Trigonometria. Funkcje trygonometryczne Trigonometria to wiedza o zwi azkach miarowych pomiedzy bokami i k atami trójk atów. Takie znaczenie s lowa Trigonometria by lo używane w czasach starożytnych

Bardziej szczegółowo

Funkcje trygonometryczne

Funkcje trygonometryczne Funkcje trygonometryczne Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o Kąt α [ o ] 30 o 45 o 60 o sin α ½ 2 / 2 3 / 2 cos α 3 / 2 2 / 2 ½ tg α 3 / 3 1 3 ctg α 3 1 3 / 3 Związki między funkcjami

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

II. Wstęp: Funkcje elementarne - część 2

II. Wstęp: Funkcje elementarne - część 2 II. Wstęp: Funkcje elementarne - część 2 Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet EkonomicznyII. wwstęp: Krakowie) Funkcje elementarne - część 2 1 / 34 1

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

Funkcje jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska

Funkcje jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska Funkcje jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 09 Spis treści Pojęcie funkcji. Dziedzina i przeciwdziedzina Wykres funkcji Przekształcanie wykresów funkcji Sposoby zadawania

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

III. Wstęp: Elementarne równania i nierówności

III. Wstęp: Elementarne równania i nierówności III. Wstęp: Elementarne równania i nierówności Fryderyk Falniowski, Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie ryderyk Falniowski, Grzegorz Kosiorowski (Uniwersytet III. Wstęp: Ekonomiczny

Bardziej szczegółowo

Funkcje trygonometryczne

Funkcje trygonometryczne Funkcje trygonometryczne Piotr Rzonsowski Teoria Definicja. Sinusem kąta ostrego α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej sin α = b c. Cosinusem kąta ostrego

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Pochodna funkcji odwrotnej

Pochodna funkcji odwrotnej Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie

Bardziej szczegółowo

Pochodna i jej zastosowania

Pochodna i jej zastosowania Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie

Bardziej szczegółowo

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji Sprawdzian nr 2: 25..204, godz. 8:5-8:40 (materiał zad. -48) Sprawdzian nr 3: 9.2.204, godz. 8:5-8:40 (materiał zad. -88) Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Bardziej szczegółowo

Twierdzenia Rolle'a i Lagrange'a

Twierdzenia Rolle'a i Lagrange'a Twierdzenia Rolle'a i Lagrange'a Zadanie 1 Wykazać, że dla dowolnych zachodzi. W przypadku nierówność (a właściwie równość) w treści zadania spełniona jest w sposób oczywisty, więc tego przypadku nie musimy

Bardziej szczegółowo

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia: Zadania na zajęcia z przedmiotu Repetytorium z matematyki elementarnej, GiK, 06/7 Zdania logiczne Funkcje zdaniowe i kwantyfikatory Ocenić wartość logiczną zdania (odpowiedź uzasadnić): < Nieprawda, że

Bardziej szczegółowo

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y) Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i

Bardziej szczegółowo

Literatura podstawowa

Literatura podstawowa 1 Wstęp Literatura podstawowa 1. Grażyna Kwiecińska: Matematyka : kurs akademicki dla studentów nauk stosowanych. Cz. 1, Wybrane zagadnienia algebry liniowej, Wydaw. Uniwersytetu Gdańskiego, Gdańsk, 2003.

Bardziej szczegółowo

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym

Bardziej szczegółowo

Funkcje hiperboliczne

Funkcje hiperboliczne Funkcje hiperboliczne Mateusz Goślinowski grudnia 06 Geometria hiperboli Zastanówmy się nad następującym faktem. Zauważmy, jak podobne są równania okręgu jednostkowego i hiperboli jednostkowej: x + y x

Bardziej szczegółowo

1 Wyrażenia potęgowe i logarytmiczne.

1 Wyrażenia potęgowe i logarytmiczne. Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n

Bardziej szczegółowo

Repetytorium z matematyki ćwiczenia

Repetytorium z matematyki ćwiczenia Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej

Bardziej szczegółowo

DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa

DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa Pochodna funkcji jednej zmiennej rzeczywistej E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa 2015 Spis treści Pochodna funkcji w punkcie. Pochodna jednostronna, niewłaściwa i funkcji

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej . Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się

Bardziej szczegółowo

2 5 C). Bok rombu ma długość: 8 6

2 5 C). Bok rombu ma długość: 8 6 Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,

Bardziej szczegółowo

10. arccos 3 + 4x, 11. tg sin cos x, 12. arcctg x ctg 2x, arcsin(2x 1) arcsin 2x 1, 21. sin2 x 2 1,

10. arccos 3 + 4x, 11. tg sin cos x, 12. arcctg x ctg 2x, arcsin(2x 1) arcsin 2x 1, 21. sin2 x 2 1, . Nawiasy Dopisz nawiasy jak w przykªadzie: ln cos 4 + = ln((cos(4)) ) +. sin,. ln 3 +, 3. tg ctg, 4. sin, 5. log 3 4, 6. arcsin sin, 7. tg 4 3, 8. log, 9. cos +3, 0. arccos 3 + 4,. tg sin cos,. arcctg

Bardziej szczegółowo